

Self-Modeling Agents and Reward Generator Corruption

Bill Hibbard

Space Science and Engineering Center, University of Wisconsin - Madison

and Machine Intelligence Research Institute, Berkeley, CA
test@ssec.wisc.edu

Abstract

Hutter's universal artificial intelligence (AI) showed how to
define future AI systems by mathematical equations. Here
we adapt those equations to define a self-modeling
framework, where AI systems learn models of their own
calculations of future values. Hutter discussed the
possibility that AI agents may maximize rewards by
corrupting the source of rewards in the environment. Here
we propose a way to avoid such corruption in the self-
modeling framework. This paper fits in the context of my
book Ethical Artificial Intelligence. A draft of the book is
available at: arxiv.org/abs/1411.1373.

Self-Modeling Agents

Russell and Norvig defined a framework for AI agents

interacting with an environment (Russell and Norvig

2010). Hutter adapted Solomonoff's theory of sequence

prediction to this framework to produce mathematical

equations that define behaviors of future AI systems

(Hutter 2005).

 Assume that an agent interacts with its environment in a

discrete, finite series of time steps t ∈ {0, 1, 2, ..., T}. The

agent sends an action at ∈ A to the environment and

receives an observation ot ∈ O from the environment,

where A and O are finite sets. We use h = (a1, o1, ..., at, ot)

to denote an interaction history where the environment

produces observation oi in response to action ai for

1 ≤ i ≤ t. Let H be the set of all finite histories so that

h ∈ H, and define |h| = t as the length of the history h.

 An agent's predictions of its observations are uncertain

so the agent's environment model takes the form of a

probability distribution over interaction histories:

(1) ρ : H → [0, 1].

Copyright © 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 Here [0, 1] is the closed interval of real numbers

between 0 and 1. The probability of history h is denoted

ρ(h). Let ha denote (a1, o1, ..., at, ot, a) and hao denote

(a1, o1, ..., at, ot, a, o). Then we can define a conditional

probability:

(2) ρ(o | ha) = ρ(hao) / ρ(ha) = ρ(hao) / ∑o'∈O ρ(hao').

 This is the agent's prediction of the probability of

observation o in response to its action a, following history

h.

 To define his universal AI, Hutter assumed that the

environment can be simulated by a prefix-free

deterministic universal Turing machine (UTM) U. Because

of the undecidability of the halting problem for Turing

machines, Universal AI is not finitely computable. An

alternative, in our finite universe (Lloyd 2002), is to model

environments using finite stochastic loop programs

(Hibbard 2012a; 2014b). Such programs can be expressed

in an ordinary procedural programming language restricted

to only static array declarations, no recursive functions,

only loops whose number of iterations is set before

iteration begins (so no while loops), and a generator for

truly random numbers. The prohibition on recursive

functions prevents stack memory from growing without

limit. Given only static array declarations, the total

memory use of the program is known at compile time. Let

Q be the set of all such programs in some prefix-free

procedural language. Let φ(q) = 2-|q| be the prior probability

of program q, where |q| is the length of program q.

 Let P(h | q) be the probability that the program q

computes the interaction history h (that is, produces the

observations oi in response to the actions ai for 1 ≤ i ≤ |h|).

For a simple example, let A = {a, b}, O = {0, 1},

h = (a, 1, a, 0, b, 1) and let q generate observation 0 with

probability 0.2 and observation 1 with probability 0.8,

without any internal state or dependence on the agent's

actions. Then the probability that the interaction history h

is generated by program q is the product of the

probabilities of the 3 observations in h:

P(h | q) = 0.8 × 0.2 × 0.8 = 0.128. A more complex

example, in which observation probabilities depend on

agent actions and on environment state, is available in my

book (Hibbard 2014b).

 Given an interaction history hm, the environment model

is the single program that provides the most probable

explanation of hm, that is the q that maximizes P(q | hm). By

Bayes' theorem:

(3) P(q | hm) = P(hm | q) φ(q) / P(hm).

 Because it is constant over all q, P(hm) can be

eliminated. Thus, given a history hm, we define λ(hm) as the

most probable program modeling hm by:

(4) λ(hm) := argmax q∈Q P(hm | q) φ(q).

 This environment model λ(hm) can be finitely computed

by the agent (Hibbard 2012b). Given an environment

model λ(hm), the following can be used for the prior

probability of an observation history h extending hm (i.e.,

hm is an initial sub-interval of h):

(5) ρ(h) = P(h | λ(hm)).

 The agent's actions are motivated by a utility function

u : H → [0, 1] which assigns utilities between 0 and 1 to

histories. Future utilities are discounted according to a

geometric temporal discount 0 < γ < 1. In Hutter's

universal AI the value v(h) of a possible future history h is

defined recursively by:

(6) v(h) = u(h) + γ max a∈A v(ha),

(7) v(ha) = ∑o∈O ρ(o | ha) v(hao).

 These equations can be finitely computed but can

require impossibly great computing resources. Thus agents

in the real world can only approximate these equations.

Such agents should be able to predict that by increasing

their resources they can increase their sum of future,

discounted utility values. Self-improvements such as

increasing resources must be expressible by actions in set

A. However, an agent computing approximations to

equations (6)−(7) cannot use its limited resources to

compute what it would compute with greater resources.

During real-time interactions the environment will not wait

for the agent to slowly simulate what it would compute

with greater resources.

 One solution to this problem is for the agent to learn a

model of itself as part of its model λ(hm) of the

environment, and to use this self-model to evaluate future

self-improvements (Hibbard 2014a). There is no circularity

in this self-model because an agent with a limited history

and limited resources will only learn an approximate model

of the environment and of itself.

 Rather than computing values v(ha) by future recursion

in equations (6) and (7), we will define a revised

framework in which values v(ha) are computed for initial

sub-intervals of the current history and in which the

environment model learns to compute such values. Given

an interaction history ht = (a1, o1, ..., at, ot), for i ≤ t define

past values as:

(8) ovt(i) = discrete((∑i≤j≤t γj-i u(hj)) / (1 - γt-i+1)).

 Here hj = (a1, o1, ..., aj, oj) is an initial sub-interval of ht,

discrete() samples real values to a finite subset of reals

R ⊂ R (e.g., floating point numbers) and division by

(1 - γt-i+1) scales values of finite sums to values as would be

computed by infinite sums. Define o'i = (oi, ovt(i)) and

h't = (a1, o'1, ..., ai, o't). That is, values ovt(i) computed from

past interactions are included as observables in an

expanded history h't so the model λ(h't) includes an

algorithm for computing them:

(9) q = λ(h't) := argmax q∈Q P(h't | q) ρ(q).

 For h'ta(o, r) extending h't, define ρ(h'ta(o, r)) =

P(h'ta(o, r) | q). Then adapt equation (2) to compute

expected values of possible next actions a ∈ A:

(10) ρ(ovt(t+1) = r | h'ta) =

 ∑o∈O ρ(h'ta(o, r)) / ∑o∈O ∑r'∈R ρ(h'ta(o, r')),

(11) v(hta) = ∑r∈R ρ(ovt(t+1) = r | h'ta) r.

 Here h't = (a1, o'1, ..., at, o't) and ht = (a1, o1, ..., at, ot).

Define the policy as:

(12) π(ht) := at+1 = argmaxa∈At v(hta).

 Because λ(h't) models the agent's value computations

call this the self-modeling agent and denote it by πself. It is

finitely computable (although expensive and must be

approximated). There is no look ahead in time beyond

evaluation of possible next actions and so no assumption

about the form of the agent in the future. λ(h't) is a unified

model of agent and environment, and can model how

possible next actions may increase values of future

histories by evolution of the agent and its embedding in the

environment.

 The game of chess provides an example of learning to

model value as a function of computing resources. Ferreira

demonstrated an approximate functional relationship

between a chess program's ELO rating and its search depth

(Ferreira 2013), which can be used to predict the

performance of an improved chess-playing agent before it

is built. Similarly an agent in the self-modeling framework

will learn to predict the increase of its future utility due to

increases in its resources.

 Because o'i = (oi, ovt(hi-1ai)) combines observations of

the environment and the agent's values, λ(h') is a unified

model of both. And since shorter models are favored, λ(h')

will incorporate unified explanations of self-improvements

and improvements to other agents observed in the

environment so that the agent πself may learn from the

experience of other agents.

 This self-modeling agent πself is a formal framework

analog of value learning AI designs such as the DeepMind

Atari player (Mnih et. al. 2013).

Threats From AI

Unintended instrument actions: Omohundro described

actions (he called them basic drives) of future AI systems

that will be instrumental to a wide range of goals they may

be designed to achieve (Omohundro 2008). AI systems

will act to protect themselves because they cannot achieve

their goals if they are damaged. Similarly, AI systems will

act to increase their resources so that they are better able to

achieve their goals. These actions may be harmful to

humans, if AI system perceive humans as a threat or

possessing resources useful to the AI.

 Self-delusion: Ring and Orseau showed that

reinforcement-learning agents and other types of agents

will choose to delude themselves about their rewards from

the environment, if they are able to (Ring and Orseau

2011). This is a formalization of experiments in which

wires were connected to the reward centers of rats' brains

and the rats could press levers to send electric currents

through the wires (Olds and Milner 1954). The rats

preferred pressing the levers to eating. Thus self-delusion

is sometimes referred to as "wireheading."

 Corrupting the reward generator: Hutter discussed the

possibility that his universal AI, or any advanced AI that

gets its reward from humans, may increase its rewards by

manipulating or threatening those humans (Hutter 2005,

pages 238-239). The design intention is that the agent will

increase rewards by altering the environment in ways that

increase the value that humans assign to their interactions

with the environment. But humans are part of the agent's

environment so the agent may be able to maximize rewards

by altering humans. This problem is sometimes referred to

as another form of "wireheading."

 Agent evolution: Real AI systems will be embedded in

our world and subject to resource limits. In order to

maximize expected utility or achieve their goals, they will

evolve to increase their resources. And they will evolve to

adapt to evolving humanity. The threat is that AI systems

may fail to maintain their design intention as they evolve.

Avoiding Reward Generator Corruption

A solution to the problems of unintended instrumental

actions, self-delusion and reward generator corruption has

been proposed for agents defined using equations (6) and

(7) (Hibbard 2012b). The main point of this paper is to

adapt this proposed solution to the self-modeling agent

framework.

 We define a utility function uhuman_values(hm, hx, h), which

is the utility of history h, from the perspective of humans at

history hx, as modeled by λ(hm) (Hibbard 2012a; 2012b;

2014b). Here h and hx extend hm (that is, hm is an initial

sub-interval of h and hx). The model λ(hm) is used to

simulate events at histories h and hx. Simulated humans at

history hx visualize the world of h and assign values to that

world. The values of all humans are combined to produce

uhuman_values(hm, hx, h).

 To adapt this to the self-modeling framework, we

replace the definition of past values in equation (8). Let m

be a time step when the history hm is long enough to

produce an accurate environment model λ(hm). Then for i

such that m < i ≤ t, for l such that m ≤ l < i, and for k such

that l ≤ k ≤ t define past values as:

(13) pvt(i, l, k) =

 discrete((∑i≤j≤t γj-i uhuman_values(hl, hk, hj)) / (1 - γt-i+1)).

 Similarly to equation (8), hj, hl, and hk are initial sub-

intervals of ht, discrete() samples real values to a finite

subset of reals R ⊂ R (e.g., floating point numbers) and

division by (1 - γt-i+1) scales values of finite sums to values

as would be computed by infinite sums.

 The choice of l and k in equation (13) poses a dilemma.

One alternative, choosing k = l = i-1, causes λ(h't) to model

the evolving values of evolving humanity, essentially

learning the design intention of the agent definition.

However, this choice also gives the agent an incentive to

corrupt the reward generator (i.e., modify humans to get

high values pvt(i, l, k)). A second alternative, choosing

l = m and k = k(t) ≥ m, where k(t) increases with t, causes

all computations of a next action at+1 to use human values

at the same time step k(t), and thus the model λ(h't) will not

learn any correlation between actions and changes to

humans generating values. However, this choice creates an

inconsistency between actions that are part of the agent's

definition (increasing k(t) as t increases) and actions

chosen to maximize utility (which are based on constant

k(t)). This inconsistency may cause the agent to choose

actions to modify its definition (i.e., eliminate its defined

action of increasing k(t)). The resolution of this dilemma is

to use k = l = i-1 but to assign value 0 to any actions that

modify human values to increase pvt(i, i-1, i-1) (such

actions may make existing humans easier to please or may

create new humans who are easier to please). Thus, for n

such that i ≤ n ≤ t, define differences of past values as

evaluated by humans at time n and humans at time i-1:

(14) δt(i-1, n) = pvt(i, i-1, n) - pvt(i, i-1, i-1).

 Both pvt(i, i-1, i-1) and pvt(i, i-1, n) are sums of

evaluations of the same histories j, i ≤ j ≤ t, using the same

weights and the same environment model λ(hi-1). The past

value pvt(i, i-1, i-1) is computed using values assigned by

humans at time step i-1, before the action ai is applied. Past

value pvt(i, i-1, n) is computed using values assigned by

humans at time step n, after the action ai is applied.

Therefore, δt(i-1, n) is a measure of the increase of value

attributable to modification of human values by action ai.

We can use δt(i-1, n) to define at least three possible

conditions on action ai:

Condition 1: ∀n. i ≤ n ≤ t ⇒ δ t(i-1, n) ≤ 0.

Condition 2: ∑i≤n≤t δ t(i-1, n) ≤ 0.

Condition 3: ∑i≤n≤t (n-i+1) δ t(i-1, n) ≤ 0.

 Condition 1 is strictest, requiring that no increase of

human values at any time step n can be attributed to action

ai. Condition 2 requires that the mean of δt(i-1, n) for all n

be less than 0 and Condition 3 requires that the slope of a

least square linear regression fit to the δt(i-1, n) be less than

0. The agent definition must include one of these

conditions. Then, using the chosen condition, define

observed values, for 1 ≤ i ≤ t, as:

(15) ovt(i) =

 pvt(i, i-1, i-1) if the condition is satisfied and i > m,

 ovt(i) = 0 if the condition is not satisfied or i ≤ m.

 This definition of ovt(i) is then used in o'i = (oi, ovt(i))

and equations (9)−(12) to define the self-modeling agent.

Discussion

The proposal in the previous section assigns value 0 to past

actions that increase the values that humans assign to

histories, as measured by the differences δt(i-1, n) in

equation (14). Whether this will prevent similar future

actions depends on the accuracy with which the model

λ(h't) can generalize from past to future. It hard to imagine

a proof that the model λ(h't) will prevent future actions that

alter/corrupt human values, but it may be possible to

estimate the probability that λ(h't) will do so.

 Sunehag and Hutter argue that statistical learning is far

more efficient than precise logical reasoning (Sunehag and

Hutter 2014). Practical AI systems are likely to depend on

statistical learning such as the self-modeling framework.

Thus safety concerns, such as preventing agents from

corrupting their reward generators, may have to be

addressed by statistical confidence levels rather than

logical proofs.

References

Ferreira, D. R. 2013. The Impact of Search Depth on Chess
Playing Strength, ICGA Journal 36(2), pp. 67-80.

Hibbard, B. 2012a. Model-based utility functions. J. Artificial
General Intelligence 3(1), pp. 1-24.

Hibbard, B. 2012b. Avoiding unintended AI behavior. In: Bach,
J., and Iklé, M. (eds) AGI 2012. LNCS (LNAI), vol. 7716, pp.
107-116. Springer, Heidelberg.

Hibbard, B. 2014a. Self-modeling agents evolving in our finite
universe. In: Goertzel, B, Orseau, L. and Snaider, J. (eds) AGI
2014. LNCS (LNAI), vol 8598, pp. 246-249. Springer,
Heidelberg.

Hibbard, B. 2014b. Ethical Artificial Intelligence. Draft available
at: arxiv.org/abs/1411.1373

Hutter, M. 2005. Universal artificial intelligence: sequential
decisions based on algorithmic probability. Springer, Heidelberg.

Kurzweil, R. 2005. The singularity is near. Penguin, New York.

Lloyd, S. 2002. Computational Capacity of the Universe.
Phys.Rev.Lett. 88, 237901.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,
I., Wierstra, D., and Riedmiller, M. 2013. Playing Atari with
Deep Reinforcement Learning. http://arxiv.org/abs/1312.5602

Olds, J., and P. Milner, P. 1954. Positive reinforcement produced
by electrical stimulation of septal area and other regions of rat
brain. J. Comp. Physiol. Psychol. 47, pp. 419-427.

Omohundro, S. 2008. The basic AI drives. In Wang, P., Goertzel,
B., and Franklin, S. (eds) AGI 2008. Proc. First Conf. on AGI,
pp. 483-492. IOS Press, Amsterdam.

Ring, M., and Orseau, L. 2011. Delusion, survival, and intelligent
agents. In: Schmidhuber, J., Thórisson, K.R., and Looks, M. (eds)
AGI 2011. LNCS (LNAI), vol. 6830, pp. 11-20. Springer,
Heidelberg.

Russell, S., and Norvig, P. 2010. Artificial intelligence: a modern
approach (3rd ed.). Prentice Hall, New York.

Sunehag, P. and Hutter, M. 2014. Intelligence as Inference or
Forcing Occam on the World. In: Goertzel, B, Orseau, L. and
Snaider, J. (eds) AGI 2014. LNCA (LNAI), vol 8598, pp. 186-
195. Springer, Heidelberg.

