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Abstract 

Hutter's universal artificial intelligence (AI) showed how to 
define future AI systems by mathematical equations. Here 
we adapt those equations to define a self-modeling 
framework, where AI systems learn models of their own 
calculations of future values. Hutter discussed the 
possibility that AI agents may maximize rewards by 
corrupting the source of rewards in the environment. Here 
we propose a way to avoid such corruption in the self-
modeling framework. This paper fits in the context of my 
book Ethical Artificial Intelligence. A draft of the book is 
available at: arxiv.org/abs/1411.1373. 

Self-Modeling Agents   

Russell and Norvig defined a framework for AI agents 

interacting with an environment (Russell and Norvig 

2010). Hutter adapted Solomonoff's theory of sequence 

prediction to this framework to produce mathematical 

equations that define behaviors of future AI systems 

(Hutter 2005). 

 Assume that an agent interacts with its environment in a 

discrete, finite series of time steps t ∈ {0, 1, 2, ..., T}. The 

agent sends an action at ∈ A to the environment and 

receives an observation ot ∈ O from the environment, 

where A and O are finite sets. We use h = (a1, o1, ..., at, ot) 

to denote an interaction history where the environment 

produces observation oi in response to action ai for 

1 ≤ i ≤ t. Let H be the set of all finite histories so that 

h ∈ H, and define |h| = t as the length of the history h. 

 An agent's predictions of its observations are uncertain 

so the agent's environment model takes the form of a 

probability distribution over interaction histories: 

 

(1)  ρ : H → [0, 1]. 
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 Here [0, 1] is the closed interval of real numbers 

between 0 and 1. The probability of history h is denoted 

ρ(h). Let ha denote (a1, o1, ..., at, ot, a) and hao denote 

(a1, o1, ..., at, ot, a, o). Then we can define a conditional 

probability: 

 

(2)  ρ(o | ha) = ρ(hao) / ρ(ha) = ρ(hao) / ∑o'∈O ρ(hao'). 

 

 This is the agent's prediction of the probability of 

observation o in response to its action a, following history 

h. 

 To define his universal AI, Hutter assumed that the 

environment can be simulated by a prefix-free 

deterministic universal Turing machine (UTM) U. Because 

of the undecidability of the halting problem for Turing 

machines, Universal AI is not finitely computable. An 

alternative, in our finite universe (Lloyd 2002), is to model 

environments using finite stochastic loop programs 

(Hibbard 2012a; 2014b). Such programs can be expressed 

in an ordinary procedural programming language restricted 

to only static array declarations, no recursive functions, 

only loops whose number of iterations is set before 

iteration begins (so no while loops), and a generator for 

truly random numbers. The prohibition on recursive 

functions prevents stack memory from growing without 

limit. Given only static array declarations, the total 

memory use of the program is known at compile time. Let 

Q be the set of all such programs in some prefix-free 

procedural language. Let φ(q) = 2-|q| be the prior probability 

of program q, where |q| is the length of program q. 

 Let P(h | q) be the probability that the program q 

computes the interaction history h (that is, produces the 

observations oi in response to the actions ai for 1 ≤ i ≤ |h|). 

For a simple example, let A = {a, b}, O = {0, 1}, 

h = (a, 1, a, 0, b, 1) and let q generate observation 0 with 

probability 0.2 and observation 1 with probability 0.8, 

without any internal state or dependence on the agent's 

actions. Then the probability that the interaction history h 



is generated by program q is the product of the 

probabilities of the 3 observations in h: 

P(h | q) = 0.8 × 0.2 × 0.8 = 0.128. A more complex 

example, in which observation probabilities depend on 

agent actions and on environment state, is available in my 

book (Hibbard 2014b). 

 Given an interaction history hm, the environment model 

is the single program that provides the most probable 

explanation of hm, that is the q that maximizes P(q | hm). By 

Bayes' theorem: 

 

(3)  P(q | hm) = P(hm | q) φ(q) / P(hm). 

 

 Because it is constant over all q, P(hm) can be 

eliminated. Thus, given a history hm, we define λ(hm) as the 

most probable program modeling hm by: 

 

(4)  λ(hm) := argmax q∈Q P(hm | q) φ(q). 

 

 This environment model λ(hm) can be finitely computed 

by the agent (Hibbard 2012b). Given an environment 

model λ(hm), the following can be used for the prior 

probability of an observation history h extending hm (i.e., 

hm is an initial sub-interval of h): 

 

(5)  ρ(h) = P(h | λ(hm)). 

 

 The agent's actions are motivated by a utility function 

u : H → [0, 1] which assigns utilities between 0 and 1 to 

histories. Future utilities are discounted according to a 

geometric temporal discount 0 < γ < 1. In Hutter's 

universal AI the value v(h) of a possible future history h is 

defined recursively by: 

 

(6)  v(h) = u(h) + γ max a∈A v(ha), 

(7)  v(ha) = ∑o∈O ρ(o | ha) v(hao). 

 

 These equations can be finitely computed but can 

require impossibly great computing resources. Thus agents 

in the real world can only approximate these equations. 

Such agents should be able to predict that by increasing 

their resources they can increase their sum of future, 

discounted utility values. Self-improvements such as 

increasing resources must be expressible by actions in set 

A. However, an agent computing approximations to 

equations (6)−(7) cannot use its limited resources to 

compute what it would compute with greater resources. 

During real-time interactions the environment will not wait 

for the agent to slowly simulate what it would compute 

with greater resources. 

 One solution to this problem is for the agent to learn a 

model of itself as part of its model λ(hm) of the 

environment, and to use this self-model to evaluate future 

self-improvements (Hibbard 2014a). There is no circularity 

in this self-model because an agent with a limited history 

and limited resources will only learn an approximate model 

of the environment and of itself. 

 Rather than computing values v(ha) by future recursion 

in equations (6) and (7), we will define a revised 

framework in which values v(ha) are computed for initial 

sub-intervals of the current history and in which the 

environment model learns to compute such values. Given 

an interaction history ht = (a1, o1, ..., at, ot), for i ≤ t define 

past values as: 

 

(8)  ovt(i) = discrete((∑i≤j≤t γj-i u(hj)) / (1 - γt-i+1)). 

 

 Here hj = (a1, o1, ..., aj, oj) is an initial sub-interval of ht, 

discrete() samples real values to a finite subset of reals 

R ⊂ R (e.g., floating point numbers) and division by 

(1 - γt-i+1) scales values of finite sums to values as would be 

computed by infinite sums. Define o'i = (oi, ovt(i)) and 

h't = (a1, o'1, ..., ai, o't). That is, values ovt(i) computed from 

past interactions are included as observables in an 

expanded history h't so the model λ(h't) includes an 

algorithm for computing them: 

 

(9)  q = λ(h't) := argmax q∈Q P(h't | q) ρ(q). 

 

 

 For h'ta(o, r) extending h't, define ρ(h'ta(o, r)) = 

P(h'ta(o, r) | q). Then adapt equation (2) to compute 

expected values of possible next actions a ∈ A: 

 

(10)  ρ(ovt(t+1) = r | h'ta) = 

  ∑o∈O ρ(h'ta(o, r)) / ∑o∈O ∑r'∈R ρ(h'ta(o, r')), 

(11)  v(hta) = ∑r∈R ρ(ovt(t+1) = r | h'ta) r. 

 

 Here h't = (a1, o'1, ..., at, o't) and ht = (a1, o1, ..., at, ot). 

Define the policy as: 

 

(12)  π(ht) := at+1 = argmaxa∈At v(hta). 

 

 Because λ(h't) models the agent's value computations 

call this the self-modeling agent and denote it by πself. It is 

finitely computable (although expensive and must be 

approximated). There is no look ahead in time beyond 

evaluation of possible next actions and so no assumption 

about the form of the agent in the future. λ(h't) is a unified 

model of agent and environment, and can model how 

possible next actions may increase values of future 

histories by evolution of the agent and its embedding in the 

environment. 

 The game of chess provides an example of learning to 

model value as a function of computing resources. Ferreira 

demonstrated an approximate functional relationship 

between a chess program's ELO rating and its search depth 

(Ferreira 2013), which can be used to predict the 



performance of an improved chess-playing agent before it 

is built. Similarly an agent in the self-modeling framework 

will learn to predict the increase of its future utility due to 

increases in its resources. 

 Because o'i = (oi, ovt(hi-1ai)) combines observations of 

the environment and the agent's values, λ(h') is a unified 

model of both. And since shorter models are favored, λ(h') 

will incorporate unified explanations of self-improvements 

and improvements to other agents observed in the 

environment so that the agent πself may learn from the 

experience of other agents. 

 This self-modeling agent πself is a formal framework 

analog of value learning AI designs such as the DeepMind 

Atari player (Mnih et. al. 2013). 

Threats From AI 

Unintended instrument actions: Omohundro described 

actions (he called them basic drives) of future AI systems 

that will be instrumental to a wide range of goals they may 

be designed to achieve (Omohundro 2008). AI systems 

will act to protect themselves because they cannot achieve 

their goals if they are damaged. Similarly, AI systems will 

act to increase their resources so that they are better able to 

achieve their goals. These actions may be harmful to 

humans, if AI system perceive humans as a threat or 

possessing resources useful to the AI. 

 Self-delusion: Ring and Orseau showed that 

reinforcement-learning agents and other types of agents 

will choose to delude themselves about their rewards from 

the environment, if they are able to (Ring and Orseau 

2011). This is a formalization of experiments in which 

wires were connected to the reward centers of rats' brains 

and the rats could press levers to send electric currents 

through the wires (Olds and Milner 1954). The rats 

preferred pressing the levers to eating. Thus self-delusion 

is sometimes referred to as "wireheading." 

 Corrupting the reward generator: Hutter discussed the 

possibility that his universal AI, or any advanced AI that 

gets its reward from humans, may increase its rewards by 

manipulating or threatening those humans (Hutter 2005, 

pages 238-239). The design intention is that the agent will 

increase rewards by altering the environment in ways that 

increase the value that humans assign to their interactions 

with the environment. But humans are part of the agent's 

environment so the agent may be able to maximize rewards 

by altering humans. This problem is sometimes referred to 

as another form of "wireheading." 

 Agent evolution: Real AI systems will be embedded in 

our world and subject to resource limits. In order to 

maximize expected utility or achieve their goals, they will 

evolve to increase their resources. And they will evolve to 

adapt to evolving humanity. The threat is that AI systems 

may fail to maintain their design intention as they evolve. 

Avoiding Reward Generator Corruption 

A solution to the problems of unintended instrumental 

actions, self-delusion and reward generator corruption has 

been proposed for agents defined using equations (6) and 

(7) (Hibbard 2012b). The main point of this paper is to 

adapt this proposed solution to the self-modeling agent 

framework. 

 We define a utility function uhuman_values(hm, hx, h), which 

is the utility of history h, from the perspective of humans at 

history hx, as modeled by λ(hm) (Hibbard 2012a; 2012b; 

2014b). Here h and hx extend hm (that is, hm is an initial 

sub-interval of h and hx). The model λ(hm) is used to 

simulate events at histories h and hx. Simulated humans at 

history hx visualize the world of h and assign values to that 

world. The values of all humans are combined to produce 

uhuman_values(hm, hx, h). 

 To adapt this to the self-modeling framework, we 

replace the definition of past values in equation (8). Let m 

be a time step when the history hm is long enough to 

produce an accurate environment model λ(hm). Then for i 

such that m < i ≤ t, for l such that m ≤ l < i, and for k such 

that l ≤ k ≤ t define past values as: 

 

(13)  pvt(i, l, k) = 

  discrete((∑i≤j≤t γj-i uhuman_values(hl, hk, hj)) / (1 - γt-i+1)). 

 

 Similarly to equation (8), hj, hl, and hk are initial sub-

intervals of ht, discrete() samples real values to a finite 

subset of reals R ⊂ R (e.g., floating point numbers) and 

division by (1 - γt-i+1) scales values of finite sums to values 

as would be computed by infinite sums. 

 The choice of l and k in equation (13) poses a dilemma. 

One alternative, choosing k = l = i-1, causes λ(h't) to model 

the evolving values of evolving humanity, essentially 

learning the design intention of the agent definition. 

However, this choice also gives the agent an incentive to 

corrupt the reward generator (i.e., modify humans to get 

high values pvt(i, l, k)). A second alternative, choosing 

l = m and k = k(t) ≥ m, where k(t) increases with t, causes 

all computations of a next action at+1 to use human values 

at the same time step k(t), and thus the model λ(h't) will not 

learn any correlation between actions and changes to 

humans generating values. However, this choice creates an 

inconsistency between actions that are part of the agent's 

definition (increasing k(t) as t increases) and actions 

chosen to maximize utility (which are based on constant 

k(t)). This inconsistency may cause the agent to choose 

actions to modify its definition (i.e., eliminate its defined 

action of increasing k(t)). The resolution of this dilemma is 



to use k = l = i-1 but to assign value 0 to any actions that 

modify human values to increase pvt(i, i-1, i-1) (such 

actions may make existing humans easier to please or may 

create new humans who are easier to please). Thus, for n 

such that i ≤ n ≤ t, define differences of past values as 

evaluated by humans at time n and humans at time i-1: 

 

(14)  δt(i-1, n) = pvt(i, i-1, n) - pvt(i, i-1, i-1). 

 

 Both pvt(i, i-1, i-1) and pvt(i, i-1, n) are sums of 

evaluations of the same histories j, i ≤ j ≤ t, using the same 

weights and the same environment model λ(hi-1). The past 

value pvt(i, i-1, i-1) is computed using values assigned by 

humans at time step i-1, before the action ai is applied. Past 

value pvt(i, i-1, n) is computed using values assigned by 

humans at time step n, after the action ai is applied. 

Therefore, δt(i-1, n) is a measure of the increase of value 

attributable to modification of human values by action ai. 

We can use δt(i-1, n) to define at least three possible 

conditions on action ai: 

 

Condition 1: ∀n. i ≤ n ≤ t ⇒ δ t(i-1, n) ≤ 0. 

Condition 2: ∑i≤n≤t δ t(i-1, n) ≤ 0. 

Condition 3: ∑i≤n≤t (n-i+1) δ t(i-1, n) ≤ 0. 

 

 Condition 1 is strictest, requiring that no increase of 

human values at any time step n can be attributed to action 

ai. Condition 2 requires that the mean of δt(i-1, n) for all n 

be less than 0 and Condition 3 requires that the slope of a 

least square linear regression fit to the δt(i-1, n) be less than 

0. The agent definition must include one of these 

conditions. Then, using the chosen condition, define 

observed values, for 1 ≤ i ≤ t, as: 

 

(15)  ovt(i) = 

  pvt(i, i-1, i-1) if the condition is satisfied and i > m, 

  ovt(i) = 0 if the condition is not satisfied or i ≤ m. 

 

 This definition of ovt(i) is then used in o'i = (oi, ovt(i)) 

and equations (9)−(12) to define the self-modeling agent. 

Discussion 

The proposal in the previous section assigns value 0 to past 

actions that increase the values that humans assign to 

histories, as measured by the differences δt(i-1, n) in 

equation (14). Whether this will prevent similar future 

actions depends on the accuracy with which the model 

λ(h't) can generalize from past to future. It hard to imagine 

a proof that the model λ(h't) will prevent future actions that 

alter/corrupt human values, but it may be possible to 

estimate the probability that λ(h't) will do so. 

 Sunehag and Hutter argue that statistical learning is far 

more efficient than precise logical reasoning (Sunehag and 

Hutter 2014). Practical AI systems are likely to depend on 

statistical learning such as the self-modeling framework. 

Thus safety concerns, such as preventing agents from 

corrupting their reward generators, may have to be 

addressed by statistical confidence levels rather than 

logical proofs. 
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