Contents

Introduction

1.1. System Availability o
1.2. Package Structure
1.3. Authorship, Copyright, History and Support

2.1.
2.2.
2.3.
2.4.
2.5.

Overview

A Very Simple Application Example
A Simple Application Example 0.
Flexible Design by Reduction to Elements
The Value of Integrated Metadata
Toolkit for Designing Interaction Techniques.

Data Model

3.1. MathTypes o e

3.2,

3.1.1.
3.1.2.
3.1.3.
3.1.4.
3.1.5.
3.1.6.
3.1.7.
3.1.8.
3.1.9.

3.1.10.
3.1.11.
3.1.12.
3.1.13.
3.1.14.
3.1.15.

RealType Constructors
TextType Constructor
TupleType Constructor
RealTupleType Constructors
FunctionType Constructor
SetType Constructor
MathType Methods
ScalarType Methods
RealType Methods
TupleType Methods
RealTupleType Methods
FunctionType Methods
SetType Methods
Application Example: Synthesizing MathTypes
Application Example: Analyzing MathTypes

Data Class Hierarchy

3.2.1.
3.2.2.
3.2.3.

Real Constructors
Text Constructor
Tuple Constructorso

3.3.

3.4.

3.5.

3.6.
3.7.

3.8.
3.9.

3.10.
3.11.

3.12.

3.2.4. RealTuple Constructors 34

3.2.5. Field Constructors 34
3.2.6. Data Methods L. 35
3.2.7. Real Methods 37
3.2.8. Text Methods 38
3.2.9. Tuple Methods 38
3.2.10. RealTuple Methods 38
3.2.11. Function Methods L. 39
3.2.12. Field Methods 40
3.2.13. Application Example: Synthesizing Fields 42
Units. e 43
3.3.1. Unit Methods L 44
3.3.2. Sl Variables 44
3.3.3. BaseUnit Methods 44
3.3.4. CommonUnit Variables 45
CoordinateSystems 45
3.4.1. CoordinateSystem Constructors. 46
3.4.2. CoordinateSystem Methods 47
Sets . .. 48
3.5.1. Defining Interpolation Algorithms by Extending the Set Class . . 49
3.5.2. The Delaunay Class for Irregular Sets 50
3.5.3. Set Constructors 51
3.54. Set Methodso 60
3.5.5. SimpleSet Methods L 61
3.5.6. Delaunay Constructors 61
ErrorEstimates 61
3.6.1. ErrorEstimate Constructors 62
AuditTrailso 62
Missing Data L L 62
FlatFields - Data Operations and Efficiency 63
3.9.1. FlatField Constructors 64
3.9.2. FlatField Methods 65
Immutable Data 66
DataReferences Lo 66
3.11.1. DataReference Constructors 66
3.11.2. DataReference Methods 67
Application Example: Arrays versus VisAD Functions 67
3.12.1. Subtracting Images as Pixel Arraysin C 68
3.12.2. Subtracting Images as Pixel Arrays in VisAD 69
3.12.3. Subtracting Images as Functions in VisAD 70

4. Visualizations 71

4.1.

4.2.

4.3.

4.4.

4.5.
4.6.

ScalarMaps and DisplayRealTypes 71
4.1.1. Common Sense and ScalarMaps 74
4.1.2. DisplayRealType and DisplayTupleType Constructors 75
4.1.3. DisplayRealType Methods Useful for Extending DataRenderer . 75
4.1.4. ScalarMap and ConstantMap Constructors 76
4.1.5. Generally Useful ScalarMap Methods 76
4.1.6. ScalarMap Methods Useful for Extending DataRenderer 78
4.1.7. ConstantMap Methods 78
4.1.8. ScalarMapListener Methods 78
4.1.9. ScalarMapEvent Methods 78
4.1.10. Application Example: ScalarMaps and ConstantMaps 79
DataRenderers and DisplayRenderers. 80
4.2.1. Java3D DataRenderer and DisplayRenderer Constructors 80
4.2.2. Java2D DataRenderer and DisplayRenderer Constructors 82
4.2.3. DataRenderer Methods 82
4.2.4. DisplayRenderer Methods 84
4.2.5. DisplayRendererJ2D Method, 85
4.2.6. DisplayRendererJ3D Method 85
Controls e 85
4.3.1. Control Methods 87
4.3.2. ControlListener Methods 87
4.3.3. ControlEvent Methods 87
4.3.4. AnimationControl Methods 87
4.3.5. ColorControl Methods 88
4.3.6. ColorAlphaControl Methods 89
4.3.7. ContourControl Methods 89
4.3.8. FlowControl Methods 90
4.3.9. GraphicsModeControl Methods 90
4.3.10. ProjectionControl Methods 91
4.3.11. RangeControl Methods 91
4.3.12. ShapeControl Methods 92
4.3.13. ValueControl Methods 92
4.3.14. TextControl Methods 92
Mouse Interactions and Direct Manipulation. 93
4.4.1. Changing Data Values by Redrawing Data Depictions 94
4.4.2. Application Example: Interactive Scaling 95
ShadowTypes e 97
The Display Class 97
4.6.1. Java3dD Display Constructors 98
4.6.2. Java2D Display Constructors 100

4.6.3. Display Methods 101

4.6.4. DisplayImpl Methods 102
4.6.5. RemoteDisplaylmpl Methods 104
4.6.6. DisplayListener Methods 105
4.6.7. DisplayEvent Methods 105

4.7. Shapes 106
4.7.1. VisADGeometryArray Shapes 106
4.7.2. The PlotText.render label Method 107

4.8. RemoteSlaveDisplays Lo 108
4.8.1. RemoteSlaveDisplaylmpl Constructor 108
4.8.2. RemoteSlaveDisplaylmpl Method 108

. Computational Cells 109
5.1. Cell Constructors 109
5.2. Cell Methods 110
5.3. Actionlmpl Methods 110
. Distributed Computing 112
6.1. Distributed Computing Guidelines and Cautions 113
6.2. Connecting to Remote Machines 115
6.2.1. RemoteServerImpl Constructors 116
6.2.2. RemoteServer Methods 116
6.2.3. RemoteServerlmpl Methods 116

6.3. Application Example: Collaborative Direct Manipulation 117
6.4. Collaborative Displays o 119
. File Format and Data Form Adapters 120
7.1. Extracting Metadata From Data Objects Returned by Data Form Adapters121
7.2. General Design of Data Form Adapters 122
7.2.1. Form Methods 123

7.3. FITS Adapter o 123
7.4. netCDF Adapter 124
7.5. HDF-EOS Adapter 124
7.6. GIF / JPEG Adapter 125
7.7. VisbD Adapter 125
7.8. McIDAS Adapter 126
7.9. VisAD Adapter (serialized Java objects) 126
7.10. HDF-5 Adapter 127

8. User Interfaces
8.1. VisAD User Interface Classes

8.1.1.
8.1.2.
8.1.3.
8.1.4.
8.1.5.
8.1.6.
8.1.7.

VisADSlider Constructor
LabeledRGBWidget and LabeledRGBAWidget Constructors .
LabeledRGBWidget and LabeledRGBAWidget Methods
SelectRangeWidget Constructor
AnimationWidget Constructor
ContourWidget Constructor
GMCWidget Constructor

9. Simplified Classes for Using VisAD

10. The VisAD Spread Sheet
10.1. Spread Sheet Classes
10.2. Features of the SpreadSheet User Interface
10.2.1. Basic Commands
10.2.2. Menu Commands
10.2.3. Toolbars
10.2.4. Remote Collaboration
10.3. Future Plans

11. Extending the VisAD Java Class Library

12. Application Examples
12.1. The DisplayTest Class
12.2. Visualizing the HSV Color CoordinateSystem
12.3. Collaborative GOES Satellite Sounding Analysis
12.4. A Steerable Shallow Fluid Model
12.5. The JMet Weather Simulation Visualizer
12.6. Image Animation Using Java2D
12.7. Earth Topography and Bathymetry

13.Caveats and Future Plans
13.1. JavaBean Components L

14. References

A. Constraints on ScalarMaps and MathTypes

B. The GoesCollaboration Application Source Code

128
129
129

. 129

131
131
132
132
133

134

136
136
137
137
137
140
142
143

145

147
147
147
149
150
150
151
151

152
153

154
155
157

1.

Introduction

This is the VisAD Java Component Library Developers Guide, describing the design
and use of the VisAD Java component library for interactive analysis and visualiza-
tion of numerical data. It also describes the design rationale, based on lessons learned
from early mainframe visualization!, interactive visualization?, interactive computa-
tional steering®, high-speed networks*®, virtual reality®, and supporting a broad user
community”®. Key design decisions include:

The use of pure Java for platform independence and to support data sharing
and real-time collaboration among geographically distributed users. Support for
distributed computing is integrated at the lowest levels of the system.

A general mathematical data model that can be adapted to virtually any numeri-
cal data, that supports data sharing among different users, different data sources
and different scientific disciplines, and that provides transparent access to data
independent of storage format and location (i.e., memory, disk or remote).

A general display model that supports interactive 3-D, data fusion, multiple data
views, direct manipulation, collaboration, and virtual reality.

Data analysis and computation integrated with visualization to support compu-
tational steering and other complex interaction modes.

Support for two distinct communities: developers who create domain- specific
systems based on VisAD, and users of those domain-specific systems. VisAD
is designed to support a wide variety of user interfaces, ranging from simple
data browser applets to complex applications that allow groups of scientists to
collaboratively develop data analysis algorithms.

Developer extensibility in as many ways as possible.

Hibbard (1986)
2Hibbard and Santek (1990)
3Hibbard et al. (1992

)
4Hibbard et al. ()
5Hibbard et al. (1996)
6Hibbard et al. ()

1991

1996

"Baltuch (1997)
8Hibbard et al. (1994)

1.1. System Availability

The VisAD Java class library, including complete source code and installation instruc-
tions, is freely available from:

http://www.ssec.wisc.edu/ billh/visad.html

VisAD requires Java 1.2. VisAD displays are generated using either Java2D (in-
cluded in Java 1.2) or Java3D. More information about these is available at:

http://java.sun.com/

1.2. Package Structure

The VisAD system consists of the following packages:
visad - the core VisAD package

visad.cluster - large data distributed on clusters
visad.collab - collaborative displays

visad.java3d - Java3D displays for VisAD
visad.java2d - Java2D displays for VisAD
visad.python - Python support for VisAD
visad.browser - JDK 1.1 browser interface to VisAD
visad.ss - the VisAD Spread Sheet

visad.formula - formula parser

visad.matrix - matrix operations via JAMA
visad.math - FFT and histogram operations
visad.util - VisAD user interface utilities

visad.data - VisAD data format adapters
visad.data.in - support for read-only VisAD adapters
visad.data.units - units database and parsing
visad.data.dods - VisAD - DODS server adapter
visad.data.fits - VisAD - FITS file adapter

visad.data.netcdf - VisAD - netCDF file adapter
visad.data.netcdf.units - units parser for netCDF adapter
visad.data.netcdf.in - data input for netCDF adapter
visad.data.netcdf.out - data output for netCDF adapter
visad.data.hdfeos - VisAD - HDF-EOS file adapter
visad.data.hdfeos.hdfeosc - native interface to HDF-EOS
visad.data.gif - VisAD - GIF / JPEG file adapter
visad.data.ij - VisAD adapter for image files via ImageJ
visad.data.jai - VisAD adapter for image files via JAI
visad.data.qt - VisAD - QuickTime file adapter
visad.data.tiff - VisAD - TIFF file adapter
visad.data.text - VisAD - ASCII file adapter
visad.data.visbd - VisAD - Vis5D file adapter
visad.data.mcidas - VisAD - McIDAS file adapter
visad.data.biorad - VisAD - Biorad file adapter
visad.data.amanda - VisAD - F2000 file adapter & viewer
visad.data.hdf5 - VisAD — HDF-5 file adapter
visad.data.hdf5.hdf5objects - helper for HDF-5 adapter
visad.data.visad - VisAD (serial object) file adapter

visad.data.visad.object - VisAD (serial object) file adapter

The following packages are distributed with VisAD:
HTTPClient - complete http client library

nom.tam.fits - Java FITS file binding
nom.tam.util - Java FITS file binding

nom.tam.test - Java FITS file binding

ucar.netcdf - Java netCDF file binding
ucar.multiarray - Java netCDF file binding
ucar.util- logging functions for servers

ucar.tests - test Java netCDF file binding

dods.dap - DODS server core classes
dods.dap.parser - JavaCC generated DODS paersers
dods.dap.server - DODS servers

dods.util - utility classes for DODS

gnu.regexp - GNU regular expressions
edu.wisc.ssec.mcidas - Java McIDAS file binding
edu.wisc.ssec.mcidas.adde - Java McIDAS file binding
ij - ImageJ system package

ij.gui - ImageJ system package

ij.io- ImagelJ system package

ij.measure - ImageJ system package

ij.plugin- ImagelJ system package

ij.plugin.filter - ImageJ system package
ij.plugin.frame - ImageJ system package

ij.process - ImagelJ system package

ij.text - ImageJ system package

ij.util - ImageJ system package

ncsa.hdf.hdf5lib - Java HDF-5 file binding
ncsa.hdf.hdf5lib.exceptions — Java HDF-5 file binding
visad.paoloa - GOES satellite analysis

visad.paoloa.spline - spline fitting

visad.aune - shallow fluid model

visad.benjamin - Milky Way galaxy model
visad.rabin - rainfall estimation spread sheet
visad.jmet - JMET — Java meteorology
visad.meteorology - classes useful for meteorology
visad.bom - classes for ABOM

visad.aeri - classes for AERI data

visad.georef - classes for georeferencing
visad.install - cluster installer for VisAD-in-a-box

The VisAD source distribution also includes a directory visad/examples that con-
tains classes with the default package (i.e., no package statement).

VisAD is constantly being updated to fix bugs and add features and we don’t even
try to track all of these changes with VisAD version numbers. Rather, a file named
"DATE’ is included in distribution jar files that gives the date and time the distribution
file was created. We will change VisAD version numbers as new features accumulate.

1.3. Authorship, Copyright, History and Support

VisAD was written by programmers at the University of Wisconsin Space Science and
Engineering Center (SSEC), at the Unidata Program Office and at the National Center
for Supercomputer Applications (NCSA). They are:

Bill Hibbard - SSEC (contact author: hibbard@facstaff.wisc.edu)
Steve Emmerson - Unidata

Curtis Rueden - SSEC

Tom Rink - SSEC

Dave Glowacki - SSEC

Tom Whittaker - SSEC

Tommy Jasmin - SSEC

Don Murray - Unidata

10

Jeff McWhirter - Unidata
Nick Rasmussen - SSEC
Peter Cao - NCSA

James Kelly - ABOM
Andrew Donaldson - ABOM
Doug Lindholm - NCAR

Sylvain Letourneau - Canadian NRC
The following people made substantial intellectual contributions to the design:

John Anderson - SSEC Dave Fulker - Unidata Russ Rew - Unidata Glen Davis -
Unidata

VisAD is freely available including source code. It is protected by copyright state-
ments embedded in the source code and in the NOTICE, LICENSE and COPYING
files distributed with the source code.

The VisAD Java class library is actually VisAD version 2.0. VisAD versions 1.0
and 1.1 were written in C by Bill Hibbard, Brian Paul (of SSEC) and Andre Battaiola
(while visiting SSEC from INPE/CPTEC in Brazil) [8, 9], with substantial intellectual
contributions from Charles Dyer of the UW Computer Sciences Dept.

VisAD has adopted the UD Units library developed by Steve Emmerson of Unidata.
[http://www.unidata.ucar.edu/packages/udunits/index.html|.

VisAD borrows design ideas and code from the Vis5D system for interactive visu-
alization of numerical simulations of weather and other environmental phenomena [6,
9, 10]. VisbD was written in C by Bill Hibbard, Johan Kellum (of SSEC), Brian Paul,
Andre Battaiola, Dave Santek (of SSEC) and Marie-Francoise Voidrot-Martinez (while
visiting SSEC from METEOQO France).

VisbD grew out of the 4-D McIDAS system [5, 6], which was part of Verner Suomi’s
McIDAS system for visualizing data from his weather satellites. The 4-D McIDAS
was the 3-D (plus animation) analog of Tom Whittaker’s 2-D graphics subsystem of
McIDAS, which was the first interactive weather graphics system.

The development of this software has been supported by NASA, EPA, NSF (via
Unidata and NCSA), NOAA, ARPA and DOE. We especially want to thank Joe Bre-
dekamp of NASA, Cliff Jacobs of NSF and Larry Smarr of NCSA for their support of
the Java VisAD. We are also grateful to the Charles and Mamie van Doren Foundation
for their support.

11

2. Overview

This is an overview of how applications are constructed using VisAD. Throughout this
guide, we will capitalize the proper names of VisAD classes such as Data and Display,
in accordance with Java custom. A VisAD application is a network of:

Data objects these may be simple real number values, text strings, vectors of real
numbers, arrays such as images or grids, or complex hierarchies of data. They
may include metadata for units, coordinate systems, complex sampling topolo-
gies, missing data indicators and error estimates, or they be simple values with
minimal metadata. Data objects are described more thoroughly in Section 3.
Section 3.12 explains the relation between data structures in VisAD and the C
programming language.

Display objects these generate interactive 3-D depictions of Data objects on a work-
station screen or in immersive virtual reality (such as a CAVE, ImmersaDesk,
or helmet). Display objects are linked to Data objects, so that Data depictions
are updated whenever Data values change. Some Displays implement direct
manipulation, which enables users to change Data values by re-drawing Data de-
pictions. Displays on different machines may be linked to the same Data objects,
in which case geographically distributed users may collaboratively visualize and
manipulate the same Data. Displays are described more thoroughly in Section
4.

Cell objects these are computations that are invoked whenever their input Data ob-
jects change value. They take their name from the cells of spread sheets. Like
displays, Cells are linked to Data objects through DataReference objects (in fact,
Displays and Cells both extend Action, the general class for objects whose ac-
tions are triggered by changing Data values). Cell objects are described more
thoroughly in Section 5.

User interface (Ul) objects these are generally part of a Ul component package such
as AWT or JFC, although there are a few specialized utility Ul components in
the VisAD class library (described in Section 8). UI objects may also link to
Data objects. Data values may be changed by UI events (for example, sliders
may change the values of real number data objects), or Ul components may link
to Actions so that they update whenever Data object values change.

12

DataReference objects these are pointers to Data objects. For example, in the state-
ment "x = 3", x plays the role of a DataReference object and 3 plays the role
of a Data object. The value of 3 cannot change just as many VisAD Data
classes have values that cannot change (these are called immutable classes). So
DataReference objects are necessary to represent variable data, just as the vari-
able "x" is necessary in programming languages. Display, Cell and UI objects
are linked to Data objects through DataReference objects. And DataReference
objects would be used as symbol table entries in VisAD applications that imple-
ment programming language interpreters. DataReference objects are described
more thoroughly in Section 3.11.

VisAD exploits Java Remote Method Invocation (RMI) so that Data, DataRefer-
ence, Display, Cell and user interface objects may be linked together independent of
their location on the network. Thus users at geographically remote workstations may
collaborate by constructing Displays and linking them to the same Data object. Ap-
plications can be developed with VisAD that enable users to locate Data objects via
web browsers and drag-and-drop them into Displays, link them into data analysis al-
gorithms, and share visualizations of the results with colleagues at other locations.
VisAD’s use of RMI is described more thoroughly in Section 6.

The World Wide Web has created a shared network of generally passive text and
image information. Distributed objects enabled by Java RMI will make this shared
network much more active; that is, a network that includes execution threads. The
VisAD system’s general data model and thorough use of Java RMI provide a way
to build a shared, active network of scientific data, displays and computations. This
network could:

1. Change dynamically.

2. Have many simultaneous users with their own sets of display and user interface
objects.

3. Have an indefinite life span, with users connecting and disconnecting but the
basic network remaining.

4. Support numerous interacting execution threads.

5. Provide entrance points via web pages.

2.1. A Very Simple Application Example
We start with an application that reads a time sequence of images from a netCDF file

and displays it with animation. There are only four executable lines of code in the
application that have anything to do with VisAD in code listing 2.1:

13

1. creating the netCDF file reader,
2. reading the file,
3. creating a display of the file, and

4. linking the display into a JFrame.

Listing 2.1: A very simple example of how easy a visualization program can get.

// import needed classes

import visad.sx;

import visad.util.DataUtility;
import visad.java3d.DisplayImplJ3D;
import visad.data.netcdf.Plain;
import java.rmi.RemoteException;
import java.io.IOException;

import java.awt.s*;

import javax.swing.x;

public class VerySimple {

// type ’java VerySimple’ to run this application
public static void main(String args|[])
throws VisADException, RemoteException, IOException {

// create a netCDF reader
Plain plain = new Plain();

// read an image sequence from a netCDF into a data object
DataImpl image_sequence = plain.open("images.nc'");

// create a display for the image sequence
DisplayImpl display = DataUtility.makeSimpleDisplay(image_sequence);

// create JFrame (i.e., a window) for the display
JFrame frame = new JFrame("VerySimple VisAD Application");

// link the display to the JFrame
frame.getContentPane () .add(display.getComponent ());

// set the size of the JFrame and make it visible
frame.setSize (400, 400);
frame.setVisible (true);

The VerySimple.java program is included in the visad/examples directory of the
VisAD source distribution. To run it you also need to download and uncompress the
images.nc file from ftp://ftp.ssec.wisc.edu/pub/visad-2.0/images.nc.Z into your
visad /examples directory.

14

ftp://ftp.ssec.wisc.edu/pub/visad-2.0/images.nc.Z

10

20

30

2.2

A Simple Application Example

The VerySimple application is so simple that it hides the network of VisAD objects
it creates. Thus we present the Simple application which reads and displays the same
image sequence, but provides some user interaction and makes the network of objects

explicit.

The diagram below shows the network of objects created by the Simple

application. Its user controls a real number Data object (an hour value) via a Ul
slider, which in turn triggers a Cell to re-compute the value of a more complex Field
Data object (for example, this may be an image array selected from an image sequence),
whose depiction is updated in a Display.

UI slider ---> DataReference ---> Cell ---> DataReference ---> Display

Real hour Field image

This diagram corresponds to the simple application code listing 2.2.

Listing 2.2: A simple example of how easy a visualization program can get.

// import needed classes

import
import
import
import
import
import
import
import
import

public

// type ’java Simple

visad.x*;

visad. java3d.DisplayImplJ3D;
visad.util.VisADSlider;
visad.data.netcdf .Plain;
java.rmi.RemoteException;
java.io.IOException;
java.awt . *;
java.awt.event . *;
java.awt.swing.*;

class Simple {

5

to run this application

public static void main(String args|[])

//

throws VisADException, RemoteException, IOException {

create a DataReference for an image

final DataReference image_ref = new DataReferenceImpl ("image");

//

create a netCDF reader

Plain plain = new Plain();

/1
/]

open a netCDF file containing an image sequence and adapt
it to a Field Data object

final Field image_sequence = (Field) plain.open("images.nc");

//

create a Display using Java3D

DisplayImpl display = new DisplayImplJ3D("image display");

//
//

extract the type of image and use
it to determine how images are displayed

15

40

60

70

80

90

FunctionType image_sequence_type —

(FunctionType) image_sequence.getType();
FunctionType image_type =

(FunctionType) image_sequence_type.getRange ();
RealTupleType domain_type = image_type.getDomain();
// map image coordinates to display coordinates

display.addMap (new ScalarMap ((RealType) domain_type.getComponent (0),

Display.XAxis));

display.addMap (new ScalarMap ((RealType) domain_type.getComponent (1),

Display.YAxis));
/ map image brightness values to RGB (default is grey scale)
display.addMap (new ScalarMap ((RealType) image_type.getRange (),
Display.RGB));

link the Display to image ref
// display will update whenever image changes
display.addReference (image_ref);

create a DataReference and RealType for an ’hour’ value
final DataReference hour_ref — new DataReferenceImpl ("hour");
RealType hour_type =
(RealType) image_sequence_type.getDomain().getComponent (0);
and link it to a slider
VisADSlider slider = new VisADSlider ("hour", 0, 3, 0, 1.0,
hour_ref , hour_type);

create a Cell to extract an image at ’hour’
// (this is an anonymous inner class extending Celllmpl)
Cell cell = new CellImpl () {
public void doAction() throws VisADException, RemoteException {
// extract image from sequence by evaluating image sequence
// Field at ’hour’ value
image_ref .setData(image_sequence.evaluate (

(Real) hour_ref.getData()));

link cell to hour ref to trigger doAction whenever
/ ’hour’ value changes
cell.addReference (hour_ref);

create JFrame (i.e., a window) for display and slider
JFrame frame = new JFrame("Simple VisAD Application");
frame.addWindowListener (new WindowAdapter () {

public void windowClosing(WindowEvent e) {System.exit (0);}

)

// create JPanel in JFrame

JPanel panel = new JPanel();

panel.setLayout (new BoxLayout (panel, BoxLayout.Y_AXIS));
panel .setAlignmentY (JPanel. TOP_ALIGNMENT) ;

panel .setAlignmentX (JPanel . LEFT_ALIGNMENT) ;
frame.getContentPane () .add(panel);

// add slider and display to JPanel
panel.add (slider);
panel .add (display.getComponent ());

set size of JFrame and make it wvisible

frame.setSize (500, 600);
frame.setVisible (true);

16

Creating the DataReferences for "hour’ and ’image’ and linking them to the VisAD-
Slider and Cell is simple. Creating the Display and linking it to the ’image’ DataRefer-
ence is also simple. Setting up the JFrame and JPanel are not too difficult and really
independent of VisAD. The only complex part of this application is extracting the
image’s type information for use in setting up the Display. Every VisAD Data object
has a MathType that describes its basic structure. Every real number value occurring
in a complex Data object has a RealType, a subclass of MathType, that includes a
name like "latitude", "time" or "temperature". The code in our simple application
extracts the RealTypes from the MathType of the image so that it can define different
display roles for the real number values occurring in the image. The image Data object
is interpreted as a function that maps pixel locations into pixel brightnesses, and its
MathType, denoted image type, is a FunctionType that includes MathTypes for the
function’s domain and range. The image type can be diagrammed as:

FunctionType (image_type)

/ \
function domain function range
RealTupleType RealType (brightness)
/ \ |
RealType (line) RealType (element) |
I I |
| | |
v v v
XAxis YAxis RGB

Note that the bottom of the diagram includes the scalar mappings of image type’s
RealType components to DisplayRealTypes: XAxis, YAxis and RGB (RGB indicates
a pseudo color lookup table that maps brightness values to red, green and blue values).

The image sequence Data object is treated as a function from time (hours) to
images, so its MathType, denoted image sequence type, is also a FunctionType that
can be diagrammed as:

FunctionType (image_sequence_type)

/
function domain function range
RealType (hour) FunctionType (image_type)
/ \
function domain function range
RealTupleType RealType (brightness)

17

/ \
RealType (line) RealType (element)

Note that the image type diagram is replicated in the range of this image sequence type
diagram.

The call to the getType method of image sequence returns its MathType, and then
the calls to the getRange, getDomain and getComponent methods are used to parse
the tree structure of the MathType to extract the RealTypes at the leaves of the
tree. These RealTypes are then mapped to display coordinates such as Display. X Axis
and Display.YAxis, and to display colors such as Display.RGB, using the ScalarMap
constructors that are attached to the Display via its addMap method.

Note that image sequence is treated as a function from a set of hour values to a
set of images, and the evaluate method of image sequence evaluates this function at
an hour value and returns an image. Thus the doAction method of our computational
Cell applies the evaluate method of image sequence to an hour value to extract an
image. Note also that image sequence is declared as a Field, which is the VisAD class
for functions represented by finite samplings.

In order to run the Simple application you need to download and uncompress the
netCDF file "images.nc" from ftp://ftp.ssec.wisc.edu/pub/visad-2.0/images.
nc.Z.

Response may be sluggish due to a problem with threads in early versions of Java3D.
We should point out that the logic of this simple application, interactively selecting
and displaying an image from an image sequence, can be implemented more simply
and with faster response in a VisAD Display by mapping the "hour" RealType to
Display.SelectValue. However, the Simple application is a nice illustration of how
Data, DataReference, Ul, Display and Cell objects can be linked together.

Section 12.3 describes a more complex application that creates a network of linked
Data, DataReference, Display, Cell and Ul objects distributed around the network
to support collaboration among users at geographically remote locations. This ap-
plication also includes direct manipulation Displays, where users change Data values
by re-drawing their depictions. Appendix B is a complete source code listing of this
application.

While the application described in Section 12.3 is more complex than the one pre-
sented here, it is still specific to a particular scientific problem. VisAD can be used
to build much more flexible and generic applications. It would not be difficult to con-
struct a generic spread sheet consisting of an array of Displays with one Data object
per Display. UI components could let users add new Displays as needed and define the
source of Data as: 1) a file, 2) direct manipulation in the Display, or 3) a mathematical
expression involving Data objects in other Displays. VisAD could also be used as the
basis for implementing a data flow system, or an interpreted numerical programming
language.

18

ftp://ftp.ssec.wisc.edu/pub/visad-2.0/images.nc.Z
ftp://ftp.ssec.wisc.edu/pub/visad-2.0/images.nc.Z

2.3. Flexible Design by Reduction to Elements

The VisAD system offers a reductionist approach to design, as illustrated in the simple
example of Section 2.2. Its image and image sequence Data objects were defined
as hierarchies of simple real values, and the Display for the image Data object was
defined by mappings of its real values. This reductionist approach is very flexible in
dealing with novel applications. The VisAD data model, described in Section 3, enables
developers to define many different numerical data structures in terms of hierarchies
built up from simple real numbers and text strings, and enables developers to attach
various types of metadata to values at different levels in the hierarchy.

The integration of metadata could allow a developer to define a sophisticated type
for 2-D image data as finite samplings of continuous functions from 2-D pixel loca-
tions, such as (line, element) or (latitude, longitude), to one or more pixel radiances.
Image metadata may include units for location and radiance values (e.g., radians or
degrees for latitude and longitude locations), sampling topologies and geometries for
pixel locations (most images have rectangular topologies, rectangular geometries in
(line, element) locations but curvilinear geometries in (latitude, longitude) locations),
coordinate systems for pixel locations (images with (line, element) locations may spec-
ify mathematical transformations to (latitude, longitude) locations), missing radiance
indicators, and error estimates for pixel radiances and locations. Developers also have
the option to ignore most of these types of metadata, and implement images as simple
arrays without units, coordinate transformations, missing data or error estimates, and
sampled on rectangular integer lattices (i.e., pixels are addressed by integer line and
element indices, much as they are in Fortran or C arrays).

The VisAD display model offers a similar reductionist approach. Developers define
displays for complex numerical data objects in terms of mappings (the ScalarMap
class) from their primitive real number elements (the RealType class) to the conceptual
elements of displays (the DisplayRealType class). Developers can also attach various
types of display metadata and interactive controls to these mappings. Developers may
even define new kinds of display elements by defining new DisplayRealTypes. This is
described in detail in Section 4.

Designing VisAD data types and displays is similar to designing database schemas
and views. In fact, most of the differences between VisAD data types and database
schemas can be traced to the fact that databases model discrete entities while numerical
data are discrete approximations to continuous entities.

VisAD’s reduction to elements is very powerful for adapting to new applications,
but, like database schema design, can also be a challenge. The power comes from
providing a context in which developers can answer questions like "What is the nature
of an image?" However, an end user who merely wants to display an image should not
have to first answer such questions. Thus VisAD user interfaces should present choices
to end users in higher-level terms such as images, grids and tables. Of course, it is

19

possible to build user interfaces for VisAD that do defer such questions to end users,
in order to give them the full power of the data model.

We also anticipate the development of intermediate class libraries between the core
VisAD system and end user interfaces, which define higher-level application-specific
data classes such as images, grids and tables. The methods of these higher-level data
classes can encapsulate metadata manipulation in terms of higher-level data opera-
tions, including display methods that encapsulate manipulation of ScalarMaps from
RealTypes to DisplayRealTypes. Such intermediate class libraries may simplify the
task for those developing user interfaces for end users.

2.4. The Value of Integrated Metadata

The goal of integrating metadata is actually to create systems that enable end users
to ignore metadata (but also to manipulate metadata if they wish to). For example, a
user might read weather model output grids from several different models and several
different file formats, each sampled at different map projections, at different vertical co-
ordinate systems and at different time steps. The file format adapters will read each file
into a VisAD Data object that includes the grid data and metadata objects containing
the grid’s spatial and temporal sampling information. Display objects will use these
metadata objects to display the grid data co-located in space and time. Furthermore,
arithmetical operations will also co-locate the data. For example, if temperatures from
one model are subtracted from temperatures from another model, the temperatures
from the second will be resampled to the spatial and temporal locations of the first
before they are subtracted. If the two models use different temperature units, these
will be converted before values are subtracted, and before they are displayed together.

Section 3.12 uses code examples to illustrate how VisAD can be used for simple
array operations like those used in the C programming language, but can also be used
for high-level operations on arrays of data that integrate metadata.

Users who want to control all aspects of their computations may do so by explicitly
manipulating and extending the VisAD metadata classes. Note in particular Section
3.3 on Units, 3.4 on CoordinateSystems, and Section 3.5.1 on Defining Interpolation
Algorithms by Extending the Set Class.

As the Internet enables greater data sharing among scientists, it increases the prob-
lems associated with metadata and file format differences among scientists. Metadata
integration in a common data model is an important tool for addressing these prob-
lems, both for those users who want to ignore metadata and those who want to control
metadata.

20

2.5. Toolkit for Designing Interaction Techniques

Interactivity is the key to understanding numerical data and computations. This has
been the driving principal behind the development of VisbD and VisAD. The most
basic interaction mode is rotating 3-D scenes, which resolves the inherent ambiguity
problem of 3-D graphics. That is, while 3-D graphics are more dramatic than 2-D
graphics, they suffer from the problem that every point on a 2-D display screen or
on the viewer’s 2-D retinas corresponds to many points in the 3-D scene. Rotating
the scene, whether in response to mouse movements for workstation displays or in
response to head motion in immersive virtual reality displays, is the most effective
way to resolve this ambiguity.

Once the necessary graphics speed is attained for interactive 3-D rotation, it can
be exploited for all sorts of other interaction modes, such as dragging plane slices and
other specialized graphics through data volumes, selecting various combinations of
fields to visually compare, animating time dynamics, editing color maps, etc. VisAD
supports all of these ’ordinary’ graphical interaction modes when used with sufficiently
fast graphics hardware.

When computations can also be done with fast response times, they may be coupled
with interactive graphics to create an interaction mode known as ’computational steer-
ing’. By allowing Data, computational Cells, Displays and user interface components
to be connected flexibly, VisAD supports computational steering interactions.

Beyond ordinary graphical interactions and computational steering, VisAD is de-
signed to support a number of more sophisticated graphical interaction modes. These
include:

1. Exploring visualization designs: experimenting with different ways to display the
same data. VisAD allows users to determine how Data are depicted by defining
a set of ScalarMaps from data primitives (i.e., RealTypes) to display primitives
(i.e., DisplayRealTypes). Graphical user interfaces can be developed for defining
ScalarMaps, enabling users to interactively experiment with display designs. For
example, users might define ScalarMaps by dragging graphical icons representing
RealTypes onto graphical icons representing DisplayRealTypes.

2. Direct manipulation: user interaction directly with data depictions. In particular
VisAD allows users to modify Data values by re-drawing their depictions. While
many ordinary graphical interactions have direct manipulation interfaces, they
are usually not user-definable and have simple parameterizations in terms of
one or a few real numbers. VisAD allows changes to larger Data objects to be
connected through computational Cells and back to graphical Displays for more
complex and user-defined graphical interactions.

3. Event driven computations and displays: re-computation and re-displays are

21

triggered by data changes resulting from user interactions or running simula-
tions. This extends the business spread sheet from simple numbers to complex
numerical Data objects and their interactive 3-D visualizations. VisAD’s Data,
Display and Cell classes provide the tools for building numerical spread sheets.

4. Remote collaboration: geographically remote users share visualizations and user
interfaces as if sitting in front of the same workstation. VisAD allows multi-
ple remote Displays to share connections to a common set of Data objects and
computational Cells.

Given this variety of basic interaction modes, VisAD can be viewed as a toolkit
for building interaction techniques, in the same way that it and other systems are
toolkits for building visualizations. The building blocks for interaction techniques are
events, Display controls, direct manipulation, computational Cells, and shared access
to Data across the network. Sections 4.4.2 and 6.3 present interesting small examples
of building interaction techniques.

22

3. Data Model

The VisAD data model was designed to support virtually any numerical data. Rather
than providing a variety of specific data structures like images, grids and tables, the
VisAD data model defines a set of classes that can be used to build any hierarchical
numerical data structures.

Data objects all have a class in the class hierarchy under Data, and all define a
hierarchical composition of complex Data objects from primitive Data objects. The
primitive (scalar) Data classes are Real and Text. A Real object contains a real number
value (i.e., a member of R, the set of all real numbers) represented by a Java double.
A Text object contains a text string. Complex hierarchical Data objects are built from
these primitives using the Tuple, Set and Function classes. A Tuple object contains
a set of components whose number, sequence and type are fixed by the MathType
of the Tuple. A Set object represents a set of points in an n-dimensional real vector
space (denoted by R™). There are a great variety of ways of representing such Sets, as
described in Section 3.5. Note that a Tuple with n Real components is a RealTuple and
represents a single point in R™. A Function object represents a function from R™ to
values of some specific type. Field is the subclass of Function for functions represented
by finite sets of samples of function values (for example, a satellite image samples
a continuous radiance function at a finite set of pixel locations). The Data classes
implement methods for various binary and unary mathematical operations (e.g., add,
multiply, sqrt), as well as specialized operations such as Function evaluation and Tuple
component access. The Data class hierarchy is described in more detail in Section 3.2.

Data objects include metadata defined by the classes: MathType, Unit, Coordi-
nateSystem, Set (function domain sampling), ErrorEstimate and AuditTrail, as well
as missing data indicators. The details of these different forms of metadata are de-
scribed in Sections 3.1 and 3.3 - 3.8. Metadata are integrated into mathematical and
visualization operations. For example Unit conversions and CoordinateSystem trans-
forms are done implicitly as needed in Data operations.

3.1. MathTypes

Numerical data objects are finite approximations to idealized mathematical objects
such as real numbers, vectors, sets and functions. Thus every Data object has a
MathType, which indicates the type of mathematical object that it approximates.

23

The MathType class hierarchy is:

MathType
ScalarType
RealType
TextType
TupleType
RealTupleType
SetType
FunctionType

The starting point for any new application of VisAD is defining a set of MathTypes
for the Data objects involved. This set of MathTypes provides a context for defining
metadata, data displays, and data analysis operations. This is similar to the way that
database schemas provide a context for defining database applications. Developers us-
ing the VisAD class library can think about MathTypes using the following shorthand
syntax:

MathType := ScalarType | TupleType | SetType | FunctionType
ScalarType := RealType | TextType

RealType := name

TextType := name

TupleType := (MathType , MathType , ..., MathType)
TupleType := RealTupleType

RealTupleType := (RealType , RealType , ..., RealType)

SetType := set (RealTupleType)

FunctionType := (RealTupleType -> MathType)

FunctionType = (RealType -> MathType)

where TupleType and RealTupleType each have at least one component. For exam-
ple, a satellite image of Earth may be a finite sampling of a continuous function with
MathType:

((latitude, longitude) ->
(radiance_channel_1, ..., radiance_channel_N))

The output of a weather model may be described using the MathType:

(time -> ((latitude, longitude, altitude) ->
(temperature, pressure, dewpoint, wind_u, wind_v, wind_w)))

And a set of map boundaries may be described using the MathType:

24

set ((latitude, longitude))

Note that the prettyString method of MathType returns a String with this shorthand
notation for any VisAD MathType. The static stringToType method of MathType
takes a String argument, which is assumed to be in this shorthand notation, and returns
the corresponding MathType (of course, MathTypes returned by stringToType do not
include any non-null default Units, CoordinateSystems or Sets).

MathTypes are a form of metadata that describe data organization. For example,
weather model output are often stored in files as independent 2-D grids, where any
higher-level organization must be deduced by comparing the metadata associated with
each grid. MathTypes provide a way to explicitly document such higher-level data
organizations.

Every scalar (i.e., primitive) value occurring in a Data object is associated with a
named ScalarType occurring in the Data object’s MathType. These names are used
to control how the Data object is displayed, as described in Section 4.1.

Some MathTypes include default values for various kinds of metadata, including
Units (see Section 3.3), CoordinateSystems (see Section 3.4), and samplings (see Sec-
tion 3.5). Although these defaults may be over-ridden for Data values, the defaults
define equivalence classes of convertible Units and CoordinateSystems among Data
values with the same MathTypes, with convertibility enforced by the system. Note
that application developers may opt out of Units, CoordinateSystems and any other
form of metadata by setting that form of metadata to null in MathType and Data
object constructors (however, developers may not opt out of MathTypes and Field
samplings, which are mandatory).

MathType is abstract and serializable. A MathType object can only be local (see
Section 6 for more information). Its subclasses are all immutable.

3.1.1. RealType Constructors

RealType includes the following constructors:

Listing 3.1: RealType Constructors

/#** name of type (two RealTypes are equal if their names are equal);

default Unit for values of this type and may be null; default Set

used when this type is a FunctionType domain and may be null x/

public RealType(String name, Unit default_unit, Set default_set)
throws VisADException;

/#*x name of type (two RealTypes are equal if their names are equal);

default Unit and Set are null %/

public RealType (String name) throws VisADException;

25

10

20

3.1.2. TextType Constructor

TextType includes the following constructor:

Listing 3.2: TextType Constructors

/*% name of type (two TextTypes are equal if their names are equal) x/
public TextType(String name) throws VisADException;

3.1.3. TupleType Constructor
TupleType includes the following constructor:

Listing 3.3: TupleType Constructors

/** array of component types x/
public TupleType(MathType|[] types) throws VisADException;

3.1.4. RealTupleType Constructors
RealTupleType includes the following constructors:

Listing 3.4: RealTupleType Constructors

/#% array of component types;
default CoordinateSystem for values of this type (including
Function domains) and may be null; default Set used when this
type is a FunctionType domain and may be null x*/
public RealTupleType (RealType[| types,
CoordinateSystem default_coordinate_system, Set default_set)
throws VisADException;

/#x construct a RealTupleType with one component */

public RealTupleType(RealType a,
CoordinateSystem default_coordinate_system, Set default_set)
throws VisADException;

/#x construct a RealTupleType with two components x/

public RealTupleType(RealType a, RealType b,
CoordinateSystem default_coordinate_system, Set default_set)
throws VisADException;

/#x construct a RealTupleType with three components x/

public RealTupleType (RealType a, RealType b, RealType c,
CoordinateSystem default_coordinate_system, Set default_set)
throws VisADException;

/#x construct a RealTupleType with four components */

30

40

public RealTupleType (RealType a, RealType b, RealType c, RealType d,
CoordinateSystem default_coordinate_system, Set default_set)
throws VisADException;

/#* array of component types;
default CoordinateSystem and Set are null x/
public RealTupleType (RealType || types) throws VisADException;

/#% construct a RealTupleType with one component x/
public RealTupleType (RealType a) throws VisADException;

/** construct a RealTupleType with two components x/
public RealTupleType (RealType a, RealType b) throws VisADException;

/#x construct a RealTupleType with three components x/

public RealTupleType(RealType a, RealType b, RealType c)
throws VisADExceptionj;

/#% construct a RealTupleType with four components x*/

public RealTupleType (RealType a, RealType b, RealType c, RealType d)
throws VisADException;

3.1.5. FunctionType Constructor

FunctionType includes the following constructor:

Listing 3.5: FunctionType Constructors

/#* domain must be a RealType or a RealTupleType;

range may be any MathType */

public FunctionType (MathType domain, MathType range)
throws VisADException;

3.1.6. SetType Constructor

SetType includes the following constructor:

Listing 3.6: SetType Constructors

/#* domain must be a RealType or a RealTupleType x/
public SetType(MathType domain) throws VisADException;

3.1.7. MathType Methods
Generally useful MathType methods include:

10

20

Listing 3.7: MathType Constructors

/#% returns a missing Data object for any MathType */
public Data missingData() throws VisADException;

/#x return a String that indents complex MathTypes
for human readability =/
public String prettyString();

/#x return an array of ScalarMaps that is an "intuitive"
guess at a good way to visualize this MathType;

returns null if it can’t make a good guess x*/

public ScalarMap || guessMaps(boolean threeD);

/#x ScalarTypes are equal if they have the same name;
TupleTypes are equal if their components are equal;
FunctionTypes are equal if their domains and ranges
are equal */

public boolean equals(Object obj);

/*% this is useful for determining compatibility of
Data objects for binary mathematical operations;
any RealTypes are equal; any TextTypes are equal;
TupleTypes are equal if their components are equal;
FunctionTypes are equal if their domains and ranges
are equal =/

public boolean equalsExceptName (MathType type);

/#x create a MathType from its string represnetation;
essentially the inverse of the prettyString method x/
public static MathType stringToType(String s) throws VisADException;

3.1.8. ScalarType Methods

Generally useful ScalarType methods include:

Listing 3.8: ScalarType Methods

public String getName () ;

3.1.9. RealType Methods
Generally useful RealType methods include:

Listing 3.9: RealType Methods

/#x return any RealType constructed in this JVM with name,
or null x/
public static RealType getRealTypeByName (String name);

10

10

10

/*% get default Unit x/
public Unit getDefaultUnit ();

/*x get default Setx/
public Set getDefaultSet () ;

/%% this is a violation of MathType immutability to allow a
a RealType to be an argument (directly or through a
SetType) to the constructor of its default Set;

this method throws an Exception if getDefaultSet has
previously been invoked x/

public void setDefaultSet (Set set) throws VisADException;

3.1.10. TupleType Methods
Generally useful TupleType methods include:

Listing 3.10: TupleType Methods

/*% return number of components x/
public int getDimension();

/#% return component for index between 0 and getDimension() — 1 %/
public MathType getComponent (int index) throws VisADException;

/#% return index of first component with type;

if no such component, return —1 x/

public RealType getIndex(MathType) throws VisADException;
/** return index of first RealType component with name;

if no such component, return —1 %/
public RealType getIndex (String name) throws VisADException;

3.1.11. RealTupleType Methods
Generally useful RealTupleType methods include:

Listing 3.11: RealTupleType Methods

/*x get default Units of RealType components x/
public Unit || getDefaultUnits();

/#x get default CoordinateSystem */
public CoordinateSystem getCoordinateSystem ()

/*x get default Setx/
public Set getDefaultSet ()

/#% this is an unavoidable violation of MathType immutability —
a RealTupleType must be an argument (directly or through a

SetType) to the constructor of its default Set;

this method throws an Exception if getDefaultSet has
previously been invoked x/

public void setDefaultSet(Set set) throws VisADException;

3.1.12. FunctionType Methods

Generally useful FunctionType methods include:

Listing 3.12: FunctionType Methods

/#% if the domain passed to constructor was a RealType,
getDomain returns a RealTupleType with that RealType
as its single component x*/

public RealTupleType getDomain () ;

public MathType getRange ();

3.1.13. SetType Methods
Generally useful SetType methods include:

Listing 3.13: SetType Methods

/#% if the domain passed to constructor was a RealType,
getDomain returns a RealTupleType with that RealType
as its single component x*/

public RealTupleType getDomain () ;

3.1.14. Application Example: Synthesizing MathTypes

Applications that construct Data objects from numerical values they compute generally
need to synthesize MathTypes from their RealType components. Here’s a sample of
code for synthesizing a MathType appropriate for a VisbD data set (this is roughly
the inverse of the code in Section 3.1.15):

Listing 3.14: Application Example: Synthesizing MathTypes

// construct RealType components for grid coordinates
RealType row — new RealType('"row", null, null);
RealType column = new RealType("column", null, null);
RealType level = new RealType("level", null, null);

30

10

20

10

// construct RealTupleType for grid coordinates
RealType [| types3d = {row, column, level};
RealTupleType domain = new RealTupleType (types3d);

// construct RealType components for grid fields

RealType temperature — new RealType ('"temperature", null, null);
RealType pressure — new RealType("pressure", null, null);
RealType water_vapor = new RealType("water vapor", null, null);

// construct RealTupleType for grid fields
RealType [| field3d = {temperature, pressure, water_vapor };
RealTupleType range = new RealTupleType (field3d);

// construct FunctionType for grid
FunctionType grid_type = new FunctionType (domain, range);

// construct RealType and RealTupleType for time domain
RealType time = new RealType("time", null, null);
RealTupleType time_type = new RealTupleType(time);

// construct FunctionType for time sequence of grids
FunctionType vis5d_type = new FunctionType(time_type, grid_type);

3.1.15. Application Example: Analyzing MathTypes

Applications that get Data objects from file format adapters (described in Section 7)
generally need to analyze MathTypes to extract their RealType components. The
VisbDForm class adapts Data objects from Vis5D files, whose MathTypes have the
general form:

(time -> ((row, column, level) -> (fieldl, field2, ..., fieldN)))

That is, they are time sequences of multivariate 3-D grids. Here’s a sample of
MathType analysis code (this is roughly the inverse of the code in Section 3.1.14):

Listing 3.15: Application Example: Analyzing MathTypes

// get the MathType of a Data object named ’visbd’
FunctionType vis5d_type = (FunctionType) visbd.getType () ;

// extract time, the domain of the FunctionType
RealType time = (RealType) visb5d_type.getDomain().getComponent (0);

// get grid type, itself a FunctionType and the range of the
// visbd type FunctionType
FunctionType grid_type = (FunctionType) vis5d_type.getRange () ;

// get the grid domain RealTupleType
RealTupleType domain = grid_type.getDomain();

// get the grid domain component RealType — they are grid coordinates
RealType row = (RealType) domain.getComponent (0);

31

20

30

RealType column = (RealType) domain.getComponent (1);
RealType level = (RealType) domain.getComponent (2);

get the grid range — it is a RealTupleType of fields
RealTupleType range — (RealTupleType) grid_type.getRange()

get the number of grid range components
int dim = range.getDimension () ;

/ construct an array to hold the grid range RealTypes
RealType [| range_types = new RealType[dim];

/ get the grid range RealTypes
for (int i=0; i<dim; i++) {
range_types|[i] = (RealType) range.getComponent (i);

3.2. Data Class Hierarchy

The Data hierarchy is:

Data
Scalar
Real
Text
Tuple
RealTuple
Set
(there is a large hierarchy under Set as described in Section 3.5)
Function
Field
FlatField

To some extent the Data hierarchy mirrors the MathType hierarchy. However, it is
important to note that MathType is not a synonym for Data class, since Data classes
may be elaborated into different forms of finite representation of the corresponding
MathTypes. For example, Set is elaborated into a large number of different ways of
representing subsets of R™. Similarly, Function is elaborated into Field, for functions
represented by finite samplings, and FlatField, for Fields with simple range values
that can be represented by small numbers of Java’s primitive data types rather than by
objects. Developers may extend the Data classes to define new forms of representation.
For example, a developer could extend Real to define a representation by ratios of
infinite- precision integers rather than the Java primitive double used by Real (doubles
are used by Real because experience has shown that using floats as the default can

32

cause round-off problems that are extremely difficult for application developers to
detect and diagnose).

The Data hierarchy is also elaborated for various data storage locations and formats.
Section 6 describes how the hierarchy for Data and other VisAD classes is structured
for local and remote objects, and Section 7 describes how the Data class hierarchy is
adapted to import data from various file formats. The Data hierarchy is being adapted
to netCDF, HDF and FITS files, and developers may extend this to other file formats.
Thus data are accessible via the VisAD Data API (Application Programming Interface)
independent of storage location, file format and approximating representation.

The metadata classes described in Sections 3.1 and 3.3 - 3.8 define how Data objects
approximate mathematical objects and how they model the world.

Data is an interface that may apply to both local and remote Data objects. Datalmpl
is an abstract class that only applies to local Data objects, and RemoteData is an
interface that only applies to remote Data objects (see Section 6 for more information).
Datalmpl is cloneable and serializable. All of its subclasses except Fieldlmpl and
FlatField are immutable. API documentation for the Set class hierarchy is described
in Section 3.5 and for FlatFields is described in Section 3.9, rather than here.

3.2.1. Real Constructors

Real includes the following constructors:

Listing 3.16: The Real Constructors

/#*% unit and error may be null x/
public Real (RealType type, double value, Unit unit, ErrorEstimate error)
throws VisADException;

/** use RealType.Generic x/
public Real (double value)

3.2.2. Text Constructor

Text includes the following constructor:

Listing 3.17: The Text Constructors

public Text (TextType type, String value) throws VisADException;

/*x use TextType.Generic */
public Text(String value)

10

3.2.3. Tuple Constructors

Tuple includes the following constructors:

Listing 3.18: The Tuple Constructors

/** this constructs its MathType from the MathTypes of the

data array; components are copies of data */

public Tuple(Data || data) throws VisADException, RemoteException;
/#x only copy data if copy = true x*/

public Tuple(Data|] data, boolean copy)
throws VisADException, RemoteException;

3.2.4. RealTuple Constructors

RealTuple includes the following constructors:

Listing 3.19: The RealTuple Constructors

/*% coordinate system may be null; otherwise
coordinate system .getReference () must equal
type.getCoordinateSystem . getReference () */
public RealTuple(RealTupleType type, Real[| reals, CoordinateSystem <
coordinate_system)
throws VisADException, RemoteException;

public RealTuple (Real || reals) throws VisADException, RemoteException;

3.2.5. Field Constructors

Field is an interface implemented by FieldImpl for local Fields and RemoteFieldImpl
for remote Fields. See Section 6 for more information about distributed computing.
These classes have the following constructors:

Listing 3.20: The Field Constructors

/** FieldImpl is the most general sampled function;

domain_set defines the domain sampling;

if it is null, use the default Set of type.getDomain () ;

domain_set defines the Units and CoordinateSystem

of the Field domain */

public FieldImpl (FunctionType type, Set domain_set)
throws VisADExceptionj;

/*% use the default Set of type.getDomain() =/
public FieldImpl (FunctionType type) throws VisADException;

/*% construct a RemoteFieldlmpl object to provide remote
access to field x/
public RemoteFieldImpl (FieldImpl field)

throws VisADException, RemoteExceptionj;

3.2.6. Data Methods

A Data object may be either local or remote, a Datalmpl object may only be local
and a RemoteData object may only be remote (see Section 6 for more information).
The methods in this section define the universal operations applicable to all Data
objects: getType returns a Data object’s MathType, isMissing indicates whether the
Data object has missing value (but note that even is a Data object is not missing,
it may still have sub-objects with missing values), and local replaces a RemoteData
object with a local Datalmpl copy.

The binary and unary methods define basic mathematical operations on Data that
are the building blocks for data analysis using VisAD. The binary and unary methods
have wrapper methods for specific operations like add and sin. These operations are
defined point-by-point for Tuple and Function Data objects, so that for example, the
sin of a Function is a Function whose values are the sines of the original Function’s
values.

When add (or any other binary operation) is applied to two Fields the result is a
Field whose values are the sums (or other operation) of the values of the two Func-
tions, but only if the MathTypes of the two Fields match. MathType matching is
defined recursively on TupleTypes and FunctionTypes in terms of their components,
any RealType matches any RealType, and any TextType matches any TextType (thus
matching Functions must have domains with the same dimension).

Most important, binary and unary operations on Data objects involve their meta-
data. When two Fields are added, the domain samples of one are resampled to the
domain samples of the other, including any necessary Unit conversions of Real compo-
nents of the domains and any necessary CoordinateSystem transformations between
RealTuple domains. The range values of one Field are estimated at the domain sample
locations of the other Field using either nearest neighbor or weighted average algo-
rithms, as specified in the optional resampling mode argument to binary methods.
Unit conversions and CoordinateSystem transformations are also applied as needed to
range values of Fields before they are added. Furthermore, ErrorEstimates attached to
Field range values are modified to reflect error effects of binary and unary operations.
ErrorEstimate propagation may assume either that operand errors are independently
or dependently distributed, or ErrorEstimate propagation may be disabled, using the
error _mode argument to binary and unary methods.

In some cases Data objects may be combined in binary operations even if their

35

MathTypes do not match. For example, a Real object may be combined with any
other Data object, and a Functions may be combined with Data objects that match
the MathType of the Function’s range.

Listing 3.21: The MathType Constructors

public MathType getType ()
throws VisADException, RemoteException;

/#x flag indicating whether Data object has missing value x/
public boolean isMissing ()
throws VisADException, RemoteException;

/#*x if remote, return a local copy;

if local, return this x*/

public DataImpl local ()

throws VisADException, RemoteException;

/#% general binary operation between this and data; operation may
be Data.ADD, Data.SUBTRACT, etc; these include all binary
operations defined for Java primitive data types; new_type

is the MathType of the result; sampling mode may be

Data .NEAREST NEIGHBOR or Data.WEIGHTED AVERAGE; error mode

may be Data .INDEPENDENT, Data.DEPENDENT or Data.NO ERRORS i/
public Data binary(Data data, int operation, MathType new_type,
int sampling_mode, int error_mode)

throws VisADException, RemoteException;

/#x like previous signature of binary, except the result takes
the MathType of this unless the default Units of that MathType
conflict with Units of the result, in which case a generic
MathType with appropriate Units is constructed x/

public Data binary(Data data, int operation, int sampling_mode,
int error_mode)

throws VisADException, RemoteException;

public Data add(Data data, int sampling_mode, int error_mode)
throws VisADException, RemoteException;

/*% use Data.NEAREST NEIGHBOR and Data.NO_ ERRORS x/
public Data add(Data data) throws VisADException, RemoteException;

public Data subtract(Data data, int sampling_mode, int error_mode)
throws VisADException, RemoteException;

/*% use Data.NEAREST NEIGHBOR and Data.NO_ ERRORS x/
public Data subtract (Data data) throws VisADException, RemoteException;

/#x similar methods are defined for the following binary operators:
multiply , divide, pow, max, min, atan2, atan2Degrees and
remainder */

/#* general unary operation; operation may be Data.ABS, Data.ACOS, etc;
these include all unary operations defined for Java primitive data
types; new_ type is the MathType of the result; sampling mode may be
Data .NEAREST NEIGHBOR or Data.WEIGHTED AVERAGE; error mode may be

Data .INDEPENDENT, Data.DEPENDENT or Data.NO ERRORS =/

public Data unary(int operation, MathType new_type, int sampling_mode,

36

int error_mode)
throws VisADException, RemoteException;

/#x like previous signature of unary, except the result takes

the MathType of this unless the default Units of that MathType
conflict with Units of the result, in which case a generic
MathType with appropriate Units is constructed x/

public Data unary(int operation, int sampling_mode, int error_mode)
throws VisADException, RemoteException;

/*% clone this Data object except give it new_ type x/
public Data changeMathType (MathType new_type)
throws VisADException, RemoteException;

public Data abs(int sampling_mode, int error_mode)
throws VisADException, RemoteException;

/*% use Data.NEAREST NEIGHBOR and Data.NO ERRORS x/
public Data abs() throws VisADException, RemoteException;

public Data acos(int sampling_mode, int error_mode)
throws VisADException, RemoteException;

/*% use Data.NEAREST NEIGHBOR and Data.NO ERRORS x*/
public Data acos () throws VisADException, RemoteException;

/#% similar methods are defined for the following unary operators:
acosDegrees , asin, asinDegrees, atan, atanDegrees, ceil, cos,

cosDegrees, exp, floor, log, rint, round, sin, sinDegrees,
sqrt , tan, tanDegrees, negate x/

3.2.7. Real Methods

A Real object may only be local. Binary operations may be performed between a Real
and any other Data object that does not contain Text components; such operations
are applied independently with each Real component. Generally useful Real methods
include:

Listing 3.22: The Real Methods

public final double getValue();

/*x get double value converted to unit */
public final double getValue(Unit unit) throws VisADException;

public Unit getUnit();

public ErrorEstimate getError();

37

10

3.2.8. Text Methods

Text may only be local. The only binary operation that works for Text is Data.ADD,
which is interpreted as string concatenation. No unary operations work for Text.
Generally useful Text methods include:

Listing 3.23: The text methods

public String getValue();

3.2.9. Tuple Methods

A Tuple object may only be local. Generally useful Tuple methods include:

Listing 3.24: The tuple methods

/#% return number of components */
public int getDimension () ;

/*% return component for index between 0 and getDimension() — 1 =*/
public MathType getComponent (int index) throws VisADException;

/#x construct Tuple; used for constructing Tuples in Spreadsheet;
e.g., link(visad.Tuple.makeTuple(A2, Bl, B2)) x*/

public static Tuple makeTuple (Data || datums)

throws VisADException, RemoteException

3.2.10. RealTuple Methods

A RealTuple object may only be local. Generally useful RealTuple methods include:

Listing 3.25: The RealTuple methods

/#x get Units of Real components x/
public Unit[] getTupleUnits();

/*% get ErrorEstimates of Real components x/
public ErrorEstimate || getErrors () throws VisADException;

/#*x get CoordinateSystem x/
public CoordinateSystem getCoordinateSystem();

10

20

30

40

3.2.11. Function Methods

A Function object may be either local or remote, a Functionlmpl object may only be
local and a RemoteFunction object may only be remote (see Section 6 for more infor-
mation). Generally useful Function methods are listed below. Note in particular the
resample method which is invoked implicitly for many visualization and mathematical
operations on Functions and can be invoked by applications for image remapping and
a variety of similar Function operations.

Listing 3.26: The Function methods

/** get dimension of Function domain x/
public int getDomainDimension ()
throws VisADException, RemoteException;

/*% get Units of domain Real components s/
public Unit[| getDomainUnits ()
throws VisADException, RemoteException;

/*% get domain CoordinateSystem s/
public CoordinateSystem getDomainCoordinateSystem ()
throws VisADException, RemoteException;

/*% evaluate Function at domain_ value, for 1-D domains x/
public Data evaluate (Real domain_value, int sampling_mode,
int error_mode)

throws VisADException, RemoteException;

/*% evaluate Function at domain value, for 1-D domains,
using Data.NEAREST NEIGHBOR and Data.NO ERRORS x*/
public Data evaluate(Real domain_value)

throws VisADException, RemoteException;

/*% evaluate Function at domain value =/

public Data evaluate(RealTuple domain_value, int sampling_mode ,
int error_mode)

throws VisADException, RemoteException;

/*#% evaluate Function at domain value using
Data .NEAREST NEIGHBOR and Data.NO_ERRORS x*/
public Data evaluate(RealTuple domain_value)
throws VisADException, RemoteException;

/#x return a Field of Function values at samples in set;
this combines unit conversions, coordinate transforms
resampling and interpolation =x/

public Field resample(Set set, int sampling _mode, int error_mode)
throws VisADException, RemoteException;

)

/*% return the derivative of this Function with respect to d_partial;
d_partial may occur in this Function’s domain RealTupleType, or,

if the domain has a CoordinateSystem , in its Reference
RealTupleType; propogate errors according to error mode x/

public abstract Function derivative(RealType d_partial,

int error_mode) throws VisADException, RemoteException;

39

/*% return the derivative of this Function with respect to d_partial;
set result MathType to derivType; d_partial may occur in this
Function’s domain RealTupleType, or, if the domain has a
CoordinateSystem , in its Reference RealTupleType;

propogate errors according to error mode x/

public abstract Function derivative(RealType d_partial,

MathType derivType, int error_mode)

throws VisADException, RemoteException;

/#* return the tuple of derivatives of this Function with respect to
all RealType components of its domain RealTupleType;

propogate errors according to error mode x/

public abstract Data derivative(int error_mode)

throws VisADException, RemoteException;

/** return the tuple of derivatives of this Function with respect
to all RealType components of its domain RealTupleType;

set result MathTypes of tuple components to derivType s;
propogate errors according to error mode x/

public abstract Data derivative(MathType|[] derivType_s,

int error_mode) throws VisADException, RemoteException;

/#*% return the tuple of derivatives of this Function with respect
to the RealTypes in d_partial s; the RealTypes in d_partial s
may occur in this Function’s domain RealTupleType, or, if the
domain has a CoordinateSystem , in its Reference RealTupleType;
set result MathTypes of tuple components to derivType s;
propogate errors according to error mode x/

public abstract Data derivative (RealTuple location,

RealType || d_partial_s, MathType || derivType_s, int error_mode)
throws VisADException, RemoteException;

3.2.12. Field Methods

A Field object may be either local or remote, a Fieldlmpl object may only be local
and a RemoteField object may only be remote (see Section 6 for more information).
Generally useful Field methods include:

Listing 3.27: The Field methods

/#x set the values of the Field (at the domain Set samples)
using the values in range (the length of range must

equal the length of the domain Set);

make copies of range values if copy is true x/

public void setSamples(Data || range, boolean copy)

throws VisADException, RemoteException;

/*% get the domain Set */
public Set getDomainSet ()
throws VisADException, RemoteException;

/%% get the Units of the Real components of the domain Set =/

public Unit[| getDomainUnits ()
throws VisADException, RemoteException;

40

20

30

40

50

60

70

/*% get the CoordinateSystem of the domain Set x/
public CoordinateSystem getDomainCoordinateSystem ()
throws VisADException, RemoteException;

/*x get the Field value at the index—th sample in the
domain Set x*/

public Data getSample(int index)

throws VisADException, RemoteException;

/*x get the ’'Flat’ components of this Field’s range values

in their default range Units (as defined by the range of

the Field’s FunctionType); if the range type is a RealType

it is a ’Flat’ component, if the range type is a TupleType
its RealType components and RealType components of its
RealTupleType components are all ’'Flat’ components; the
return array is dimensioned:

double [number of flat components|[number of range samples| x/
public double [|[] getValues ()

throws VisADException, RemoteException;

/*x set Field value at the index—th sample in the
domain Set, to range x/

public void setSample(int index, Data range)
throws VisADException, RemoteException;

/xx set Field value at the sample in the domain Set nearest
domain, to range x/

public void setSample(RealTuple domain, Data range)

throws VisADException, RemoteException;

/** return an Enumeration of RealTuple values in domain Set x*/
public Enumeration domainEnumeration ()
throws VisADException, RemoteException;

/** return true is this is a FlatField x/
public boolean isFlatField();

/%% assumes the range type of this is a Tuple and returns
a Field with the same domain as this, but whose range
samples consist of the specified Tuple component of the
range samples of this; in shorthand, this[]|.component */
public Field extract(int component)

throws VisADException, RemoteException;

/** combine domains of two outpost nested Fields into a single
domain and Field; for examples transform the MathType

(a —> ((b, ¢) —> d)) into ((a, b, c¢) —> d) =*/

public Field domainMultiply ()

throws VisADException, RemoteException;

/#x factor Field domain into domains of two nested Fields (with
factor as outer domain); for examples transform the MathType
((a, b, ¢) — d) into (a —> ((b, c¢c) —> d)) (where factor = a) x/
public Field domainFactor (RealType factor)

throws VisADException, RemoteException;

\end{environment —name }

\subsection{FieldImpl Method}
This describes a single static method of FieldImpl:

41

80

90

\begin{lstlisting }[
caption={[FieldImpl methods|The FieldImpl methods},
label=code:fieldImplMethods ,

|

/#x resample all elements of the fields array to the domain
set of fields [0], then return a Field whose range samples
are Tuples merging the corresponding range samples from
each element of fields; if the range of fields[i]| is a
Tuple without a RangeCoordinateSystem , then each Tuple
component of a range sample of fields|[i] becomes a

Tuple component of a range sample of the result —
otherwise a range sample of fields|[i] becomes a Tuple
component of a range sample of the result; this assumes
all elements of the fields array have the same domain
dimension x*/

public static Field combine(Field|[] fields)

throws VisADException, RemoteException;

3.2.13. Application Example: Synthesizing Fields

In this example we assume that:

grid_type = ((row, column, level) -> (temperature, pressure, water_vapor))
and:

visbd_type = (time -> grid_type)

These are the types appropriate for VisbD data sets synthesized by the example
in Section 3.1.14. This example includes constructors for an Integer3DSet and an
Integer1DSet, which are described in detail in Section 3.5.3.3, and a constructor for
a FlatField, which is an efficient sub-class of Fieldlmpl described in Section 3.9. The
Integer3DSet is an integer lattice of 50 by 50 by 20 points for a Vis5D grid, and the
Integer1DSet is a sequence of hour values from 0 to 23. FlatField includes a version
of the setSamples method that takes an array of floats, in addition to the version of
setSamples inherited from Fieldlmpl that takes an array of Data objects. Here’s a
sample of code for synthesizing a Fieldlmpl appropriate for a VisbD data set:

Listing 3.28: Synthesizing a FieldImpl appropriate for a Vis5D data set

// construct an integer 3-D grid
Set grid_set = new Integer3DSet (50, 50, 20);

// construct a sequence of 24 hours
Set time_set = new IntegeriDSet (24);

// construct a FieldIlmpl for a time sequence of grids
FieldImpl vis5d = new FieldImpl (vis5d_type, time_set);

42

10

20

for (int i=0; i<24; i++) {
'/ conbstruct a FlatField for the i—th time step
FlatField grid = new FlatField(grid_type, grid_set);

construct an array to hold the gridded field values;

data[0] is an array of temperatures, data[l] an array
// of pressures, and data[2] an array of water vapors
float [][] data = new float [3][50 x 50 % 20];

code to set data values

set the data values into the grid
grid.setSamples (data);

/ set grid as the i—th time sample of visbd
visbd.setSample (i, grid);

3.3. Units

The Unit class defines units for Real values in terms of a user-extensible list of Base-
Units and associated physical quantities. The system-intrinsic list is:

ampere electric current
candela luminous intensity
kelvin temperature
kilogram mass

meter length

second time

mole amount of substance
radian angle

A Unit is defined by a set of BaseUnits with associated integer exponents, plus a real
coefficient and offset. For example, yard = 0.9144 x meter, fahrenheit = (1 / 1.8) x
kelvin + 459.67, and joule = kilogram x meter x second~2. Two Units are convertible
if they have the same set of BaseUnits and integer exponents, or if the exponents of
one are negatives of the exponents of the other.

Units with non-zero offsets are dangerous. For example, the conversion of fahrenheit
temperature differences to kelvin differences is not correct unless the offset is ignored.
In order to avoid this problem, arithmetic operations implicitly convert all inputs to
Units with zero offsets.

43

10

3.3.1. Unit Methods

Unit is abstract and serializable. A Unit object can only be local (see Section 6 for
more information). Its subclasses are all immutable. Applications do not invoke Unit
constructors explicitly. Rather they derive new Units be invoking methods of existing
Units, or they create new BaseUnits by invoking a static factory method in BaseUnit.
Generally useful Unit methods include:

Listing 3.29: The Unit methods

/#*% create a new Unit by raising this (which may not include
an offset) to power x*/
public Unit pow(int power) throws UnitException;

/** create a new Unit by multiplication by amount;
for example, Unit yard = meter.scale (0.9144); x/
public Unit scale(double amount) throws UnitException;

/** create a new Unit by adding offset;
for example, Unit celsius = kelvin.shift (273.15); x*/
public Unit shift(double offset) throws UnitException;

/#x create a new Unit by multiplying this (which may not
include an offset) by that x/
public Unit multiply(Unit that) throws UnitException;

/#x create a new Unit by dividing this (which may not
include an offset) by that x*/
public Unit divide (Unit that) throws UnitException;

3.3.2. Sl Variables

The system intrinsic BaseUnits are defined in the SI class as follows:

BaseUnit SI.ampere;
BaseUnit SI.candela;
BaseUnit SI.kelvin;
BaseUnit SI.kilogram;
BaseUnit SI.meter;
BaseUnit SI.second;
BaseUnit SI.mole;
BaseUnit SI.radian;

3.3.3. BaseUnit Methods

Generally useful BaseUnit methods include:

44

10

Listing 3.30: The BaseUnit methods

/#x create a new BaseUnit with the given quantityName and
unitName */

public static BaseUnit addBaseUnit (String quantityName ,
String unitName) throws UnitException;

/#% return any baseUnit created in this JVM with the given
unitName */
public static baseUnit unitNameToUnit (String unitName)

/#% return any baseUnit created in this JVM with the given
quantityName x/
public static baseUnit quantityNameToUnit (String quantityName)

3.3.4. CommonUnit Variables

The CommonUnit class defines commonly used Units, including:

Listing 3.31: The CommonUnit Variables

Unit CommonUnit.degree;

Unit CommonUnit.radian;

Unit CommonUnit.second;

/*% all BaseUnits have exponent zero in dimensionless x/

Unit CommonUnit.dimensionless;

/#% promiscuous is compatible with any Unit; useful for constants;
not the same as null Unit, which is only compatible with

other null Units %/

Unit CommonUnit.promiscuous;

3.4. CoordinateSystems

CoordinateSystem is an abstract class whose sub-classes define invertable transfor-
mations of the form R"™ <—> R" between values of various RealTupleTypes. A
CoordinateSystem always refers to its reference RealTupleType. On the other hand, a
RealTupleType might or might not refer to a default CoordinateSystem. Consequently,
a RealTupleType can be one of three kinds with respect to CoordinateSystems:

1. Reference: the RealTupleType doesn’t refer to a default CoordinateSystem but
a CoordinateSystem refers to the RealTupleType.

2. Equivalent: the RealTupleType refers to a default CoordinateSystem and, thus,
refers indirectly to a reference RealTupleType.

3. Uninvolved: the RealTupleType neither refers to a default CoordinateSystem
nor is referred to by a CoordinateSystem.

45

Thus CoordinateSystems define equivalence classes of those RealTupleTypes with
the same reference. For example, (polar _stereographic row, polar _sterographic_column),
(lambert_conformal row, lambert conformal column) and other map projections
could form an equivalence class relative to, and including, the Reference (latitude,
longitude). Each of the map projections would include a default CoordinateSystem
that defined its mathematical transformation between (row, column) and (latitude,
longitude).

The default CoordinateSystem defined by a RealTupleType can be over-ridden for
RealTuple values of that type, in order to support data-dependent CoordinateSystems.
For example, meteorologists use (latitude, longitude, pressure) as a CoordinateSystem
with Reference (latitude, longitude, altitude), where the mathematical transformation
can vary depending on the vertical distribution of pressures. A default CoordinateSys-
tem can only be over-ridden by a CoordinateSystem with the same Reference.

3.4.1. CoordinateSystem Constructors

CoordinateSystem is abstract and serializable. A CoordinateSystem object can only
be local (see Section 6 for more information). Applications generally do not invoke
CoordinateSystem methods, but they construct new CoordinateSystem objects and
define new CoordinateSystem subclasses.

Note that care should be taken to make sure that:

1. The order of RealType components in a reference RealTupleType is consistent
with the computations of the toReference and fromReference methods.

2. The Units of the RealType components in a reference RealTupleType are con-
sistent with the values assumed by the toReference and fromReference methods.

3. The order of RealType components of a RealTupleType with a CoordinateSys-
tem is consistent with the computations of the toReference and fromReference
methods.

The constructor for the abstract CoordinateSystem class is:

Listing 3.32: The Abstract CoordinateSystem Constructor

/** user—defined subclasses must supply reference and units x*/
public CoordinateSystem(RealTupleType reference, Unit[| units)
throws VisADException;

Constructors for specific CoordinateSystems included with VisAD include:

46

Listing 3.33: Some concrete CoordinateSystem Constructors

/#*% construct a CoordinateSystem for (latitude, longitude,

radius) relative to a 3—D Cartesian reference;

this constructor supplies units =

{CommonUnit. Degree , CommonUnit.Degree, null} to the super

constructor , in order to ensure Unit compatibility with its

use of trigonometric functions x/

public SphericalCoordinateSystem(RealTupleType reference)
throws VisADException;

10 /x% construct a CoordinateSystem for (longitude, radius)
relative to a 2—D Cartesian reference;
this constructor supplies units = {CommonUnit.Degree, null}
to the super constructor , in order to ensure Unit
compatibility with its use of trigonometric functions x/
public PolarCoordinateSystem(RealTupleType reference)
throws VisADException;

/#x construct a CoordinateSystem that whose transforms invert
the transforms of inverse (i.e., toReference and
20 fromReference are switched); for example, this could be
used to define Cartesian coordinates relative to a
refernce in spherical coordinates %/
public InverseCoordinateSystem(RealTupleType reference, CoordinateSystem <
inverse)
throws VisADException;

/#x construct a CoordinateSystem for grid coordinates (e.g.,
(row, column, level) in 3-D) relative to the value space
of set; for example, if satellite pixel locations are
defined by explicit latitudes and longitude, these could

30 be used to construct a Gridded2DSet which could then be
used to construct a GridCoordinateSystem for (ImageLine,
ImageElement) coordinates relative to reference coordinates
(Latitude , Longitude) x/
public GridCoordinateSystem(GriddedSet set)

throws VisADException;

3.4.2. CoordinateSystem Methods

Extensions of CoordinateSystem must implement the following methods:

Listing 3.34: The CoordinateSystem methods

/#*% convert RealTuple values to Reference coordinates;

for efficiency , input and output values are passed as

double [|[|] arrays rather than RealTuple[] arrays; the

array indexes are:

double [tuple dimension |[number of tuples| =/

public double [][] toReference(double[][] tuples)
throws VisADException;

/#x convert RealTuple values from Reference coordinates x/

10 public double [|[] fromReference (double][] tuples)
throws VisADException;

47

The following methods are implemented in CoordinateSystem in terms of the above
methods, but for efficiency’s sake extensions of CoordinateSystem may override those
with direct implementations:

Listing 3.35: The methods, a concrete CoordinateSystem class may override

public float [][] toReference(float [|[] tuples)
throws VisADException;

public float [|[] fromReference(float [|[] tuples)
throws VisADException;

3.5. Sets

A Field object approximates a function by interpolating its values at a finite subset
of its domain [3]|. A Field object includes a Set object that defines the finite sampling
of the function’s domain. This Set object also defines the CoordinateSystem of the
Field’s domain and the Units of the domain’s RealType components. The Set class
has many sub-classes for different ways of defining finite subsets of the Set’s domain
R™ (n is called the domain dimension of the Set). A partial Set class hierarchy is:

Set
SimpleSet
DoubleSet
FloatSet
SampledSet
ProductSet
UnionSet
GriddedSet
LinearNDSet
IntegerNDSet
Gridded1DSet
Linear1DSet
IntegeriDSet
Gridded1DDoubleSet
Gridded2DSet
Linear2DSet
LinearLatLonSet
Integer2DSet
Gridded2DDoubleSet
Gridded3DSet

48

Linear3DSet
Integer3DSet
Gridded3DDoubleSet
IrregularSet
IrregulariDSet
Irregular2DSet
Irregular3DSet

A SimpleSet is embedded on a sub-manifold of dimension m in R™ (m is called the
manifold dimension of the Set). A DoubleSet with domain dimension n is just the large
but finite set of values in R™ representable by n IEEE double precision floating point
values. Similarly for FloatSet and single precision. The SampledSet class implements
some common methods for its subclasses. The samples of a GriddedSet are organized
in an m-dimensional grid. For a LinearSet this grid is aligned to the axes of the domain
R™ and for an IntegerSet the grid points form an integer lattice based at the origin.
The samples of an IrregularSet are not organized. ProductSets and UnionSets allow
Sets to be defined as products and unions of other Sets.

Note that Set is a sub-class of Data, so Sets are full-fledged Data objects in addition
to being a form of metadata for Fields. For example, a set of map boundaries would
be a Set with domain dimension n = 2 and manifold dimension m = 1.

Attention 1 (Possible class name conflict) Note also that there is a Set class
in the java.util package as of JDK 1.2. Thus applications should avoid combining
import visad.*; with import java.util.x*;.

3.5.1. Defining Interpolation Algorithms by Extending the Set
Class

The resample method of the Field class is the workhorse of the system. It takes a
Set as an argument and returns a new Field containing values of the original Field
sampled at the Set locations. It also does any necessary Unit conversions and Coor-
dinateSystem transformations. The resample method is invoked implicitly whenever
needed for mathematical and visualization operations involving Fields. The resam-
ple method includes options to interpolate Field values by either nearest neighbor or
weighted average. Any degree polynomial interpolation, single stage Barnes and Cress-
man analyses, and a wide variety of other interpolation schemes can be expressed as
weighted averages. Fields get weights from the valueTolnterp method of SimpleSet.
Thus developers may implement new interpolation algorithms by extending the Set
class.

49

Implementation of interpolation methods not consistent with weighted average would
require extensions of Field and FlatField. Nearest neighbor resampling uses the val-
ueTolndex method of Set.

The getWedge method of SimpleSet is important for the efficiency of Field resam-
pling and interpolation. The samples of one Set are passed to the valueTolnterp and
valueTolndex of another set in an order defined the first Set’s getWedge method. Sets
use getWedge to define a spatially coherent order of their samples. It is important
that developers who extend SimpleSet try to define spatially coherent orders in their
implementations of getWedge.

Note that valueTolnterp and valueTolndex generally throw an Exception for any
Set whose manifold dimension is less than its domain dimension. Thus the resample
method does not work for Fields whose domain Sets have manifold dimension less than
their domain dimension. In order to resample a Field X over a domain of dimension
N with manifold dimension M < N, applications must explicitly copy values of X to
another Field Y whose domain has dimension M and is a parameterization of the sub-
manifold containing the samples of X. For example, if N = 3 and M = 2, then the
samples of X lie on a 2-D surface embedded in a 3-D space, and the domain of Y
should be a parameterization of this surface, with samples locations corresponding to
X’s sample locations on the surface.

3.5.2. The Delaunay Class for Irregular Sets

The topology of IrregularSets is recorded, and in some cases computed, in the Delaunay
classes, which form the following hierarchy:

Delaunay
DelaunayClarkson
DelaunayWatson
DelaunayFast
DelaunayCustom

The DelaunayClarkson class computes Delaunay triangulations in any dimension
between 2 and 8 using Ken Clarkson’s algorithm. DelaunayCustom constructors accept
sampling topologies from applications. The Delaunay Watson class computes Delaunay
triangulations in 2 or 3 dimensions using David Watson’s algorithm. The DelaunayFast
class computes non-Delaunay triangulations quickly.

Note that any computation of Delaunay or approximate Delaunay topology is ex-
tremely slow and apt to exceed available memory for large Sets. Hence, where an
irregular topology is known to the application, we strongly recommend that the topol-
ogy be supplied by the application through the DelaunayCustom constructor.

50

10

3.5.3. Set Constructors

Set is a subclass of Datalmpl. A Set object may only be local. The Set classes include
the following constructors.

DoubleSet and FloatSet Constructors

These are the finite but very large sets of values representable with N IEEE floats
or doubles. Because of their size, they may not be used as Field domains. They are
primarily used (with N = 1) for FlatField range values, where they cause range values
to be stored in IEEE floats or doubles.

Listing 3.36: The DoubleSet and FloatSet constructors

/*x the set of values representable by N doubles;

type must be a RealType, a RealTupleType or a SetType;

coordinate system and units must be compatible with defaults

for type, or may be null;

a DoubleSet may not be used as a Field domain %/

public DoubleSet (MathType type, CoordinateSystem coordinate_system,
Unit [| units) throws VisADException;

/#x the set of values representable by N floats;

type must be a RealType, a RealTupleType or a SetType;

coordinate system and units must be compatible with defaults

for type, or may be null;

a FloatSet may not be used as a Field domain x/

public FloatSet (MathType type, CoordinateSystem coordinate_system,
Unit [] units) throws VisADException;

LinearSet Constructors

LinearSet is an interface implemented by Linear1DSet, Linear2DSet, Linear3DSet and
LinearNDSet. Linear1DSets are finite arithmetic progressions of values. Higher di-
mensional LinearSets are product sets of Linear1DSets. All LinearSets have man-
ifold dimension equal to their domain dimension, although any of the component
Linear1DSets may consist of a single sample (in this case, the valueToIndex and val-
ueTolnterp methods will throw an Exception).

Linear1DSet, Linear2DSet, Linear3DSet are redundant with LinearNDSet but have
more efficient implementations.

The samples of a LinearSet are in raster order, with component values for the first
dimension changing fastest and component values for the last dimension changing
slowest (this is the same as the ordering of elements in a multi- dimensional Fortran
array). For example, given a Linear2DSet with domain type (X, Y) that is a product
of six X samples and five Y samples, the 2-D samples are ordered as:

51

10

20

30

40

Y (second) component

X 0 6 12 18 24

1 7 13 19 25

(first) 2 8 14 20 26
3 9 156 21 27

component 4 10 16 22 28
5 11 17 23 29

LinearSets extend GriddedSets, described in Section 3.5.3.3. GriddedSets have rect-
angular topology while LinearSets have rectangular topology and geometry.

Listing 3.37: The LinearSet Constructors

/** an arithmetic progression of length values between first and last;
coordinate system and units must be compatible with defaults

for type, or may be null; errors may be null x/

public LineariDSet (MathType type,

double first, double last, int length,

CoordinateSystem coordinate_system, Unit[| units,

ErrorEstimate || errors) throws VisADException;

/#% a 1-D arithmetic progression with null errors and generic type %/
public LineariDSet (double first, double last, int length)
throws VisADException;

/#*% a 2—D cross product of arithmetic progressions;
coordinate system and units must be compatible with defaults
for type, or may be null; errors may be null x/

public Linear2DSet (MathType type,

double firstl, double lastl, int lengthl,

double first2, double last2, int length2,

CoordinateSystem coordinate_system, Unit|[| units,
ErrorEstimate [| errors) throws VisADException;

/#*% a 2—D cross product of arithmetic progressions with
null errors and generic type x/

public Linear2DSet (double firstl, double lastl, int lengthl,
double first2, double last2, int length2)

throws VisADException;

/#% a 3—D cross product of arithmetic progressions;
coordinate system and units must be compatible with defaults
for type, or may be null; errors may be null x*/

public Linear3DSet (MathType type,

double firstl, double lastl, int lengthl,

double first2, double last2, int length2,

double first3, double last3, int length3,

CoordinateSystem coordinate_system, Unit || units,
ErrorEstimate [|] errors) throws VisADException;

/#x a 3—D cross product of arithmetic progressions with
null errors and generic type */

public Linear3DSet (double firsti, double lastl, int lengthi,
double first2, double last2, int length2,

52

50

60

70

80

90

double first3, double last3, int length3)
throws VisADException;

/%% a 2—D cross product of arithmetic progressions that whose east
and west edges may be joined (for interpolation purposes);
coordinate system and units must be compatible with defaults

for type, or may be null; errors may be null x/

public LinearLatLonSet (MathType type,

double firstl, double lastl, int lengthl,

double first2, double last2, int length2,

CoordinateSystem coordinate_system,

Unit [] units, ErrorEstimate || errors)

throws VisADException;

/*% a 2—D cross product of arithmetic progressions that whose east
and west edges may be joined (for interpolation purposes), with
null errors, CoordinateSystem and Units are defaults from type =/
public LinearLatLonSet (MathType type,

double firstl, double lastl, int lengthl ,

double first2, double last2, int length2)

throws VisADException;

/%% construct an N—dimensional set as the product of N LinearlDSets;
coordinate system and units must be compatible with defaults

for type, or may be null; errors may be null x/
public LinearNDSet (MathType type, LineariDSet || sets,
CoordinateSystem coordinate_system,

Unit [] units, ErrorEstimate|[] errors)

throws VisADException;

/*x construct an N—dimensional set as the product of N LinearlDSets,
with null errors, CoordinateSystem and Units are defaults from

type */

public LinearNDSet (MathType type, LineariDSet || sets)

throws VisADException;

/*x construct an N—dimensional set as the product of N arithmetic
progressions; coordinate system and units must be compatible

with defaults for type, or may be null; errors may be null %/
public LinearNDSet (MathType type, double[] firsts, double[] lasts,
int [] lengths, CoordinateSystem coordinate_system,

Unit [] units, ErrorEstimate|[]| errors)

throws VisADException;

/*x construct an N—dimensional set as the product of N arithmetic
progressions , with null errors, CoordinateSystem and Units are
defaults from type x/

public LinearNDSet (MathType type, double[] firsts, double[] lasts,
int [] lengths) throws VisADException;

IntegerSet Constructors

IntegerSet is an interface implemented by Integer1DSet, Integer2DSet, Integer3DSet
and IntegerNDSet. These classes are simple extensions of the corresponding Lin-
earSet classes that constrain arithmetic progressions to sequences of consecutive in-
tegers based at zero. IntegerlDSet, Integer2DSet, Integer3DSet are redundant with

53

10

20

30

40

50

IntegerNDSet but have more efficient implementations.
IntegerSets are useful as the domains of Fields that are really just simple 1-D, 2-D,
3-D or N-D arrays of values.

Listing 3.38: The IntegerSet constructors

/%% construct a l—dimensional set with values {0, 1, ..., lengthX —1};
coordinate system and units must be compatible with defaults for
type, or may be null; errors may be null x/

public IntegeriDSet(MathType type, int lengthX,

CoordinateSystem coordinate_system,

Unit [| units, ErrorEstimate || errors)

throws VisADException;

/#*x a 1-D set with null errors and generic type x*/
public IntegeriDSet (int lengthX)
throws VisADException;

/#% construct a 2—dimensional set with values

{0, 1, ..., lengthX—-1} x {0, 1, ..., lengthY —1};

coordinate system and units must be compatible with defaults for
type, or may be null; errors may be null x/

public Integer2DSet(MathType type, int lengthX, lengthY,
CoordinateSystem coordinate_system,

Unit [| units, ErrorEstimate || errors)

throws VisADException;

/#*% a 2—D set with null errors and generic type x*/
public Integer2DSet(int lengthX, lengthY)
throws VisADException;

/#*% construct a 3—dimensional set with values {0, 1, ..., lengthX -1}
x {0, 1, ..., lengthY—-1} x {0, 1, ..., lengthZ —1};

coordinate system and units must be compatible with defaults for
type, or may be null; errors may be null x/

public Integer3DSet (MathType type, int lengthX, lengthY, lengthZ,
CoordinateSystem coordinate_system,

Unit [] units, ErrorEstimate|[] errors)

throws VisADException;

/** a 3—D set with null errors and generic type x/
public Integer3DSet (int lengthX, lengthY, lengthZ)
throws VisADException;

/*% construct an N—dimensional set with values in the cross product
of {0, 1, ..., lengths|[i|—1}

for i=0, ..., lengths[lengths.length —1];

coordinate system and units must be compatible with defaults for
type, or may be null; errors may be null */

public IntegerNDSet (MathType type, int || lengths,

CoordinateSystem coordinate_system,

Unit [|] units, ErrorEstimate || errors)

throws VisADException;

/** an N-D set with null errors and generic type x*/

public IntegerNDSet (int || lengths)
throws VisADException;

54

10

GriddedSet Constructors

GriddedSets are N-dimensional sets with rectangular topologies but not necessarily
rectangular geometries. GriddedSet implements the general N-dimensional case (al-
though that implementation is not complete in the initial release) and is extended by
Gridded1DSet, Gridded2DSet and Gridded3DSet, which are complete.

GriddedSets may have manifold dimension less than (or equal to) their domain di-
mension. A GriddedSet with domain dimension N and manifold dimension M defines
an M-dimensional grid of samples embedded in an N-dimensional space. In the Grid-
dedSet constructors, the arguments lengthX, lengthY and lengthZ define the numbers
of samples along each dimension of the grid (so the number of length arguments de-
fines the manifold dimension), and the samples array argument defines the locations of
grid points in N-dimensional domain space. The samples array has type float[][] with
dimensions float[N][number of samples|. Thus the i-th point in the grid is located
at:

(samples[0] [i], samples[1][i], ..., samples([N-1][i]).

The samples are in raster order, with the first grid dimension changing fastest and
the last grid dimension changing slowest. That is, the first lengthX samples form the
first "column’ of the grid, the first (lengthX * lengthY) samples for the first sub-plane
of the grid, and so on.

If the manifold dimension is less than the domain dimension or any of the grid
sizes (i.e., lengthX, lengthY or lengthZ) is 1, then the valueTolndex and valueTolnt-
erp methods will throw an Exception. If the manifold dimension equals the domain
dimension and all of the grid sizes is greater than 1, then the GriddedSet constructor
will perform numerical checks on the samples array to ensure that form a valid grid
(e.g., to ensure that they are sorted in the 1-D case).

Listing 3.39: The GriddedSet constructors

/%% a 1-D sorted sequence with no regular interval; samples array
is organized float [1][number of samples]| where lengthX =
number of samples; samples must be sorted (either increasing

or decreasing); coordinate system and units must be compatible

with defaults for type, or may be null; errors may be null %/
public GriddediDSet (MathType type, float [][] samples, int lengthX,
CoordinateSystem coordinate_system,

Unit [] units, ErrorEstimate|[] errors)

throws VisADException;

/** a 1-D sequence with no regular interval with null errors
CoordinateSystem and Units are defaults from type x/

public GriddediDSet (MathType type, float [][] samples, int lengthX)
throws VisADException;

)

/** a 1-D sorted sequence with no regular interval; samples array

55

20

30

40

50

60

70

is organized double[1l][number of samples|] where lengthX =
number of samples; samples must be sorted (either increasing
or decreasing); coordinate system and units must be compatible
with defaults for type, or may be null; errors may be null x/
Gridded1DDoubleSet is useful for sequences of DataTime values
represented as double precision seconds x*/

public GriddediDDoubleSet (MathType type, double [][] samples,
int lengthX , CoordinateSystem coordinate_system,

Unit [] units, ErrorEstimate|[]| errors)

throws VisADException;

/** a 1-D sequence with no regular interval with null errors,
CoordinateSystem and Units are defaults from type;
Gridded1DDoubleSet is useful for sequences of DataTime values
represented as double precision seconds x*/

public GriddediDDoubleSet (MathType type, double [][] samples,
int lengthX)

throws VisADException;

/*x a 2—D set whose topology is a lengthX x lengthY grid;
samples array is organized float [2][number of samples| where
lengthX % lengthY = number of samples; samples must form a
non—degenerate 2—D grid (no bow—tie—shaped grid boxes); the
X component increases fastest in the second index of samples;
coordinate system and units must be compatible with defaults
for type, or may be null; errors may be null x*/

public Gridded2DSet (MathType type, float][] samples, int lengthX,
int lengthY, CoordinateSystem coordinate_system,

Unit [] units, ErrorEstimate || errors)

throws VisADException;

/*x a 2—D set whose topology is a lengthX x lengthY grid, with
null errors, CoordinateSystem and Units are defaults from type %/
public Gridded2DSet (MathType type, float [][] samples, int lengthX,
int lengthY) throws VisADException;

/#*% a 2—D set with manifold dimension = 1; samples array is
organized float [2][number of samples| where lengthX =
number of samples; no geometric constraint on samples;

coordinate system and units must be compatible with defaults

for type, or may be null; errors may be null x/

public Gridded2DSet (MathType type, float []|[] samples, int lengthX,
CoordinateSystem coordinate_system,

Unit [] units, ErrorEstimate || errors)

throws VisADException;

/#*% a 2—D set with manifold dimension = 1, with null errors,
CoordinateSystem and Units are defaults from type */

public Gridded2DSet (MathType type, float [][] samples, int lengthX)
throws VisADException;

/#*% a 3—D set whose topology is a lengthX x lengthY x lengthZ
grid; samples array is organized float [3][number of samples]
where lengthX # lengthY * lengthZ = number of samples;

samples must form a non—degenerate 3—-D grid (no bow—tie—shaped
grid cubes); the X component increases fastest and the Z
component slowest in the second index of samples;

coordinate system and units must be compatible with defaults

for type, or may be null; errors may be null x/

public Gridded3DSet (MathType type, float [][] samples, int lengthX,
int lengthY, int lengthZ,

56

80

90

100

110

CoordinateSystem coordinate_system,
Unit [] units, ErrorEstimate || errors)
throws VisADException;

/*% a 3—D set whose topology is a lengthX x lengthY x lengthZ
grid , with null errors, CoordinateSystem and Units are

defaults from type x/

public Gridded3DSet (MathType type, float [][] samples, int lengthX,
int lengthY, int lengthZ) throws VisADException;

/*x a 3—D set with manifold dimension = 2; samples array is
organized float [3][number of samples| where lengthX * lengthY

= number of samples; no geometric constraint on samples; the

X component increases fastest in the second index of samples;
coordinate system and units must be compatible with defaults

for type, or may be null; errors may be null x/

public Gridded3DSet (MathType type, float [][] samples, int lengthX,
int lengthY, CoordinateSystem coordinate_system,

Unit [] units, ErrorEstimate || errors)

throws VisADException;

/*x a 3—D set with manifold dimension = 2, with null errors,
CoordinateSystem and Units are defaults from type x/

public Gridded3DSet (MathType type, float [][] samples, int lengthX,
int lengthY) throws VisADException;

/*x a 3—D set with manifold dimension = 1; samples array is
organized float [3][number of samples| where lengthX =
number of samples; no geometric constraint on samples;

coordinate system and units must be compatible with defaults

for type, or may be null; errors may be null x/

public Gridded3DSet (MathType type, float [][] samples, int lengthX,
CoordinateSystem coordinate_system, Unit|[]| units,

ErrorEstimate [| errors)

throws VisADException;

/*x a 3—D set with manifold dimension = 1, with null errors,
CoordinateSystem and Units are defaults from type x/

public Gridded3DSet (MathType type, float][] samples, int lengthX)
throws VisADException;

IrregularSet Constructors

IrregularSets are N-dimensional sets with irregular topologies consisting of lists of
(N+1)-gouns (i.e., line segments in 1 dimension, triangles in 2 dimensions, tetrahedra
in 3 dimensions, etc). IrregularSet implements the general N-dimensional case (al-
though that implementation is not complete in the initial release) and is extended by

Irregular1DSet, Irregular2DSet and Irregular3DSet, which are complete.

The samples array argument to the IrregularSet constructors defines the locations
of sample points in N-dimensional domain space. The samples array has type float||[]
with dimensions float|N][number of samples|. Thus the i-th sample point is located

at:

o7

10

20

30

40

(samples[0] [i], samples[1][i], ..., samples[N-1][i]).

IrregularSets may have manifold dimension less than or equal to their domain di-
mension. If the manifold dimension is less than the domain dimension, then the
valueTolndex and valueTolnterp methods throw Exceptions.

In 1 dimension the topology is constructed merely by sorting the samples. In higher
dimensions the topology may be constructed by a Delaunay triangulation or may be
specified in the constructor (using the DelaunayCustom class). See Section 3.5.5 for
more information about Delaunay classes.

Listing 3.40: The IrregularSet constructors

/#*% a 1-D irregular set; samples array is organized
float [1][number of samples]; samples need not be

sorted — the constructor sorts samples to define

a 1-D "triangulation";

coordinate system and units must be compatible with
defaults for type, or may be null; errors may be null */
public IrregulariDSet (MathType type, float [][] samples,
CoordinateSystem coordinate_system,

Unit [| units, ErrorEstimate || errors)

throws VisADException;

/#% a 1-D irregular set with null errors, CoordinateSystem
and Units are defaults from type x/

public IrregulariDSet (MathType type, float [|[] samples)
throws VisADException;

/#*x a 2—D irregular set; samples array is organized

float [2] [number of samples|; no geometric constraint on
samples; if delan is non—null it defines the topology of
samples (which must have manifold dimension 2), else the
constructor computes a topology with manifold dimension 2;
note that Gridded2DSet can be used for an irregular set
with domain dimension 2 and manifold dimension 1;
coordinate system and units must be compatible with
defaults for type, or may be null; errors may be null x/
public Irregular2DSet(MathType type, float [][] samples,
CoordinateSystem coordinate_system,

Unit [| units, ErrorEstimate || errors,

Delaunay delan)

throws VisADException;

/#x a 2—D irregular set with null errors, CoordinateSystem
and Units are defaults from type; topology is computed

by the constructor x/

public Irregular2DSet (MathType type, float [][] samples)
throws VisADException;

/** a 3—D irregular set; samples array is organized

float [3][number of samples]; no geometric constraint on
samples; if delan is non—null it defines the topology of
samples (which may have manifold dimension 2 or 3), else
the constructor computes a topology with manifold dimension
3; note that Gridded3DSet can be used for an irregular set
with domain dimension 3 and manifold dimension 1;

58

50

10

coordinate system and units must be compatible with
defaults for type, or may be null; errors may be null x/
public Irregular3DSet (MathType type, float [|[] samples,
CoordinateSystem coordinate_system,

Unit [] units, ErrorEstimate|[]| errors,

Delaunay delan)

throws VisADException;

/#*% a 3—D irregular set with null errors, CoordinateSystem
and Units are defaults from type; topology is computed

by the constructor x/

public Irregular3DSet (MathType type, float [|[] samples)
throws VisADException;

ProductSet and UnionSet Constructors

ProductSets are SampledSets that are defined as products of other SampledSets (called
the ProductSet’s factor sets). The domain dimension of a ProductSet is the sum of
the domain dimensions of its factors and similarly its manifold dimension is the sum
of the manifold dimensions of its factors. The order of samples in a ProductSet is the
rasterization of the orders of samples of its factors. As the index of the ProductSet
increases, the index of the first factor varies fastest and the index of the last factor
varies slowest.

UnionSets are SampledSets that are defined as unions of other SampledSets. All
the sets in the union must have the same domain dimension and they must all have
the same manifold dimension. Note that the valueTolnterp method is not imple-
mented for UnionSets but the valueTolndex method is. Thus if a UnionSet is the
domain set of a Field, arithmetic operations involving the Field must specify the

Data.NEAREST NEIGHBOR resampling mode rather than Data. WEIGHTED AVERAGE.

The order of samples in a UnionSet is the serialization of the orders of samples of its
components. As the index of the UnionSet increases, the samples of the first com-
ponent are enumerated first and the samples of the last component are enumerated
last.

Listing 3.41: The ProductSet and UnionSet constructors

/*% create the product of the sets array; coordinate system
and units must be compatible with defaults for type,

or may be null; errors may be null x/

public ProductSet (MathType type, SampledSet || sets,
CoordinateSystem coordinate_system,

Unit [| units, ErrorEstimate || errors)

throws VisADException;

/%% create the product of the sets array, with null errors,
CoordinateSystem and Units are defaults from type x/
public ProductSet (MathType type, SampledSet|[]| sets)

throws VisADException;

59

20

10

20

30

/*% create the union of the sets array; coordinate system
and units must be compatible with defaults for type,

or may be null; errors may be null x/

public UnionSet (MathType type, SampledSet || sets,
CoordinateSystem coordinate_system,

Unit [| units, ErrorEstimate || errors)

throws VisADException;

/#% create the union of the sets array, with null errors,
CoordinateSystem and Units are defaults from type x/
public UnionSet (MathType type, SampledSet || sets)

throws VisADException;

3.5.4. Set Methods

Applications generally do not invoke Set methods, but they construct new Set objects
and may define new Set subclasses. New Set subclasses must either implement or
inherit these methods:

Listing 3.42: The Set methods

/#% return an enumeration of sample indices in a spatially
coherent order; this is useful for efficiency =/
public int[] getWedge () ;

/#% return an enumeration of sample values in index order
(i.e., not in getWedge order); the return array is
organized as float[domain dimension|[number of samples] x/
public float [|[] getSamples () throws VisADException;

/#x convert an array of indices to an array of sample values;

the return array is organized as

float [domain dimension|[indices.length| */

public float [|[] indexToValue (int[] indices) throws VisADException;

/#x convert an array of values to an array of indices of the nearest
samples; the values array is organized as

float [domain dimension |[number of values| x/

public int[] valueToIndex (float [|[] values) throws VisADException;

/#*x convert an array of indices to an array of double precision
sample values; this precision is currently only meaningful

for Linear1DSet and GriddedlDDoubleSet where it is intended

to represent date/time values as double precision seconds;

the return array is organized as

double [domain dimension|[indices.length] =/

public double [|[] indexToDouble(int [| indices) throws VisADException;

/#*% convert an array of double precision values to an array of
indices of the nearest samples; this precision is currently
only meaningfulful for LinearlDSet and GriddedlDDoubleSet
where it is intended to represent date/time values as double
precision seconds; the values array is organized as

60

10

double [domain dimension |[number of values| =/
public int[] doubleToIndex (double []|[] values) throws VisADException;

3.5.5. SimpleSet Methods

Listing 3.43: The SimpleSet methods

/#% convert an array of values to arrays of indices and weights for
those indices , appropriate for interpolation; the values array is

organized as float [domain dimension|[number of values]; indices
and weights must be passed in as int [number of values]|[] and
float [number of values|[]; on return, quantity(values|[.][i])

can be estimated as the sum over j of

weights[i][j] * quantity (sample at indices[i]|[]j]);

no estimate possible if indices[i] and weights[i] are null x/
public void valueToInterp(float [][] values, int [][] indices,
float [][] weights) throws VisADException;

3.5.6. Delaunay Constructors

The Delaunay class is serializable. A Delaunay object may only be local. The Delaunay
classes include the following useful constructor:

Listing 3.44: The Delaunay constructors

/** the DelaunayCustom constructor allows applications to define
sampling topologies; the samples array is organized as

float [domain dimension |[number of samples| and the tris arrays
is organized as int[number of tris|[manifold dimension + 1];
each "tri" is a list of sample indices, and is a triangle ,
tetrahedron, etc depending on manifold dimension x/

public DelaunayCustom(float [|[] samples, int [][] tris)

throws VisADException;

3.6. ErrorEstimates

The ErrorEstimate class contains an estimate of the variance of error associated with a
value or a set of values. ErrorEstimates are included with individual Real values, and
with each RealType component in the range of FlatFields. For example, one range
component of a FlatField may consist of all temperature values in a model output
grid, and these would be associated with a single average ErrorEstimate (see Section
3.9).

Data operations include options to propagate ErrorEstimates assuming that errors
are distributed either independently or dependently, as well as an option to not prop-
agate ErrorEstimates.

The VisAD ErrorEstimates are not a substitute for a detailed error analysis, but
can provide a quick estimate of error magnitude and the possible need for detailed
analysis.

3.6.1. ErrorEstimate Constructors

The ErrorEstimate class is serializable. An ErrorEstimate object may only be local.
The ErrorEstimate class include the following constructors:

Listing 3.45: The ErrorEstimate constructors

/** construct an error distribution of number values with
given mean and variance, in Unit unit x/

public ErrorEstimate (double variance, double mean,

long number , Unit unit);

/** construct an error distribution of 1 value with
given mean and variance, in Unit unit */
public ErrorEstimate (double mean, double variance, Unit unit);

3.7. AuditTrails

The AuditTrail class contains an ordered sequence of text strings documenting the
history of a Data object, starting with external data sources (e.g., data files and URLs)
and including Data operations. In order to conserve memory, AuditTrail objects are
only associated with top-level Data objects (i.e., Data objects that are not components
of Fields or Tuples).

The AuditTrail class is not yet implemented, so there is no constructor and method
documentation.

3.8. Missing Data

Any Data object or primitive value may be marked as missing, meaning that its value is
unknown or undefined. Missing values may be generated as the result of sensor failures,
arithmetic failures (e.g., division by zero), or to mark incomplete data coverage (e.g.,
temperatures are not available for one time step of a model output). The NaN (Not a
Number) value of the IEEE floating point standard is used to represent missing floats

62

and doubles in VisAD, since it has the correct arithmetic semantics (e.g., X .OP. NaN
= NaN for any value X and any operation .OP.).

3.9. FlatFields - Data Operations and Efficiency

There is a natural trade-off between generality and efficiency, so the generality of the
VisAD data model poses a challenge for efficiency. Efficiency is achieved by incorpo-
rating the following rule at all levels of the system:

Hint 2 (VisAD rule of efficiency) Apply all data operations to arrays of values
rather than individual values, and avoid methods that are invoked once per data value.

The effectiveness of this rule was demonstrated in the C implementation of VisAD
[8, 9], which had a general data model like the Java implementation.

The large Data objects in any application are Fields. Most array data in numerical
programs are finite samplings of functions (for example, images are finite samplings of
continuous radiance functions with a pixel for each sample) and these correspond to
Fields. Even arrays that do not correspond to any obvious continuous function can be
represented by Fields whose domains are sets of integers from 1 to N. The obvious way
to implement the Field class is with an array of range sample objects, which would
violate our rule because Field operations invoke methods on each range object. Thus
the Field class is extended by FlatField, which simulates an array of range objects
with arrays of Java primitive values. A FlatField can be used for a Field under the
following two conditions:

1. The MathType of the Field range is a RealType, a RealTupleType, or a Tu-
pleType whose components are all RealTypes or RealTupleTypes (this allows
subsets of a FlatField’s range components to be grouped into RealTupleTypes
to document CoordinateSystems).

2. All range samples have identical metadata, including Units, CoordinateSystems,
shared ErrorEstimates, etc.

FlatFields are appropriate for images, multi-channel images, multi-variate grids,
time series and many other types of numerical data arrays. Complex data may be
implemented by Fields whose range samples are FlatFields. For example, a time
sequence of images may be implemented by a Field whose domain is a set of time
steps, and whose range samples are each images stored in FlatField.

63

In addition to computational efficiency, FlatFields also have better storage efficiency
than Fields. Java primitive data require less storage than Java objects, shared meta-
data objects require less total space, and when possible function range values are stored
in bytes, shorts or ints rather than floats. The FlatField constructor accepts range
sampling Sets for each RealType component of its range. If the size of the sampling
Set for a range component is 255, then values for that component are encoded as in-
dices into that Set and stored in an array of bytes (the 256th code is used to represent
missing values). Arrays of shorts or ints are used for larger set sizes, as appropriate.
The default range sampling Sets are 1-D FloatSets, which cause range values to be
stored as floats.

Numerical precision problems occur and can be very difficult to diagnose when they
do. Thus developers may want to pass DoubleSets to the range sampling Sets argument
of the FlatField constructor, in order to avoid precision problems.

Float.NaN and Double.NaN are used to represent missing float and double values.
This avoids time-consuming explicit tests for missing values, since these IEEE NaNs
have the right arithmetic semantics for missing values.

3.9.1. FlatField Constructors

FlatField is a subclass of Fieldlmpl. A FlatField object may only be local. The
FlatField class include the following constructors:

Listing 3.46: The FlatField constructors

/** FlatField is a sampled function whose range is a Real,

a RealTuple, or a Tuple of Reals and RealTuples; if range

is a RealTuple, range coordinate system may be non—null

but must have the same Reference as RangeType default
CoordinateSystem; domain_ set defines the domain sampling;
range sets define samplings for range values — if range set|[i]
is null, the i—th range component values are stored as doubles;
if range set[i] is mnon—null, the i—th range component values are
stored in bytes if range sets[i].getLength() < 256, stored in
shorts if range sets[i].getLength() < 65536, etc;

any argument but type may be null x/

public FlatField(FunctionType type, Set domain_set,
CoordinateSystem range_coordinate_system,

Set [| range_sets, Unit[] units)

throws VisADException;

/#* similar to the previous constructor, except that if
range coordinate systems|[i] is non—null, then the i—th
component of the range type must be a RealTupleType whose
default CoordinateSystem has the same Reference x/

public FlatField(FunctionType type, Set domain_set,
CoordinateSystem || range_coordinate_systems ,

Set || range_sets, Unit|[| units)

throws VisADException;

64

10

20

30

40

50

3.9.2. FlatField Methods

FlatField overrides many of the Fieldlmpl methods, plus it defines a number of methods
for accessing range values as arrays of doubles and floats, and accessing range metadata
(which are shared by all range samples).

Listing 3.47: The FlatField methods

/#x convert FlatField to FieldImpl x/
public Field convertToField ()
throws VisADException, RemoteException;

/#x return array of Units associated with each RealType
component of range; these may differ from default

Units of range RealTypes, but must be convertable x/
public Unit [][] getRangeUnits();

/#% return range CoordinateSystem assuming range type is
a RealTupleType (throws a TypeException if its not);
this may differ from default CoordinateSystem of

range RealTupleType, but must be convertable x/

public CoordinateSystem || getRangeCoordinateSystem();

/%% return range CoordinateSystem associated with
RealTupleType that is index—th component of range

TupleType; this may differ from default

CoordinateSystem of RealTupleType component of

range TupleType, but must be convertable x/

public CoordinateSystem || getRangeCoordinateSystem(int index);

/#% return array of ErrorEstimates associated with each
RealType component of range; each ErrorEstimate is a
mean error for all samples of a range RealType
component x/

public ErrorEstimates || getRangeErrors();

/#*x set ErrorEstimates associated with each RealType
component of range x/
public void setRangeErrors(ErrorEstimates || errors)
throws VisADException;

/#x set range array as range values of this FlatField;

the array is dimensioned

double [number of range components]|[number of range samples]|;
copy array if copy flag is true x*/

public void setSamples (double[][] range, boolean copy)
throws VisADException, RemoteException;

/*% set range array as range values of this FlatField;

the array is dimensioned

double [number of range components][number of range samples]|;
copy array if copy flag is true x*/

public void setSamples(float [][] range, boolean copy)
throws VisADException, RemoteException;

/*x get this FlatField’s range values in their default range

Units (as defined by the range of the FlatField s
FunctionType); the return array is dimensioned

65

double [number of range components]|[number of range samples] =/

public double [|[] getValues ()
throws VisADException, RemoteException;

3.10. Immutable Data

Most Data classes and metadata classes are immutable, in order to ensure the thread-
safeness of VisAD applications in distributed computing environments. The only ex-
ceptions are Field and its sub-classes. Field metadata cannot change, but the values
of Field and FlatField range samples can change (as well as the ErrorEstimates asso-
ciated with FlatField range samples). Fields are mutable since they may be very large
and it would be inefficient to have to copy them to change individual range values.

3.11. DataReferences

Since the only way to change the value of an immutable Data object is to replace it with
a different Data object, there is a need for a class to represent variable Data. Thus the
DataReference class defines mutable references to Data objects. In an application, for
example, the variable current_time may be represented by a DataReference object
that refers to a succession of immutable Real objects.

3.11.1. DataReference Constructors

DataReference is an interface that may apply to both local and remote DataRefer-
ence objects. The DataReferencelmpl class applies only to local DataReference ob-
jects, while the RemoteDataReference interface and RemoteDataReferencelmpl class
apply only to remote DataReference objects (see Section 6 for more information). The
DataReference classes include the following constructors:

Listing 3.48: The ImmutableData constructors

/** construct a DataReferencelmpl object with the given name x/
public DataReferenceImpl (String name) throws VisADException;

/#% construct a RemoteDataReferencelmpl object to provide remote
access to reference x/

public RemoteDataReferencelmpl (DataReferencelmpl reference)
throws RemoteException;

66

3.11.2. DataReference Methods

Generally useful DataReference methods include:

Listing 3.49: The DataReference methods

/*% get MathType of referenced Data object, or null if none;

this is more efficient than getData().getType() for
RemoteDataReferences x*/

public MathType getType() throws VisADException, RemoteException;

/*x get referenced Data object, or null if none %/
public Data getData () throws VisADException, RemoteException;

/#x set reference to data, replacing any currently referenced

Data object; if this is local (i.e., an instance of
DataReferencelmpl) then the data argument must also be
local (i.e., an instance of Datalmpl);

if this is Remote (i.e., an instance of RemoteDataReference)
then a local data argument (i.e., an instance of Datalmpl)
will be passed by copy and a remote data argument (i.e., an

instance of RemoteData) will be passed by remote reference x*/
public void setData(Data data) throws VisADException, RemoteException;

3.12. Application Example: Arrays versus VisAD
Functions

In order to understand how to write numerical applications with VisAD, it is useful to
compare VisAD with C. VisAD and C both allow applications to define complex data
structures from basic primitives. For example, a multi-spectral image can be defined
in C using a structure and an array:

Listing 3.50: a multi-spectral image defined in C

struct pixel {
float ir_radiance;
float vis_radiance;
5
struct pixel image|[nlines|[nelements|;

A similar multi-spectral image can be defined in VisAD using RealTupleTypes and
a FunctionType:

Listing 3.51: a multi-spectral image defined in VisAD

RealTupleType location = new RealTupleType (new RealType("line'"), new <«
RealType ("element"));

67

RealTupleType pixel = new RealTupleType(new RealType('"ir radiance"), new <
RealType ("vis radiance"));

FunctionType image_type = new FunctionType (location, pixel);
Set location_set = new Integer2DSet (nlines, nelements);
FlatField image = new FlatField(image_type, location_set);

In general, we can list the following analogies between C and VisAD data structuring
tools:

C VisAD

float, double, int RealType

char string[] TextType

struct TupleType, RealTupleType
array FunctionType

In these analogies, C and VisAD syntax differ considerably. However, that kind of
difference should be familiar to programmers with experience in several programming
languages. The important similarities and differences relate to the meanings of these
data structuring tools. Most differences involve metadata integrated into the meanings
of data. For example, VisAD Reals and C floats implement the same set of operations,
but operations on VisAD Reals may invoke Unit conversions and propogate ErrorEs-
timates and missing data indicators (some C implementations also propogate missing
data indicators in the form of IEEE NaNs). C structs and VisAD Tuples have very
similar meanings - they are both fixed length lists of other data structures. However,
VisAD RealTuples may include CoordinateSystems and operations on RealTuples may
invoke coordinate transforms.

The most complex differences exist for the analogy between C arrays and VisAD
Functions, because of the variety of metadata integrated into VisAD Functions. The
rest of this section of the Developers Guide is dedicated to explaining the relation
between arrays and Functions in a series of program examples. With the proper
understanding, you can use Functions anywhere you can use arrays, but Functions
also allow you to express some very complex operations simply.

3.12.1. Subtracting Images as Pixel Arrays in C

The following C code could be used to compute the difference between two multi-
spectral images:

Listing 3.52: Subtracting images as pixel arrays in C

#define nlines 256
#define nelements 256

struct pixel {

68

10

20

10

float ir_radiance;
float vis_radiance;

)

image_difference (imagel , image2)
struct pixel imagel|[nlines||[nelements |;
struct pixel image2|[nlines]|[nelements];
.
int i, j;
for (i=0; i<nlines; i++) {
for (j=0; j<nelements; j++) {
imagel[i|[j].ir_radiance —= image2|[i
imagel [i]|[j].vis_radiance —= image2|

.ir_radiance;

1131
i][j].vis_radiance;

[
I

This code assumes a fixed size for its image arguments, but that would not be hard
to generalize. It also assumes a fixed set of spectral bands for its image arguments,
that both images have the same size, that their pixel locations are aligned, and that
image radiance values have the same units and calibration.

3.12.2. Subtracting Images as Pixel Arrays in VisAD

The following Java / VisAD code could be used to compute the difference between
two multi-spectral images, in a pixel-by-pixel manner similar to the C code in Section
3.12.1:

Listing 3.53: Subtracting images as pixel arrays in VisAD

void image_difference(FlatField imagel, FlatField image2)
throws VisADException, RemoteException {
// extract pixel radiance values from images
double [|[] pixelsl = imagel.getValues ();
double [|[] pixels2 = image2.getValues();
// loop over spectral bands in imagel
for (int i=0; i<pixelsl.length; i+f+) {
// loop over pixels in one spectral band
for (int j=0; j<pixelsi[i].length; j++) {
pixels1[i][j] —= pixels2[i][j];

// set pixel radiance values in imagel
imagel.setSamples (pixelsl);

This code does not assume a fixed size for its image arguments, and does not assume
that they have only two spectral bands. However, it does assume that both images
have the same size and the same set of spectral bands, that their pixel locations are
aligned, and that image radiance values have the same units and calibration.

69

This code example demonstrates that it is easy to treat VisAD Functions like simple
arrays, extracting their values into ordinary arrays using the getValues method and
setting values from ordinary arrays using the setSamples method.

3.12.3. Subtracting Images as Functions in VisAD

The following Java / VisAD code computes the difference between two multi- spectral
images at a high level, which allows VisAD to integrate all their metadata into the
operation:

Listing 3.54: Subtracting images as functions in VisAD

FlatField image_difference(FlatField imagel, FlatField image2)
throws VisADException, RemoteException {
return (FlatField) imagel.subtract(image2);

}

This code only assumes that the two images have the same set of spectral bands. If
necessary it will resample the locations of image2 to the locations of imagel, transform
locations from one coordinate system to another and convert location units, convert
radiance units and transform between radiance calibration coordinate systems, and
propogate error estimates and missing data indicators.

This code example demonstrates that Functions can be manipulated at a high level,
similar to array operations in some high-level languages (such as IDL) but integrating
a variety of metadata in those operations. High-level operations on Functions include
basic arithmetic such as add and multiply with other Functions or with Reals, as well
as derivative, resampling, and display.

70

4. Visualizations

The basic visualization approach of VisAD can be summarized as:

1. Any number of interactive 3-D and 2-D displays can be created, each defined
by a Display object. For example, Displays could be attached to each cell in a
spread-sheet.

2. Each Display includes a set of ScalarMap objects that determine how Data ob-
jects are depicted. They define mappings from RealTypes (every primitive value
occurring in a Data object has a RealType) to DisplayRealTypes (see Section
4.1).

3. Each Display includes links to any number of DataReference objects, depicted
in a common frame of reference defined by the Display’s ScalarMaps. Data
depictions are updated whenever Data values change. In some cases, users can
change Data values by re-drawing their depictions.

VisAD is designed to use a variety of graphic API’s for generating Data displays.
The current release of VisAD uses Java3D and Java2D. Java3D supports a wide variety
of 3-D graphics techniques, while Java2D is part of the Java 1.2 core.

VisAD shields applications developers from details of graphics APIs. Thus for most
applications, the only difference between Java3D and Java2D displays is whether they
are constructed with DisplaylmplJ3D or DisplaylmplJ2D, and the constraint that
Java2D displays cannot involve ScalarMaps to ZAxis, Latitude or Alpha.

The following description of the VisAD display architecture is complex but ordinary
applications can use it quite simply, as illustrated by the application source code
examples.

4.1. ScalarMaps and DisplayRealTypes

The simplest and most common way (see any issue of Science or Nature) to visualize
numerical data is a 2-D plot of one physical quantity versus another, such as temper-
ature versus pressure or humidity versus time. Scalar mappings generalize this idea
to visualizations that are 3-D, animated, interactive, colored, transparent, etc. Every
numerical value occurring in a Data object has a named RealType. ScalarMap objects

71

define mappings from ScalarTypes to DisplayRealTypes, which are defined for all the
primitive quantities of displays. The system defines a set of intrinsic DisplayReal-
Types, and a set of groupings of these into DisplayTupleTypes, as public static final
variables in the Display interface (so, for example, X Axis is accessed as Display. X Axis).
The system-intrinsic DisplayRealTypes and DisplayTupleTypes are:

(XAxis, YAxis, ZAxis) = DisplaySpatialCartesianTuple
(Latitude, Longitude, Radius) = DisplaySpatialSphericalTuple
(CylRadius, CylAzimuth, CylZAxis) = DisplaySpatialCylindricalTuple

(Red, Green, Blue) = DisplayRGBTuple

(Hue, Saturation, Brightness) = DisplayHSBTuple

(Cyan, Magenta, Yellow) = DisplayCMYTuple

RGB, HSV, CMY // indices into pseudo color table
RGBA // index into pseudo color-alpha table
Alpha // transparency

Animation // index into animation sequence
SelectValue, SelectRange // select Data components for display
IsoContour // iso-contour lines and surfaces
(FlowlX, FlowlY, FlowlZ) = DisplayFlowlTuple // vector rendering

(Flow2X, Flow2Y, Flow2Z) DisplayFlow2Tuple // 2nd vector set
(XAxisOffset, YAxisOffset, ZAxisOffset) = DisplaySpatialOffsetTuple

Shape // index into list of icon shapes

ShapeScale // relative scale of icon shapes

Text // TextTypes and RealTypes can be mapped to Text
LineWidth, PointSize // for ConstantMap only

Developers may define new DisplayRealTypes and DisplayTupleTypes to define pa-
rameters of new kinds of displays, as described in Section 4.1.1. In particular develop-
ers may define new display spatial and color coordinate systems that can be used by
existing DataRenderers and DisplayRenderers.

Some DisplayRealTypes define a range of values (e.g., 0.0 to 1.0). Values for these
DisplayRealTypes are derived from mapped RealType values by linear scaling. The
scale and offset are computed so that the range of RealType values is mapped precisely
to the range of DisplayRealType values. Application can define the range of RealType
values using the setRange method of ScalarMap, otherwise they are automatically
computed from the displayed Data objects.

Each DisplayRealType defines a default value (most are 0.0, but for example the
default for Radius is 1.0), which is over-ridden by values of any RealTypes mapped to
the DisplayRealType. ConstantMap is a sub-class of ScalarMap and defines a mapping
from a constant to a DisplayRealType (for example, to over- ride the default value for
Radius). Each DataReference linked to a Display may also include its own private

72

set of ConstantMaps. This can be used, for example, to set a different color for each
Data object, or to set a different ZAxis depth for each of a set of image Data objects
displayed with transparent color in the XY plane.

The meanings of most DisplayRealTypes should be fairly obvious, but a few need
some explanation. SelectRange and SelectValue are used to display only selected parts
of Data objects, depending on whether values of RealTypes mapped to SelectRange
lie in a specified range and whether values of RealTypes mapped to SelectValue have a
specified value (this is only applicable to RealTypes occurring as 1-D Field domains and
the value tolerance is defined according to the Field domain sampling Set). Animation
is also only applicable to RealTypes occurring as 1-D Field domains and the discrete
animation steps are defined from Field domain sampling Sets. The components of
DisplaySpatialOffset Tuple are used to generate display spatial coordinates as the sums
of values from multiple RealTypes. This could be used, for example, to define Beshers
and Feiner’s "worlds within worlds" display [2].

Display.Shape can be a very powerful tool for creating complex displays but is also
a bit complex. See Section 4.7 for more information.

TextTypes may only be mapped to Display.Text, or left unmapped. RealTypes may
also be mapped to Display.Text.

In Figure 1 (which is supplied with some hard copies of this guide, and is also
available at http://www.ssec.wisc.edu/ billh/figurel.gif), the top-left panel shows a
Data object with MathType:

((nl, nchan) -> wfn)

displayed according to the mappings:

nl -> YAxis win -> ZAxis 0.5 -> Blue
nchan -> XAxis wfn -> Green 0.5 -> Red

It is possible to map data to displays via the Reference RealTupleTypes of Co-
ordinateSystems occurring in Data objects. For example, given a Data object with
MathType:

((lon, radius) -> (vis_radiance, ir_radiance))

where (lon, radius) has a PolarCoordinateSystem with Reference (x, y), it is possible
to display this Data object using the mappings:

X -> XAxis 0.5 -> Blue vis_radiance -> Green
y -> YAxis 0.5 -> Red

This display can be seen with the command > java DisplayTest 11’ in the visad/examples
directory.

73

Note that the main method of DisplayTest provides many examples of how ScalarMaps
can be used.

Classes that implement the ScalarMapListener interface can be attached to ScalarMaps
via their addScalarMapListener method. ScalarMaps send ScalarMapEvents to at-
tached ScalarMapListeners when their range of values is changed by display autoscal-
ing. ScalarMapEvents include a reference to the ScalarMap that generated them, and
ScalarMaps are Serializable, so they can be used between different JVMs (i.e., different
computers or different Java interpreters on the same computer).

4.1.1. Common Sense and ScalarMaps

Not all mappings from RealTypes to DisplayRealTypes are legal, and legality may
depend on the MathTypes of Data objects linked to the Display. The constraints
on ScalarMaps and MathTypes used by the DefaultDisplayRendererJ3D and Default-
DataRendererJ3D classes are described in Appendix A. Most intuitive combinations
are legal. Illegal combinations result in BadMappingExceptions. Legal combinations
that are not yet implemented result in UnimplementedExceptions. These Exceptions
are displayed at the bottom of the display window.

Rather than focusing on the complex constraints described in Appendix A it is
easiest to apply common sense in defining ScalarMaps.

The RealType components of FlatField domains should be mapped to XAxis, YAxis
and ZAxis or to Latitude, Longitude and Radius (but note that Cartesian and spher-
ical spatial coordinates cannot be mixed). The RealType components of FlatField
ranges should be mapped to one of the color DisplayRealTypes (e.g., Green, RGB),
Alpha (transparency), IsoContour, one of the flow DisplayRealTypes (e.g., Flow1X,
FlowlY), Shape (although note that Shape is not implemented in the initial release of
VisAD) or to a spatial coordinate not mapped from the domain (note that multiple
RealType components from the same FlatField cannot be mapped to the same spatial
coordinates).

However, in order to produce scatter plots of FlatField range values (e.g., scatter
plots relating the different radiance channels of a satellite image) the RealType com-
ponents of the FlatField domain should generally not be mapped while the RealType
components of the range (i.e., the different radiance channel types) should be mapped
to spatial coordinates and to color DisplayRealTypes (for colored scatter plots).

When FunctionTypes are nested in the ranges of other FunctionTypes (for example,
a time sequence of images) RealType components of the outer Field domain should be
mapped to Animation, SelectValue, SelectRange, color DisplayRealTypes, and spatial
offsets (e.g., XAxisOffset). However, note that only RealType components of 1-D Field
domains may be mapped to Animation or SelectValue.

When Tuples include RealType components and FunctionType components, Dis-
playRealTypes mapped from the RealType components will affect the depiction of

74

10

20

the FunctionType components. They should be mapped to color DisplayRealTypes,
spatial offsets and SelectRange.

4.1.2. DisplayRealType and DisplayTupleType Constructors

Developers may define parameters of new kinds of displays using the DisplayRealType
and DisplayTupleType constructors. Generally new DisplayRealTypes and Display-
TupleTypes will require developers to extend DataRenderer and possible DisplayRen-
derer. However, the current Java3D and Java2D DataRenderers can handle new Dis-
playRealTypes that are components of new DisplayTupleTypes whose CoordinateSys-
tems have Reference that is either DisplaySpatialCartesianTuple or DisplayRGBTuple.
In these cases the developer is defining new display spatial coordinate systems and new
display color coordinate systems. The constructors are:

Listing 4.1: DisplayRealType and DisplayTupleType Constructors

/#x construct a DisplayRealType with given name (used only for
user interfaces), single flag (if true, this DisplayRealType
may only occur once in a path to a terminal node, as defined
in Appendix A), (low, hi) range of values, default value,

and unit =*/

public DisplayRealType (String name, boolean single, double low,
double hi, double default, Unit unit)

throws VisADException;

/#% similar to above constructor but without value range;
values of RealTypes mapped to this DisplayRealType are
not scaled x/

public DisplayRealType (String name, boolean single,
double default, Unit unit)

throws VisADException;

/*% if coord sys is mnot null then coord sys.Reference
must be another DisplayTupleType; a DisplayrealType may
not be a component of more than one DisplayTupleType */
public DisplayTupleType (DisplayRealType || types,
CoordinateSystem coord_sys)

throws VisADException;

public DisplayTupleType (DisplayRealType || types)
throws VisADException;

4.1.3. DisplayRealType Methods Useful for Extending
DataRenderer

The methods of DisplayRealType are only useful to developers who extend DataRen-
derer. They include:

(0]

10

20

10

Listing 4.2: DisplayRealType methods useful for extending DataRenderer

/#% return the unique DisplayTupleType that this
DisplayRealType is a component of, or return null
if it is not a component of any DisplayTupleType */
public DisplayTupleType getTuple () ;

/#% return index of this as component of a
DisplayTupleType */
public getTuplelIndex () ;

/#% return true if this DisplayRealType is ’single’ x/
public isSingle () ;

/#x return default value for this DisplayRealType x/
public double getDefaultValue();

/#*% return true is a range of values is defined for
this DisplayRealType, and return the range in
range [0] and range|[l]; range must be passed in

as a double[2] array =/

public boolean getRange(double || range);

4.1.4. ScalarMap and ConstantMap Constructors

The ScalarMap class and its ConstantMap subclass are serializable. ScalarMap objects
may only be local. The ScalarMap class include the following constructors:

Listing 4.3: ScalarMap and ConstantMap Constructors

public ScalarMap(ScalarType scalar, DisplayRealType display_scalar)
throws VisADException;

/#% construct a ConstantMap with a double constant;

display scalar may not be Animation, SelectValue, SelectRange

or IsoContour x/

public ContantMap(double constant, DisplayRealType display_scalar)
throws VisADException;

/#% construct a ConstantMap with a Real constant;

display scalar may not be Animation, SelectValue, SelectRange
or IsoContour x/

public ContantMap (Real constant, DisplayRealType display_scalar)
throws VisADException;

4.1.5. Generally Useful ScalarMap Methods

Generally useful ScalarMap methods include:

Listing 4.4: Generally Useful ScalarMap Methods

76

10

20

30

40

50

public ScalarType getScalar ();
public DisplayRealType getDisplayScalar () ;

/** get the Control this ScalarMap is linked to;

the Control is constructed when this ScalarMap is linked to
a Display via an invocation of the Display’s addMap method;
not all ScalarMaps have Controls, generally depending on the
ScalarMap’s DisplayRealType =/

public Control getControl();

/#*% return value is true if data (RealType) values are linearly
scaled to display (DisplayRealType) values;

if so, then values are scaled by:

display value = data_ value * scale offset [0] + scale offset[1];
(data[0], data[l]) defines range of data values (either passed
in to setRange or computed by autoscaling logic) and

(display [0], display[1]) defines range of display values;
scale offset , data, display must each be passed in as

double [2] arrays =/

public boolean getScale(double|| scale_offset, double|] data,
double [] display);

/#x explicitly set the range of data (RealType) values;

if neither this nor setRangeByUnits is invoked, then the
range will be computed from the initial values of Data
objects linked to the Display by autoscaling logic;

if the range of data values is (0.0, 1.0), for example, this
method may be invoked with low = 1.0 and hi = 0.0 to invert
the display scale x/

public void setRange (double low, double hi)

throws VisADException, RemoteException;

/#x explicitly set the range of data (RealType) values according
to Unit conversion between this ScalarMap’s RealType and
DisplayRealType (both must have Units and they must be
convertable; if neither this nor setRange is invoked, then

the range will be computed from the initial values of Data
objects linked to the Display by autoscaling logic =/

public void setRangeByUnits () throws VisADException, RemoteException;

/#*x set enable / disable flag for axis scale for this
ScalarMap; DisplayScalar must be XAxis, YAxis or ZAxis x/
public void setScaleEnable(boolean on);

/#% set color of axis scales; color must be float[3] with red,
green and blue components; DisplayScalar must be XAxis,

YAxis or ZAxis x/

public void setScaleColor (float || color)

throws VisADException;

/#*x add a ScalarMapListener */
public void addScalarMapListener (ScalarMaplListener listener);

/#** remove a ScalarMapListener x/
public void removeScalarMapListener (ScalarMapListener listener);

7

10

4.1.6. ScalarMap Methods Useful for Extending DataRenderer

Some ScalarMap methods are useful only for extending the DataRenderer class. These
include:

Listing 4.5: ScalarMap Methods Useful for Extending DataRenderer

/#x return an array of display (DisplayRealType) values by
linear scaling (if applicable) the data values array
(RealType values) x/

public float [|] scaleValues(double|[] data_values);

public float [| scaleValues(float [] data_values);

/#% return an array of data (RealType) values by inverse
linear scaling (if applicable) the display values array
(DisplayRealType values); this is useful for direct

manipulation and cursor labels x/
public float [|] inverseScaleValues (float [] display_values);

4.1.7. ConstantMap Methods

Although ConstantMap extends ScalarMap, most ScalarMap methods do not make
sense for ConstantMaps, except for getDisplayScalar. Generally useful ConstantMap
methods include:

Listing 4.6: ConstantMap Methods

public double getConstant () ;

4.1.8. ScalarMapListener Methods

ScalarMapListener is an interface that extends EventListener.

Listing 4.7: ScalarMapListener Methods

/#% send a ScalarMapEvent to this ScalarMapListener x/
public void mapChanged(ScalarMapEvent event)
throws VisADException, RemoteException;

4.1.9. ScalarMapEvent Methods

ScalarMapEvent is a class that extends Event.

10

20

30

Listing 4.8: ScalarMapEvent Methods

/*% get the ScalarMap that sent this ScalarMapEvent (or
a copy if the ScalarMap was on a different JVM) x/
public ScalarMap getScalarMap();

4.1.10. Application Example: ScalarMaps and ConstantMaps

Assume a Data object named ’images’ that is a time sequence of multi- spectral images
with MathType:

(time -> ((line, element) -> (ir_radiance, vis_radiance)))

The following code could be used to generate four different displays of the ’images’
Data object:

Listing 4.9: Application Example: ScalarMaps and ConstantMaps

// generate a traditional image display with ir radiances mapped
// to red, visible radiances mapped to green, constant blue,
// and animating over the time sequence;

// NOTE — this display can take advantage of texture mapping
// for efficiency

displayl = new DisplayImplJ3D("displayl");
displayl.addMap(new ScalarMap(time, Display.Animation));
displayl.addMap (new ScalarMap(line, Display.YAxis));
displayl.addMap (new ScalarMap(element, Display.XAxis));
displayl.addMap (new ScalarMap(ir_radiance, Display.Red));
displayl.addMap(new ScalarMap(vis_radiance, Display.Green));
displayl.addMap(new ConstantMap (0.5, Display.Blue));

// visualize the images as contour lines of visible radiance
// on a 3-D terrain surface defined by ir radiances, with the
// contours colored by visible radiances and animating over
// the time sequence

display2 = new DisplayImplJ3D("display2");

display2.addMap (new ScalarMap(time, Display.Animation));
display2.addMap (new ScalarMap(line, Display.YAxis));
display?2.addMap(new ScalarMap(element, Display.XAxis));
display2.addMap(new ScalarMap(ir_radiance, Display.ZAxis));
display2.addMap (new ScalarMap(vis_radiance, Display.IsoContour));
display2.addMap (new ScalarMap(vis_radiance, Display.RGB));

// visualize the images as 2—D scatter diagrams of ir

// radiance versus visible radiance, with points colored by
// time

display3 = new DisplayImplJ3D("display3");
display3.addMap (new ScalarMap(ir_radiance, Display.XAxis));
display3.addMap(new ScalarMap(vis_radiance, Display.YAxis));
display3.addMap (new ScalarMap(time, Display.RGB));

// generate a set of traditional image displays (i.e.,
// similar to displayl) but with the time sequence stacked

40

up in the vertical (ZAxis) rather than animated
display4 = new DisplayImplJ3D("display4");
display4.addMap (new ScalarMap(time, Display.ZAxis));
display4.addMap (new ScalarMap(line, Display.YAxis));
display4 .addMap (new ScalarMap(element, Display.XAxis));
display4.addMap (new ScalarMap(ir_radiance, Display.Red));
display4.addMap (new ScalarMap(vis_radiance, Display.Green));
display4.addMap (new ConstantMap (0.5, Display.Blue));

4.2. DataRenderers and DisplayRenderers

Data display is a two step process:

1. Data objects are transformed into graphical display lists (e.g., Java3D scene
graphs). This is done by objects of the DataRenderer and DisplayRenderer class
hierarchies.

2. Display lists are rendered.

A Display has one DisplayRenderer object: it manages the display lists produced for
all Data linked to the Display, it manages mouse events in the Display window and their
connection to Controls (e.g., rotating the 3-D scene by dragging the mouse), it renders
display axes, cursors, labels and error messages, and it adds any specialized metadata
rendering (e.g., the background wet and dry adiabats in a skew-t diagram). A Display
may have several DataRenderer objects, each linked to one or more of the Display’s
DataReference objects. Each DataRenderer transforms its set of referenced Data ob-
jects into a display list, and is responsible for the consistency of that transformation
with the Display’s ScalarMaps. Developers may ignore the issue of DataRenderers by
using the addReference method of Display rather than the addReferences method, in
which case Displays use their default DisplayRenderers (and each DataReference is
linked to a different instance of a default DataRenderer).

Developers have the option to extend the DataRenderer and DisplayRenderer classes
in order to customize Data displays. In fact, developers will need to extend the
DataRenderer and DisplayRenderer classes for most extensions of the DisplayReal-
Type and DisplayTupleType classes, because existing DataRenderer and DisplayRen-
derer classes will not know what to do with developer-defined DisplayRealType and
DisplayTupleType classes (unless they are related to existing DisplayRealType and
DisplayTupleType classes via CoordinateSystem References).

4.2.1. Java3D DataRenderer and DisplayRenderer Constructors

DataRenderer and DisplayRenderer are abstract classes whose concrete subclasses are
specific to particular graphics APIs. The visad.javadd package defines classes spe-

80

10

20

30

40

cific to the Java3D graphics API. The Java3D DataRenderer and DisplayRenderer
constructors include:

Listing 4.10: Java3D DataRenderer and DisplayRenderer Constructors

/#*x this is the default DataRenderer used by the addReference method
for DisplayImplJ3D x/
public DefaultRendererJ3D () ;

/** this DataRenderer supports direct manipulation for Real,
RealTuple and Field Data objects (Field data objects must
have RealType or RealTupleType ranges and GriddedlDSet
domain Sets); no RealType may be mapped to multiple spatial
DisplayRealTypes; the RealType of a Real object must be
mapped to XAxis, YAxis or YAxis; at least one of the
RealType components of a RealTuple object must be mapped
to XAxis, YAxis or YAxis; the domain RealType and at

least one RealType range component of a Field object

must be mapped to XAxis, YAxis or YAxis x/

public DirectManipulationRendererJ3D () ;

/#x this is the default DisplayRenderer used by the
DisplaylmplJ3D constructor ;

it draws a 3—D cube around the scene;

the left mouse button controls the projection as
follows: mouse drag rotates in 3—D, mouse drag with
Shift down zooms the scene, mouse drag with Ctrl
translates the scene sideways;

the center mouse button activates and controls the
3—D cursor as follows: mouse drag translates the
cursor sideways, mouse drag with Shift translates
the cursor in and out, mouse drag with Ctrl rotates
scene in 3—D with cursor on;

the right mouse button is used for direct
manipulation by clicking on the depiction of a Data
object and dragging or re—drawing it ;

cursor and direct manipulation locations are displayed
in RealType values;

BadMappingExceptions and UnimplementedExceptions are
displayed =/

public DefaultDisplayRendererJ3D () ;

/#x this DisplayRenderer supports 2—D only rendering;
is easiest to describe in terms of differences

from DefaultDisplayRendererJ3D: the cursor and box
around the scene are 2—D, the scene cannot be rotated ,
the cursor cannot be translated in and out, and the
scene can be translated sideways with the left mouse
button with or without pressing the Ctrl key;

no RealType may be mapped to ZAxis or Latitude x*/
public TwoDDisplayRendererJ3D () ;

81

10

20

30

4.2.2. Java2D DataRenderer and DisplayRenderer Constructors

DataRenderer and DisplayRenderer are abstract classes whose concrete subclasses are
specific to particular graphics APIs. The visad.java2d package defines classes spe-
cific to the Java2D graphics API. The Java2D DataRenderer and DisplayRenderer
constructors include:

Listing 4.11: Java2D DataRenderer and DisplayRenderer Constructors

/*% this is the default DataRenderer used by the addReference method
for DisplaylmplJ2D x/
public DefaultRendererJ2D () ;

/#x this DataRenderer supports direct manipulation for Real,
RealTuple and Field Data objects (Field data objects must
have RealType or RealTupleType ranges and Griddedl1DSet
domain Sets); no RealType may be mapped to multiple spatial
DisplayRealTypes; the RealType of a Real object must be
mapped to XAxis, YAxis or YAxis; at least one of the
RealType components of a RealTuple object must be mapped
to XAxis, YAxis or YAxis; the domain RealType and at

least one RealType range component of a Field object

must be mapped to XAxis, YAxis or YAxis x/

public DirectManipulationRendererJ2D () ;

/#x this is the default DisplayRenderer used by the
DisplayImplJ2D constructor ;

it draws a 2—D box around the scene and a 2—D cursor;
the left mouse button controls the projection as
follows: mouse drag or mouse drag with Ctrl translates
the scene sideways, mouse drag with Shift down zooms
the scene; the center mouse button activates and
controls the 2—D cursor as follows: mouse drag
translates the cursor sideways; the right mouse button
is used for direct manipulation by clicking on the
depiction of a Data object and dragging or re—drawing
it; cursor and direct manipulation locations are
displayed in RealType values; BadMappingExceptions
and UnimplementedExceptions are displayed;

no RealType may be mapped to ZAxis, Latitude

or Alpha x/

public DefaultDisplayRendererJ2D () ;

4.2.3. DataRenderer Methods

Developers who extend the DataRenderer and DisplayRenderer classes should be aware
of the following DataRenderer methods:

Listing 4.12: DataRenderer Methods

/#% this returns a Vector of Strings from the BadMappingExceptions
and UnimplementedExceptions generated during the last invocation

82

10

20

30

40

50

60

of this DataRenderer’s doAction method;

there is no need to over—ride this method, but it may be invoked
by DisplayRenderer x*/

public Vector getExceptionVector ();

/*% return an array of links to Data objects to be rendered;
Data objects are accessed by DataDisplayLink.getData () */
public DataDisplaylLink || getLinks();

/#x transform linked Data objects into a display list , if
any Data object values have changed or relevant Controls
have changed; DataRenderers that assume the default
implementation of Displaylmpl.doAction can determine
whether re—transform is needed by:

(all_feasible && (any changed || any transform control));
these flags are computed by the default DataRenderer
implementation of prepareAction;

the return boolean is true if the transform was done
successfully =/

public abstract boolean doAction ()

throws VisADException, RemoteException;

/#% set isDirectManipulation = true if this DataRenderer
supports direct manipulation for its linked Data */
public void checkDirect ()

throws VisADException, RemoteException;

/#x% clear any display list created by the most recent doAction
invocation x*/
public abstract void clearScene ();

/%% factory for constructing a subclass of ShadowType appropriate
for the graphics API, that also adapts ShadowFunctionType;

these factories are invoked by the buildShadowType methods of
the MathType subclasses , which are invoked by
DataDisplayLink . prepareData, which is invoked by

DataRenderer. prepareAction %/

public abstract ShadowType makeShadowFunctionType (

FunctionType type, DataDisplayLink link, ShadowType parent)
throws VisADException, RemoteException;

/#x factory for constructing a subclass of ShadowType appropriate
for the graphics API, that also adapts ShadowRealTupleType x*/
public abstract ShadowType makeShadowRealTupleType (

RealTupleType type, DataDisplaylLink link, ShadowType parent)
throws VisADException, RemoteException;

/*x factory for constructing a subclass of ShadowType appropriate
for the graphics API, that also adapts ShadowRealType x*/

public abstract ShadowType makeShadowRealType (

RealType type, DataDisplayLink link, ShadowType parent)

throws VisADException, RemoteException;

/** factory for constructing a subclass of ShadowType appropriate
for the graphics API, that also adapts ShadowSetType x*/

public abstract ShadowType makeShadowSetType (

SetType type, DataDisplayLink link, ShadowType parent)

throws VisADException, RemoteException;

/** factory for constructing a subclass of ShadowType appropriate
for the graphics API, that also adapts ShadowTextType */

83

70

10

20

30

public abstract ShadowType makeShadowTextType (
TextType type, DataDisplayLink link, ShadowType parent)
throws VisADException, RemoteException;

/*x factory for constructing a subclass of ShadowType appropriate
for the graphics API, that also adapts ShadowTupleType x*/

public abstract ShadowType makeShadowTupleType (

TupleType type, DataDisplayLink link, ShadowType parent)

throws VisADException, RemoteException;

/** return true if a change in control requires re—transformj;
this decision may use some values computed by

link . prepareData x/

public boolean isTransformControl(Control control,
DataDisplayLink link);

4.2.4. DisplayRenderer Methods

The setBoxOn, setBoxColor, setCursorColor and setBackgroundColor methods are of
general use. The other methods in this section are useful to developers who extend
the DataRenderer and DisplayRenderer classes.

Listing 4.13: DisplayRenderer Methods

/** set display box on or off x/
public void setBoxOn(boolean on);

/#x set color of display box x/
public void setBoxColor (float r, float g, float b);

/*% set color of display cursor x*/
public void setCursorColor (float r, float g, float b);

/*x* set color of display window background x/
public void setBackgroundColor (float r, float g, float b);

/#x return the DisplayImpl that this DisplayRenderer is attached to x/
public DisplayImpl getDisplay();

/#*% return true is this is a 2—D DisplayRenderer x/
public boolean getMode2D () ;

/** factory for constructing a subclass of Control appropriate
for the graphics API and for this DisplayRenderer;

invoked by ScalarMap when it is added to a Display x/

public abstract Control makeControl(DisplayRealType type);

/** factory for constructing the default subclass of
DataRenderer for this DisplayRenderer x*/
public abstract DataRenderer makeDefaultRenderer ();

/*% return a double[3] array giving the cursor location in

(XAxis, YAxis, ZAxis) coordinates x/
public double || getCursor();

84

40

/#x return Vector of Strings describing the cursor location */
public Vector getCursorStringVector ();

/#x set vector of Strings describing the cursor location
from the cursor location;

this is invoked when the cursor location changes or

the cursor display status changes %/

public void setCursorStringVector ();

/#x set vector of Strings describing the cursor location;
this is invoked by direct manipulation renderers x/
public void setCursorStringVector (Vector vector);

/#* return true if type is legal for this DisplayRenderer;
for example, 2—D DisplayRenderers use this to disallow

mappings to ZAxis and Latitude x/
public boolean legalDisplayScalar (DisplayRealType type);

4.2.5. DisplayRendererJ2D Method
The following method is only implemented for Java2D.

Listing 4.14: DisplayRendererJ2D Methods

/*% set clipping bounds x/
public void setClip(float xlow, float xhi, float ylow, float yhi);

4.2.6. DisplayRendererJ3D Method
The following method is only implemented for Java3D.

Listing 4.15: DisplayRendererJ3D Methods

/*% get TransformGroup to which application can add
BranchGroups to the Java3D scene graph x/
public TransformGroup getTrans();

4.3. Controls

Because VisAD has no intrinsic user interface, the Control class hierarchy takes the
place of visualization user interface components. The class hierarchy is:

Control

AnimationControl // animation stepping (interface)
AnimationSetControl // animation sampling

ColorControl // pseudo color table (for RGB, CMY, HSV, etc)
ColorAlphaControl // pseudo color-alpha table (for RGBA, etc)
ContourControl // iso-contour levels and intervals
FlowControl // flow rendering
FlowiControl // render 1st set of flow vectors
Flow2Control // render 2nd set of flow vectors

GraphicsModeControl // line width, point size, etc (interface)
ProjectionControl // 3-D rotation, scaling, translation (interface)

RangeControl // ranges of values

ShapeControl // array of shapes

ToggleControl // toggle other Controls on and off
ValueControl // individual value (interface)
TextControl // text plotting of Text values

Developers can extend the Control class to define new types of Controls for new
DisplayRealTypes (the binding from DisplayRealType to Control is defined in the
makeControl method of DisplayRenderer). Developers may also extend subclasses of
Control to define new forms of interaction for existing DisplayRealTypes.

AnimationControl, GraphicsModeControl, ProjectionControl and ValueControl are
interfaces rather than classes, which must be implemented in a graphics-API- depen-
dent way.

Instances of Control are linked to instances of ScalarMap. For some Control sub-
classes, such as ProjectionControl and GraphicsModeControl, only one instance exists
per Display. For other Control sub-classes, such as ContourControl, one instance exists
per linked ScalarMap. Note that GraphicsModeControl is not linked to any instance
of ScalarMap and every Display has a ProjectionControl even if no RealTypes are
mapped to display spatial coordinates.

State changes in Controls may trigger a re-transformation of affected Data objects
via their DataRenderers, or may not. For example, changes in a ProjectionControl will
not generally trigger re-transformation, while changes in a ContourControl will trigger
re-transformation of Data whose component RealTypes are mapped to IsoContour via
the associated ScalarMap. DisplayRenderers are responsible for building any links
from 3-D graphics APIs to Controls (e.g., so that mouse movements trigger changes
in ProjectionControl to rotate, zoom and translate the 3-D display).

Classes that implement the ControlListener interface can be attached to Controls
via their addControlListener method. Controls send ControlEvents to attached Con-
trolListeners whenever they change state. ControlEvents include a reference to the
Control that generated them, and Controls are Serializable, so that Displays on differ-
ent JVMs (i.e., different computers or different Java interpreters on the same computer)

86

can exchange ControlEvents and Controls to implement collaborative visualization.

4.3.1. Control Methods

Control is an abstract class.

Listing 4.16: Control Methods

/*x add a ControlListener x/
public void addControlListener (ControlListener listener);

/*% remove a ControlListener x/
public void removeControlListener (ControlListener listener);

4.3.2. ControlListener Methods

ControlListener is an interface that extends EventListener.

Listing 4.17: ControlListener Methods

/*% send a ControlEvent to this ControlListener x/
public void controlChanged(ControlEvent event)
throws VisADException, RemoteException;

4.3.3. ControlEvent Methods

ControlEvent is a class that extends Event.

Listing 4.18: ControlEvent Methods

/%% get the Control that sent this ControlEvent (or a copy
if the Control was on a different JVM) x/
public Control getControl();

4.3.4. AnimationControl Methods

Implementations of the AnimationControl interface are runnable in order to implement
automatic animation stepping. Generally useful methods of AnimationControl include:

Listing 4.19: AnimationControl Methods

87

/#x set the current ordinal step number */
public void setCurrent(int number)
throws VisADException, RemoteException;

/#*x set the current step by the value of the RealType
mapped to Display.Animation x*/

public void setCurrent(float value)

throws VisADException, RemoteException;

10 /%% get the current ordinal step number x/
public int getCurrent () ;

/*% true for forward, false for backward =/
public void setDirection(boolean direction)
throws VisADException, RemoteException;

/** set the dwell time for each step, in milliseconds x/
public void setStep(int ms)
throws VisADException, RemoteException;
20
/*% advance one step (forward or backward) x/
public void takeStep ()
throws VisADException, RemoteException;

/#* turn on automatic stepping if on = true, turn it
off if on = false x/

public void setOn(boolean on)

throws VisADException, RemoteException;

30 /#x return true if automatic stepping is on */
public boolean getOn () ;

/*x toggle automatic stepping between off and on x/
public void toggle ()
throws VisADException, RemoteException;

/*x get Set of RealType values for animation steps x/
public Set getSet ();

4.3.5. ColorControl Methods

Generally useful methods of ColorControl include:

Listing 4.20: ColorControl Methods

/#*x define the color lookup by a Function, whose MathType must
have a 1-D domain and a 3—-D RealTupleType range; the domain
and range Reals must vary over the range (0.0, 1.0) x/

public void setFunction(Function function)

throws VisADException, RemoteException;

/#x define the color lookup by an array of floats which must
have the form float [3][table length|; values should be in
the range (0.0, 1.0) =/

10 public void setTable(float [|[] table)

88

10

10

20

throws VisADException, RemoteException;

4.3.6. ColorAlphaControl Methods
Generally useful methods of ColorAlphaControl include:

Listing 4.21: ColorAlphaControl Methods

/#x define the color lookup by a Function, whose MathType must
have a 1-D domain and a 4-D RealTupleType range; the domain
and range Reals must vary over the range (0.0, 1.0) x*/

public void setFunction(Function function)

throws VisADException, RemoteException;

/#x define the color lookup by an array of floats which must
have the form float [4][table length|; values should be in
the range (0.0, 1.0) */

public void setTable(float [|[] table)

throws VisADException, RemoteException;

4.3.7. ContourControl Methods

Generally useful methods of ContourControl include:

Listing 4.22: ContourControl Methods

/*x set level for iso—surfaces x/
public void setSurfaceValue(float value)
throws VisADException, RemoteException;

/ #% set parameters for iso—lines: draw lines for levels
between low and hi, starting at base, spaced by

interval x*/

public void setContourInterval(float interval, float low,
float hi, float base)

throws VisADException, RemoteException;

/ #*% set array of unevenly spaced iso—line levels; if dash is
true then iso—lines for levels below base are dashed x/

public void setLevels(float || levels, float base, boolean dash)
throws VisADException, RemoteException;

/%% enable contours x/
public void enableContours(boolean on)
throws VisADException, RemoteException;

/#x enable labels x/
public void enableLabels(boolean on)
throws VisADException, RemoteException;

30

10

20

/%% get contour parameters: bvalues[0] = contour enable,

bvalues[1] = labels enable, fvalues|[0] = surface level,
fvalues [1] = interval , fvalues|[2] = low, fvalues|[3] = hi,
fvalues [4] = base; bvalues and fvalues must be passed in

as boolean [2] and float [5] %/

public void getMainContours (boolean [| bvalues, float[] fvalues)

throws VisADException;

4.3.8. FlowControl Methods

Generally useful methods of FlowControl include:

Listing 4.23: FlowControl Methods

/#x set scale length for flow vectors (default is 0.02f) x/
public void setFlowScale(float scale)
throws VisADException, RemoteException;

4.3.9. GraphicsModeControl Methods
Generally useful methods of GraphicsModeControl include:

Listing 4.24: GraphicsModeControl Methods

/*x if enable is true this will enable numerical
scales along display spatial axes; default is false x/
public setScaleEnable(boolean enable)

throws VisADException, RemoteException;

/*x set the width of line rendering; this is over—ridden by
ConstantMaps to Display.LineWidth; default is 1 %/

public void setLineWidth(float width)

throws VisADException, RemoteException;

/*% set the size for point rendering; this is over—ridden by
ConstantMaps to Display.PointSize; default is 1 %/

public void setPointSize (float size)

throws VisADException, RemoteException;

/*% if mode is true this will cause some rendering as points
rather than lines or surfaces; default is false x/

public void setPointMode (boolean mode)

throws VisADException, RemoteException;

/#x if enable is true this will enable use of texture
mapping , where appropriate; default is true x/
public void setTextureEnable(boolean enable)

throws VisADException, RemoteException;

/#*% sets a graphics—API-specific transparency mode (e.g.,

30

40

SCREEN DOOR, BLENDED); default is FASTEST x/
public void setTransparencyMode (int mode)
throws VisADException, RemoteException;

/#x sets a graphics—API-specific projection policy (e.g.,
PARALLEL PROJECTION, PERSPECTIVE PROJECTION) ;

default is PERSPECTIVE PROJECTION x/

public void setProjectionPolicy(int policy)

throws VisADException, RemoteException;

/#x if transparent is true missing data are made transparent
rather than just black; default is false x/

public void setMissingTransparent (boolean transparent)
throws VisADException, RemoteException;

/#x size of flat areas in curved texture mapping; if size
is less than 1 then curved texture maps are disabled;
default size is 10 x/

public void setCurvedSize (int size)

throws VisADException, RemoteException;

4.3.10. ProjectionControl Methods

Generally useful methods of ProjectionControl include:

Listing 4.25: ProjectionControl Methods

/#*x set the 4x4 matrix that defines the graphics
projection */

public void setMatrix (double[] matrix)

throws VisADException, RemoteException;

/*x get the 4x4 matrix that defines the graphics
projection */
public double[] getMatrix();

4.3.11. RangeControl Methods

Generally useful methods of RangeControl include:

Listing 4.26: RangeControl Methods

/%% set the range of selected values as (range[0], range[l]) x*/
public void setRange(float || range)
throws VisADException, RemoteException;

/#x return the range of selected values %/
public float [| getRange () ;

10

4.3.12. ShapeControl Methods

Generally useful methods of ShapeControl include:

Listing 4.27: ShapeControl Methods

/*x set the SimpleSet that defines the mapping from RealType
values to indices into an array of shapes;

the domain dimension of set must be 1 x/

public void setShapeSet(SimpleSet set)

throws VisADException, RemoteException;

/#*x set the shape associated with index;

the VisADGeometryArray class hierarchy defines various
kinds of shapes x/

public void setShape(int index, VisADGeometryArray shape)
throws VisADException, RemoteException;

/#*x set the array of shapes associated with indices 0
through shapes.length; the VisADGeometryArray class
hierarchy defines various kinds of shapes x/

public void setShapes(VisADGeometryArray|[] shapes)
throws VisADException, RemoteException;

4.3.13. ValueControl Methods

Generally useful methods of ValueControl include:

Listing 4.28: ValueControl Methods

/*x set the selected value x/
public void setValue(float value)
throws VisADException, RemoteException;

/*% return the selected value x/
public float getValue();

4.3.14. TextControl Methods

Generally useful methods of TextControl include:

Listing 4.29: TextControl Methods

/*% set the size of characters; the default is 1.0 x/
public void setSize(double size)
throws VisADException, RemoteException;

/*% return the size x/

10

20

public double getSize () ;

/+% set the centering flag; if true, text will be centered at
mapped locations; if false, text will be to the right

of mapped locations s/

public void setCenter (boolean center)

throws VisADException, RemoteException;

/% return the centering flag x*/
public boolean getCenter ()

/*x set the Font; in the initial release this has no effect x/
public void setFont (Font font)
throws VisADException, RemoteException;

/*% return the Font x,
public Font getFont();

4.4. Mouse Interactions and Direct Manipulation

Direct manipulation refers to user interface components embedded in the interactive 3-
D display. This includes simple interactions, like rotating the scene in 3-D by dragging
the mouse, and complex interactions like changing Data values by re-drawing their
depictions.

The DefaultDisplayRendererJ3D class supports the following mouse interactions us-
ing Java3dD:

1. The left mouse button controls the projection as follows: mouse drag rotates
in 3-D, mouse drag with Shift down zooms the scene, mouse drag with Ctrl
translates the scene sideways.

2. The center mouse button activates and controls the 3-D cursor as follows: mouse
drag translates the cursor sideways, mouse drag with Shift translates the cursor
in and out, mouse drag with Ctrl rotates scene in 3-D with cursor on.

3. The right mouse button is used for direct manipulation by clicking on the depic-
tion of a Data object and dragging or re-drawing it.

Pressing any two buttons simulates pressing the third button, in order to accomodate
two button mice.

3-D cursor and direct manipulation locations are displayed in the upper left corner
of the display window as RealType values with Units. BadMappingExceptions and
UnimplementedExceptions are displayed at the bottom of the display window. An-
imation information is displayed in the lower right corner of the display window as
RealType values with Units.

93

The TwoDDisplayRendererJ3D and DefaultDisplayRendererJ2D classes support sim-
ilar mouse interactions, with the following exceptions: the scene cannot be rotated,
the 3-D cursor cannot be translated in and out, and the scene may translated sideways
with the left mouse button without the need to press the Ctrl key.

4.4.1. Changing Data Values by Redrawing Data Depictions

VisAD includes special extensions of the DataRenderer class, currently the DirectMa-
nipulationRendererJ3D class using Java3D and the DirectManipulationRendererJ2D
class using Java2D, that allow users to modify Data objects by re-drawing their de-
pictions. The DirectManipulationRendererJ3D and DirectManipulationRendererJ2D
classes only support direct manipulation of Real, RealTuple and Field Data objects
(Field data objects must have RealType or RealTupleType ranges and Gridded1DSet
domain Sets). They also imposes the following restrictions on ScalarMaps:

1. At least one RealType in the Data object’s MathType must be mapped to a
spatial DisplayRealType.

2. No RealType may be mapped to multiple spatial DisplayRealTypes.

3. RealTypes may not be mapped to spatial DisplayRealTypes in multiple Display-
TupleTypes.

4. If the mapped spatial DisplayTupleType is not DisplaySpatialCartesianTuple,
then RealTypes must be mapped to three spatial DisplayRealTypes (two if this
is a Java2D display or a Java3D display with TwoDDisplayRendererJ3D).

5. The RealType of a Real object must be mapped to a spatial DisplayRealType.

6. At least one of the RealType components of a RealTuple object must be mapped
to a spatial DisplayRealType.

7. The domain RealType and at least one RealType range component of a Field
object must be mapped to a spatial DisplayRealType.

Data depictions are re-drawn by clicking the right mouse button while the mouse
cursor is on the Data depiction. If the user has successfully picked a Data object,
the coordinates of the selected Data point will be displayed in the upper left corner
of the Display window. As the user drags the mouse Data values will change accord-
ing to whatever degrees of freedom are possible according to the MathType and the
ScalarMaps. In particular, direct manipulation can change range values of a Field but
cannot change its domain Set.

Note that direct manipulation rendering using display spatial coordinate transforms
can only be done when the mappings of the Data object’s MathType spans the full

94

10

20

30

spatial dimensionality of the display (3-D or 2-D). This restriction avoids the ambi-
guity of finding the closest point to a line on a curved submanifold. Test number
40 of DisplayTest illustrates direct manipulation linking Cartesian and polar display
coordinates.

4.4.2. Application Example: Interactive Scaling

This is a section of code that illustrates how an application can build interactive scaling
of Display spatial axes, through combined use of Display Controls, direct manipulation,
and computation Cells (described in Section 5). This is actually implemented by test
number 27 of the DisplayTest class in the visad/examples directory.

This is only one interaction technique that can be built at an application level using
VisAD. Many more are possible.

Listing 4.30: Application Example: Interactive Scaling

// create a Display
displayl = new DisplayImplJ3D("displayl");

// map RealTypes to Display spatial axes

final ScalarMap map2lat = new ScalarMap(latitude, Display.YAxis);
displayl.addMap (map2lat);

final ScalarMap map2lon = new ScalarMap(longitude, Display.XAxis);
displayl.addMap (map2lon);

final ScalarMap map2vis = new ScalarMap(vis_radiance, Display.ZAxis);
displayl.addMap (map2vis);

// link a Data object to Display
displayl.addReference (ref_data, null);

// wait for Display auto—scaling (it would be more proper to wait
// until the getRange() invocations below return non—Missing values)
try {

Thread.sleep (2000);

catch (InterruptedException e) {

// get ranges of values mapped to Display spatial axes
double [| rangellat = map2lat.getRange();
double [| rangellon = map2lon.getRange();
double [| rangelvis = map2vis.getRange () ;

// create RealTuple Data objects that will be displayed at opposite
// corners of 3-D Display box

RealTuple direct_low = new RealTuple(new Real []

{new Real (RealType.Latitude, rangellat|[0]),

new Real(RealType.Longitude, rangellon|[0]),

new Real (vis_radiance, rangelvis[0]) });

RealTuple direct_hi new RealTuple (new Real []

{new Real (RealType.Latitude, rangellat[1l]),

new Real (RealType.Longitude, rangellon[1l]),

new Real(vis_radiance, rangelvis|[1l])});

95

40

50

60

70

80

enable spatial axis scale displays
mode = displayl.getGraphicsModeControl ();
mode . setScaleEnable (true);

color direct low and direct hi tuples yellow and make them
/ 5 pixels wide
mode . setPointSize (5.0f);
ConstantMap [|[] maps = {{new ConstantMap(1.0f, Display.Red),
new ConstantMap (1.0f, Display.Green),
new ConstantMap (0.0f, Display.Blue) }};

/ link direct low to Display with direct manipulation
final DataReferenceImpl ref_direct_low =

new DataReferenceImpl ("ref direct low'");
ref_direct_low.setData(direct_low);
displayl.addReferences (new DirectManipulationRendererJ3D (),
new DataReference || {ref_direct_low}, maps);

link direct hi to Display with direct manipulation
final DataReferencelImpl ref_direct_hi =
new DataReferenceImpl ("ref direct hi'");
ref_direct_hi.setData(direct_hi);
displayl.addReferences (new DirectManipulationRendererJ3D (),
new DataReference || {ref_direct_hi}, maps);

construct a computational Cell that re—scales Display spatial
// axes to keep direct low and direct hi at corners of 3—D box
cell = new CellImpl () {

public void doAction() throws VisADException, RemoteException {
RealTuple low = (RealTuple) ref_direct_low.getData();

RealTuple hi = (RealTuple) ref_direct_hi.getData();
map2lat.setRange (((Real) low.getComponent (0)).getValue(),
((Real) hi.getComponent (0)).getValue());

map2lon.setRange (((Real) low.getComponent (1l)).getValue (),
((Real) hi.getComponent (1)).getValue());

map2vis.setRange (((Real) low.getComponent (2)).getValue(),
((Real) hi.getComponent (2)).getValue());

0%

link cell to direct low and direct hi, so that its doAction
method fires whenever the user shanges their values via

/ direct manipulation

cell.addReference (ref_direct_low);

cell.addReference (ref_direct_hi);

Now, whenever the user tries to drag either of the yellow squares away from the
corners of the 3-D box, the cell will re-scale the Display spatial axes to keep them
at the corners of the box. This creates interactive scaling controls embedded in the
display.

96

4.5. ShadowTypes

ShadowTypes are used to compute how Data objects should be displayed, given the
MathType of the Data object and the ScalarMaps linked to the Display. ShadowTypes
form a class hierarchy that shadows the MathType hierarchy, and a tree of Shadow-
Types is constructed for each Data object to be displayed that shadows the tree of
MathTypes defined for the Data object.

Furthermore, there is one ShadowType class hierarchy in the visad package, another
in the visad.java3d package (all subclasses of ShadowType that adapt the correspond-
ing class in the visad package), and presumably there will be one for each graphics
API. In fact, ShadowTypes are constructed by factory methods in DataRenderer, so
each DataRenderer could define a ShadowType sub-class hierarchy.

The real work of transforming Data objects into displays is done by the doTrans-
form method of ShadowType. Other methods of ShadowType, such as checkIndices
and testIndices, are involved in analyzing MathTypes and ScalarMaps to determine
how Data objects should be transformed. It is all very complex but does define a work-
ing approach to managing the flexibility and extensibility of the VisAD visualization
architecture. However, developers do have the option of ignoring the entire structure
of ShadowTypes by over-riding the doAction method of Display.

4.6. The Display Class

Display is the top-level object in the VisAD visualization architecture. Each Display
object includes the following objects:

1. A window for displaying Data objects (this may be a window on a workstation
screen or in virtual reality).

2. A DisplayRenderer for managing the overall rendering process.
3. A set of ScalarMaps and their associated Controls.

4. A set of DataReference objects linked to Data objects to be displayed, along
with associated DataRenderers for transforming Data into display lists.

Display is actually an interface that extends the Action interface, which implements
the general logic for objects that are linked to sets of DataReferences and need to be
notified whenever a linked Data object changes value. Note that this may happen in
two ways:

1. The Data object is mutable and its internal value changes.

2. The DataReference linked to Action is set to reference a different Data object.

97

Classes that implement the DisplayListener interface can be attached to Displays
via their addDisplayListener method. Displays send DisplayEvents to attached Dis-
playListeners whenever certain events occur. DisplayEvents include an integer ID
identifying the type of event. Event IDs include:

DisplayEvent
DisplayEvent
DisplayEvent
DisplayEvent
DisplayEvent
DisplayEvent
DisplayEvent
DisplayEvent
DisplayEvent
DisplayEvent
DisplayEvent
DisplayEvent
DisplayEvent
DisplayEvent

.MOUSE_PRESSED (a mouse button is pressed),
.MOUSE_PRESSED_LEFT (the left mouse button was pressed),
.MOUSE_PRESSED_CENTER (the center mouse button was pressed),
.MOUSE_PRESSED_RIGHT (the right mouse button was pressed),
.TRANSFORM_DONE (end of transforming data objects into renderable scenes)
.FRAME_DONE (end of rendering a scene),

.MOUSE_RELEASED (a mouse button is released),
.MOUSE_RELEASED_LEFT (the left mouse button is released),
.MOUSE_RELEASED_CENTER (the center mouse button is released),
.MOUSE_RELEASED_RIGHT (the right mouse button is released),
.MAP_ADDED (addMap() method called),

.MAPS_CLEARED (clearMaps() method called),

.REFERENCE_ADDED (addReference() method called),
.REFERENCE_REMOVED (removeReference() method called)

DisplayEvents include a reference to the Display that generated them, which is
either a local Displaylmpl or a RemoteDisplay for Displays on different JVMs (i.e., on
different computers or on different Java interpreters on the same computer).

Note that VisAD enables applications to easily construct collaborative displays, as
described in Section 6.4. These are displays on different computers that are visually
identical and maintain that consistency in response to changes by users and application

programs.

4.6.1. Java3D Display Constructors

The Display interface is implemented by DisplayImpl, as described in Section 6. Dis-
playImpl is an abstract class whose concrete subclasses are specific to particular graph-
ics APIs. The visad.java3d package defines classes specific to the Java3D graphics API.
The Java3D Displaylmpl constructors include:

Listing 4.31: Java3D Display Constructors

/** construct a Displaylmpl for Java3D with a
DefaultDisplayRendererJ3D , in a JFC JPanel x*/
public DisplayImplJ3D(String name)

throws VisADException, RemoteException;

/*x construct

a Displaylmpl for Java3D with a

DefaultDisplayRendererJ3D , in a JFC Jpanel;

98

10

20

30

40

50

60

config can be used to create a stereo display (see

visad /examples/TestStereo.java for an example) x/

public DisplayImplJ3D(String name, GraphicsConfiguration config)
throws VisADException, RemoteException;

/*x construct a Displaylmpl for Java3D with a non—default
DisplayRenderer, in a JFC Jpanel x/

public DisplayImplJ3D(String name, DisplayRendererJ3D renderer)
throws VisADException, RemoteException;

/*x construct a Displaylmpl for Java3D with a non—default
DisplayRenderer , in a JFC Jpanel;

config can be used to create a stereo display (see

visad /examples/ TestStereo.java for an example) */

public DisplayImplJ3D(String name, DisplayRendererJ3D renderer,
GraphicsConfiguration config)

throws VisADException, RemoteException;

/#% construct a DisplayImpl for Java3D;

in a JFC JPanel if api = DisplaylmplJ3D .JPANEL and

in an AppletFrame if api = DisplaylmplJ3D .APPLETFRAME x/
public DisplayImplJ3D(String name, int api)

throws VisADException, RemoteException;

/*x construct a Displaylmpl for Java3D;

in a JFC JPanel if api == DisplaylmplJ3D .JPANEL and

in an AppletFrame if api = DisplaylmplJ3D .APPLETFRAME;
config can be used to create a stereo display (see
visad /examples/ TestStereo.java for an example) %/
public DisplayImplJ3D(String name, int api,
GraphicsConfiguration config)

throws VisADException, RemoteException;

/%% construct a Displaylmpl for Java3D with a non—default
DisplayRenderer;

in a JFC JPanel if api == DisplaylmplJ3D .JPANEL and

in an AppletFrame if api == DisplaylmplJ3D .APPLETFRAME x*/
public DisplayImplJ3D(String name, DisplayRendererJ3D renderer,
int api) throws VisADException, RemoteException;

/** construct a Displaylmpl for Java3D with a non—default
DisplayRenderer ;

in a JFC JPanel if api == DisplaylmplJ3D .JPANEL and

in an AppletFrame if api = DisplayIlmplJ3D .APPLETFRAME;

config can be used to create a stereo display (see

visad /examples/TestStereo.java for an example) */

public DisplayImplJ3D(String name, DisplayRendererJ3D renderer,
int api, GraphicsConfiguration config)

throws VisADException, RemoteException;

/*x construct a Displaylmpl for Java3D remotely collaborating with
rmtDpy, with a DefaultDisplayRendererJ3D , in a JFC JPanel %/
public DisplayImplJ3D(RemoteDisplay rmtDpy)

throws VisADException, RemoteException;

/*x construct a Displaylmpl for Java3D remotely collaborating with
rmtDpy, with a DefaultDisplayRendererJ3D , in a JFC Jpanel;

config can be used to create a stereco display (see

visad /examples/TestStereo.java for an example) x/

public DisplayImplJ3D (RemoteDisplay rmtDpy,

GraphicsConfiguration config)

99

70

80

90

100

110

throws VisADException, RemoteException;

/*x construct a Displaylmpl for Java3D remotely collaborating

rmtDpy, with a non—default DisplayRenderer, in a JFC Jpanel x/

public DisplayImplJ3D(RemoteDisplay rmtDpy,
DisplayRendererJ3D renderer)
throws VisADException, RemoteException;

/%% construct a Displaylmpl for Java3D remotely collaborating
rmtDpy, with a non—default DisplayRenderer, in a JFC Jpanel;
config can be used to create a stereo display (see

visad /examples/TestStereo.java for an example) */

public DisplayImplJ3D(RemoteDisplay rmtDpy,
DisplayRendererJ3D renderer ,

GraphicsConfiguration config)

throws VisADException, RemoteException;

/%% construct a Displaylmpl for Java3D remotely collaborating
rmtDpy, in a JFC JPanel if api == DisplaylmplJ3D .JPANEL and
in an AppletFrame if api == DisplaylmplJ3D .APPLETFRAME x/

public DisplayImplJ3D (RemoteDisplay rmtDpy, int api)
throws VisADException, RemoteException;

/*% construct a DisplayImpl for Java3D remotely collaborating
rmtDpy, in a JFC JPanel if api == DisplaylmplJ3D .JPANEL and
in an AppletFrame if api == DisplaylmplJ3D .APPLETFRAME;

config can be used to create a stereo display (see
visad /examples/ TestStereo.java for an example) */
public DisplayImplJ3D(RemoteDisplay rmtDpy, int api,
GraphicsConfiguration config)

throws VisADException, RemoteException;

/*% construct a Displaylmpl for Java3D remotely collaborating
rmtDpy, with a non—default DisplayRenderer;

in a JFC JPanel if api = DisplaylmplJ3D .JPANEL and

in an AppletFrame if api == DisplaylmplJ3D .APPLETFRAME x/
public DisplayImplJ3D(RemoteDisplay rmtDpy,
DisplayRendererJ3D renderer , int api)

throws VisADException, RemoteException;

/*x construct a Displaylmpl for Java3D remotely collaborating
rmtDpy, with a non—default DisplayRenderer;

in a JFC JPanel if api == DisplaylmplJ3D .JPANEL and

in an AppletFrame if api == DisplaylmplJ3D .APPLETFRAME;
config can be used to create a stereo display (see

visad /examples/TestStereo.java for an example) */

public DisplayImplJ3D(RemoteDisplay rmtDpy,
DisplayRendererJ3D renderer , int api,

GraphicsConfiguration config)

throws VisADException, RemoteException;

4.6.2. Java2D Display Constructors

with

with

with

with

with

with

The Display interface is implemented by Displaylmpl, as described in Section 6. Dis-
playImpl is an abstract class whose concrete subclasses are specific to particular graph-
ics APIs. The visad.java2d package defines classes specific to the Java2D graphics API.

100

10

20

30

40

The Java2D Displaylmpl constructors include:

Listing 4.32: Java2D Display Constructors

/#*% construct a DisplayIlmpl for Java2D with a
DefaultDisplayRendererJ2D , in a JFC JPanel x/
public DisplayImplJ2D (String name)

throws VisADException, RemoteException;

/#% construct a DisplayImpl for Java2D with a non—default
DisplayRenderer, in a JFC JPanel x*/

public DisplayImplJ2D(String name, DisplayRendererJ2D renderer)
throws VisADException, RemoteException;

/#*% construct a DisplayIlmpl for Java2D with a
DefaultDisplayRendererJ2D ;

in a JFC JPanel if api == DisplaylmplJ2D .JPANEL x/
public DisplayImplJ2D(String name, int api)
throws VisADException, RemoteException;

/#x construct a DisplayIlmpl for Java2D with a non—default
DisplayRenderer;

in a JFC JPanel if api == DisplaylmplJ2D .JPANEL x/

public DisplayImplJ2D(String name, DisplayRendererJ2D renderer ,
int api) throws VisADException, RemoteException;

/%% construct a Displaylmpl for Java2D for offscreen rendering,
with size geiven by width and height; getComponent() of this
returns null, but display is accesible via getIlmage() */
public DisplayImplJ2D(String name, int width, int height)
throws VisADException, RemoteException;

/#*% construct a DisplayImpl for Java2D for offscreen rendering
with a non—default isplayReenderer;

with size geiven by width and height; getComponent() of this
returns null, but display is accesible via getIlmage() x*/
public DisplayImplJ2D(String name, DisplayRendererJ2D renderer,
int width, int height)

throws VisADException, RemoteException;

/** construct a Displaylmpl for Java2D remotely collaborating with
rmtDpy, with a DefaultDisplayRendererJ2D , in a JFC JPanel x/
public DisplayImplJ2D (RemoteDisplay rmtDpy)

throws VisADException, RemoteException;

/%% construct a Displaylmpl for Java2D remotely collaborating with
rmtDpy, with a non—default DisplayRenderer, in a JFC JPanel x/
public DisplayImplJ2D (RemoteDisplay rmtDpy,

DisplayRendererJ2D renderer)
throws VisADException, RemoteException;

4.6.3. Display Methods
Generally useful Display methods include:

101

10

20

30

10

Listing 4.33: Display Methods

/#% return the name of this Display; this method is inherited from
Action x/

public String getName ()

throws VisADException, RemoteException;

/#*% link map to this Display; this method may not be invoked
after any links to DataReferences have been made x*/

public void addMap(ScalarMap map)

throws VisADException, RemoteException;

/#x clear all links to maps from this Display */
public void clearMaps ()
throws VisADException, RemoteException;

/#% link ref to this Display; this method may only be invoked
after all links to ScalarMaps have been made x/

public void addReference (DataReference ref)

throws VisADException, RemoteException;

/#x link ref to this Display; this method may only be invoked
after all links to ScalarMaps have been made;

the ConstantMap array applies only to rendering ref x/

public void addReference(DataReference ref, ConstantMap || maps)
throws VisADException, RemoteException;

/#* remove link to ref; if ref was added as part of a DataReference
array passed to addReferences, remove links to all of them x/
public void removeReference (DataReference ref)

throws VisADException, RemoteException;

/*% remove all DataReference links x/
public void removeAllReferences ()
throws VisADException, RemoteException;

4.6.4. Displaylmpl Methods

These are methods that should only be called locally (and hence are methods of Dis-
playImpl rather than Display). Note also that Displaylmpl extends ActionImpl, which
is described in Section 5.3. Generally useful Displaylmpl methods include:

Listing 4.34: DisplayImpl Methods

/#*% link refs to this Display using the non—default renderer;
this method may only be invoked after all links to ScalarMaps
have been made;

the maps|[i] array applies only to rendering refs|[i];

this is a method of Displaylmpl and RemoteDisplaylmpl rather
than Display — see Section 6.1 for more information x/
public void addReferences (DataRenderer renderer,
DataReference || refs, ConstantMap [|[] maps)

throws VisADException, RemoteException;

/#x% link refs to this Display using the non—default renderer;

102

this method may only be invoked after all links to ScalarMaps

have been made;

this is a method of Displaylmpl and RemoteDisplaylmpl rather

than Display — see Section 6.1 for more information x/

public void addReferences (DataRenderer renderer , DataReference || refs)
throws VisADException, RemoteException;

/*x link ref to this Display using the non—default renderer;
this method may only be invoked after all links to ScalarMaps
have been made;

the maps array applies only to rendering ref;

this is a method of Displaylmpl and RemoteDisplaylmpl rather

than Display — see Section 6.1 for more information x*/
public void addReferences (DataRenderer renderer,
DataReference ref, ConstantMap || maps)

throws VisADException, RemoteException;

/#x% link ref to this Display using the non—default renderer;

this method may only be invoked after all links to ScalarMaps

have been made;

this is a method of Displaylmpl and RemoteDisplaylmpl rather

than Display — see Section 6.1 for more information x*/

public void addReferences (DataRenderer renderer, DataReference ref)
throws VisADException, RemoteException;

/** return the JPanel or AppletPanel this Displaylmpl uses;
returns null for an offscreen Displaylmpl x/
public Component getComponent () ;

/** return a captured image of the display =x/
public BufferedImage getImage();

/#% return the DisplayRenderer associated with this DisplayImpl x*/
public DisplayRenderer getDisplayRenderer ();

/** return the ProjectionControl associated with this Displaylmpl x/
public ProjectionControl getProjectionControl();

/** return the GraphicsModeControl associated with this DisplayImpl =/
public GraphicsModeControl getGraphicsModeControl ()

/#*x add a DisplayListener x/
public void addDisplaylListener (DisplayListener listener);

/** remove a DisplayListener =/
public void removeDisplaylListener (DisplayListener listener);

/#*% re—apply auto—scaling of ScalarMap ranges next time
Display is triggered =x/
public void reAutoScale();

/#*x if auto is true, re—apply auto—scaling of ScalarMap ranges
every time Display is triggered =/

public void setAlwaysAutoScale(boolean auto);

/*x disable the action of this DisplayIlmpl, but respond to any
accumulated events after it is re—enabled; this method does
not return until actions have ceased in this DisplayImpl x/

public void disableAction () ;

/#*% re—enable this previously disabled Displaylmpl, and respond

103

to any accumulated events x/
public void enableAction ();

/#% create a projection matrix appropriate for this graphics API
from x, Y and Z rotation angles, from a scale factor, and from

X, Y and Z translation amounts;

these creates the matrix format used by the getMatrix and
setMatrix methods of ProjectionControl;

note DisplayImplJ3D returns an array of length 16 (4 x 4 matrix)
and DisplayImplJ2D returns an array of length 6 (2 x 3 matrix) =/
public double || make_matrix(double rotx, double roty, double rotz,
double scale, double transx,

double transy, double transz);

/#* return the product of matrices a and b, according to the matrix
format for this graphics API x/
public double || matrix_multiply(double|[] a, double[] b);

/#** wait for milliseconds; this is deprecated, use
'new visad.util.Delay(milliseconds)’ instead x/
public static void delay(int milliseconds)

throws VisADException;

4.6.5. RemoteDisplaylmpl Methods

These are methods that should only be called locally (and hence are methods of Re-
moteDisplaylmpl rather than RemoteDisplay). Generally useful RemoteDisplayImpl
methods include:

Listing 4.35: RemoteDisplayImpl Methods

/#x link refs to this Display using the non—default renderer;
this method may only be invoked after all links to ScalarMaps
have been made;

the maps|[i] array applies only to rendering refs|[i];

this is a method of Displaylmpl and RemoteDisplaylmpl rather
than Display — see Section 6.1 for more information x/
public void addReferences (DataRenderer renderer,
DataReference [| refs, ConstantMap|[]|[]| maps)

throws VisADException, RemoteException;

/#x link refs to this Display using the non—default renderer;

this method may only be invoked after all links to ScalarMaps

have been made;

this is a method of Displaylmpl and RemoteDisplaylmpl rather

than Display — see Section 6.1 for more information x/

public void addReferences(DataRenderer renderer , DataReference[]| refs)
throws VisADException, RemoteException;

/#x% link ref to this Display using the non—default renderer;
this method may only be invoked after all links to ScalarMaps
have been made;

the maps array applies only to rendering ref;

this is a method of Displaylmpl and RemoteDisplaylmpl rather

104

30

10

than Display — see Section 6.1 for more information x/
public void addReferences(DataRenderer renderer,
DataReference ref, ConstantMap || maps)

throws VisADException, RemoteException;

/#x link ref to this Display using the non—default renderer;

this method may only be invoked after all links to ScalarMaps

have been made;

this is a method of Displaylmpl and RemoteDisplaylmpl rather

than Display — see Section 6.1 for more information x/

public void addReferences (DataRenderer renderer , DataReference ref)
throws VisADException, RemoteException;

4.6.6. DisplayListener Methods

DisplayListener is an interface that extends EventListener.

Listing 4.36: DisplayListener Methods

/#x send a DisplayEvent to this DisplayListener x/
public void displayChanged(DisplayEvent event)
throws VisADException, RemoteException;

4.6.7. DisplayEvent Methods

DisplayEvent is a class that extends Event.

Listing 4.37: DisplayEvent Methods

/#% get the Displaylmpl that sent this DisplayEvent (or
a RemoteDisplay reference to it if the Display was on
a different JVM) x/

public Display getDisplay () ;

/*x get the ID type of this event; legal ID’s are
DisplayEvent .MOUSE PRESSED, DisplayEvent.MOUSE PRESSED CENTER
DisplayEvent . TRANSFORM_DONE and DisplayEvent .RENDER DONE x/
public int getId();

/*% get the window X coordinate if this is a mouse pressed event x/
public int getX();

/#x get the window Y coordinate if this is a mouse pressed event x/
public int getY();

105

4.7. Shapes

The DisplayRealType Display.Shape can be a very powerful tool for building complex
displays. When RealTypes are mapped to Display.Shape, their values are quantized
according to the Set argument to ShapeControl.setShapeSet and the resulting indices
are used to look up VisADGeometryArray shapes. These are located according to
any RealTypes mapped to spatial DisplayRealTypes, scaled according to any Real-
Type mapped to Display.ShapeScale, and for those VisADGeometryArrays that do
not include color values, colored according to any RealTypes mapped to color Dis-
playRealTypes. Multiple RealTypes may be mapped to Display.Shape, allowing the
creation of composite shapes with different sub- shapes determined by values of differ-
ent RealTypes. Also, the same RealType may be mapped to Display.Shape more than
once (Display.Shape is the only DisplayRealType for which this is possible) in order to
allow composite shapes that combine lines (e.g., VisADLineArrays) and surfaces (e.g.,
VisADTriangleArrays).

The PlotText.render label method, documented in Section 4.7.2; is useful for gen-
erating shapes from text Strings. The ShapeControl.setShapeSet method can be used
to define a quantization of real values, and shapes can be generated from numerical
strings of quantization values. The start argument to PlotText.render label method
can be used to generate different offsets for text plots of values of different RealTypes.
This could be used to generate traditional station plots from meteorological data.

If the Set argument to setShapeSet has length = 1 (i.e., just one member) then all
RealType values map to the VisADGeometryArray shape at index = 0.

For examples on how to use Shape, see examples/DisplayTest.java cases 46 and
47.

4.7.1. VisADGeometryArray Shapes

VisADGeometryArray is an abstract class that defines public variables for describing
a 3-D shape (or a 2-D shape if Z values are ignored). The variables are:

e public int vertexCount;

e public float|] coordinates;
e public float|] normals;

e public byte|| colors;

Only vertexCount and coordinates must be set, and the length of coordinates must
be 3 times vertexCount. Each group of 3 coordinates values defines the XAxis, YAxis

106

and ZAxis (ignored for Java2D displays) spatial coordinates of a vertex. Spatial co-
ordinates vary from -1.0f to +1.0f in the VisAD display "box". In general, the co-
ordinates of shapes should be centered around the origin (0.0f, 0.0f, 0.0f) and scaled
appropriately relative to the "box" dimensions. Use RealTypes mapped to spatial
DisplayRealTypes to determine absolute shape locations, and RealTypes mapped to
ShapeScale to determine relative shape sizes.

For triangles or quads in Java3D, normals must be set and have the same length as
coordinates. Normals should be normalized to length 1.0f.

If colors is set its length must be 3 times vertexCount for Red, Green and Blue color
components or 4 times vertexCount to also include Alpha (transparency, in Java3D
only). Colors values are unsigned bytes because these are used by Java3D, but NOTE
that unsigned bytes are not a supported primitive type of Java. If colors is not set,
shape colors are determined by RealTypes mapped to color DisplayRealTypes.

The subclasses of VisADGeometryArray are:

e VisADPointArray - each vertex is rendered as a point

VisADLineArray - each pair of vertices is rendered as a line

e VisADTriangleArray - each three vertices is rendered as a triangle

VisADQuadArray - each four vertices is rendered as a quadrangle

VisADLineStripArray - see description below
e VisADTriangleStripArray - see description below

e VisADIndexedTriangleStripArray - see description below

These classes all have no-argument constructors, relying on public direct access
to their variables. These classes behave like the corresponding classes (just remove
"VisAD" from the class name) in the javax.media.j3d package (i.e., Java3D). Note
that for VisADLineArray, VisADTriangleArray and VisADQuadArray vertexCount
must be a multiple of 2, 3 and 4 respectively. For VisADLineStripArray, VisADTrian-
gleStripArray and VisADIndexed TriangleStripArray sequences of vertices are rendered
as strips of lines and triangles, as described for the LineStripArray, TriangleStripArray
and IndexedTriangleStripArray classes in Java3D.

4.7.2. The PIotText.render_IabeI Method

The PlotText.render label method is useful for generating VisADLineArray shapes
from text Strings, for use with ShapeControl. It is a static method as follows:

107

Listing 4.38: The PlotText.render label Method

/#x create a VisADLineArray rendering of string, located at
start , with characters separated by base and character
vertical in the up direction (start, base and up are all
double [3] arrays); center text at start if center is true =/
public static VisADLineArray render_label(String string,
double [] start, double[] base, double[] up, boolean center);

4.8. RemoteSlaveDisplays

RemoteSlaveDisplays are used when display rendering must be done on a remote ma-
chine, possibly because the local machine lacks sufficient memory or graphics perfor-
mance to render large data objects. In this case, an application can construct a Dis-
playImpl on a server, link it into a RemoteServerImpl via a RemoteDisplaylmpl, then
retrieve the RemoteDisplay from the RemoteServer on the local client and construct
a RemoteSlaveDisplaylmpl from the RemoteDisplay. Test63.java and Test64.java in
visad.examples provide an example of how this is done.

Note that the RemoteSlaveDisplaylmpl delivers mouse events back to the Display-
Impl on the server, allowing the user to interact with the display as if it were a local
DisplayImpl.

4.8.1. RemoteSlaveDisplaylmpl Constructor

The constructor is:

Listing 4.39: RemoteSlaveDisplayImpl Constructor

public RemoteSlaveDisplayImpl (RemoteDisplay d)
throws VisADException, RemoteException;

4.8.2. RemoteSlaveDisplaylmpl Method
The generally useful method is:

Listing 4.40: RemoteSlaveDisplayImpl Method

/#*x get a component of the display that can be added to a GUI x/
public JComponent getComponent () ;

108

5. Computational Cells

Cell, like Display, is an interface that extends Action. A Cell object defines a com-
putation that is triggered whenever any of its linked Data object changes. Cells can
be used to implement spread sheet cells that are recomputed when values of other
cells change (this is the source of our use of the name Cell). Cells can also be used to
implement data flow networks. (Another possible extension of Action could be defined
for a link in a store and forward data distribution network, such as implemented by
the Unidata Program for distributing meteorological data to universities [1].)

The VisAD system does not include class hierarchies for defining computations, the
way it does for defining Data and Displays. This is because the Java programming
language defines an adequate set of structures for defining computations, including the
ability to link to functions written in other languages (e.g., C and Fortran) via the
Java Native Interface (JNI).

However, the VisAD Data classes do define methods for basic arithmetical and
mathematical operations. These include all the Java primitive operations (e.g., add,
subtract) and the operations of the java.lang.Math class (e.g., sqrt, sin, max), as
described in Section 3.2.2. They also include operations specific to Data subclasses,
such as Tuple component access and Function evaluation and resampling, as described
in Sections 3.2.5 and 3.2.7.

5.1. Cell Constructors

Cell is an interface that may apply to both local and remote Cell objects. Celllmpl
is an abstract class that only applies to local Cell objects, and RemoteCell is an
interface that only applies to remote Cell objects (see Section 6 for more information).
Developers extend Celllmpl to define new computations and may invoke the following
super constructors:

Listing 5.1: Cell Constructors

public CellImpl () ;

/** the name String can be useful for debugging =x/
public CellImpl (String name);

109

10

20

30

5.2. Cell Methods

Listing 5.2: Cell Methods

/#% return the name of this Cell; this method is inherited from
Action x/

public String getName ()

throws VisADException, RemoteException;

/#% this defines the computation performed by this Cell;
it is invoked whenever linked Data objects change x/
public abstract void doAction ()

throws VisADException, RemoteException;

/#*% link ref to this Cell %/
public void addReference (DataReference ref)
throws VisADException, RemoteException;

/#*% remove link to ref x/
public void removeReference (DataReference ref)
throws VisADException, RemoteException;

/*x remove all DataReference links x/
public void removeAllReferences ()
throws VisADException, RemoteException;

/#* set a non—triggering link to a DataReference; this is
used to give the Cell access to Data without triggering
the Cell’s doAction whenever the Data changes;

these ’'other’ DataReferences are identified by their
integer index %/

public void setOtherReference(int index, DataReference ref)
throws VisADException, RemoteException;

/#% return the non—triggering link to a DataReference
identified by index x/

public DataReference getOtherReference(int index)
throws VisADException, RemoteException;

5.3. Actionlmpl Methods

Celllmpl and DisplayImpl both extend ActionImpl, and share the following methods:

Listing 5.3: ActionImpl Methods

/#x disable the action of this Celllmpl, but respond to any
accumulated events after it is re—enabled; this method does
not return until actions have ceased in this Celllmpl x/
public void disableAction();

/#% re—enable this previously disabled Celllmpl, and respond

to any accumulated events x/
public void enableAction ();

110

10

/*% increase the current maximum limit on the number of Java
Threads used for all ActionImpls; the default maximum is 10
and num cannot be less than the current maximum x/

public void setThreadPoolMaximum(int num)

throws Exception;

111

6. Distributed Computing

VisAD uses the Java Remote Method Invocation (RMI) API for distributed computing.
RMI allows Java objects on remote machines to be accessed with the same syntax
used to access local objects. VisAD exploits this so that its low- level logic can be
applied to remote objects transparently. On the other hand, application developers can
control the distinction between local and remote objects in order to properly manage
performance and Exception handling.

In order to adapt to RMI, the Data class hierarchy is replicated four times:

1. interface Data

/ \
3. class DataImpl 2. interface RemoteData
implements Data, extends Remote, Data

Serializable |
4. class RemoteDatalImpl
extends UnicastRemoteObject
implements RemoteData
(adapts DatalImpl)

1. As interfaces (Data, Function, Field, etc.) that are implemented by both local
and remote Data classes.

2. As interfaces (RemoteData, RemoteFunction, RemoteField, etc.) that extend
those in 1 and extend java.rmi.Remote, and are only implemented by remote
Data classes. Not all Data sub-classes have Remote interfaces.

3. As local Data classes (Datalmpl, FunctionImpl, Fieldlmpl, etc.) that implement
the interfaces in 1 (but not those in 2) and implement Serializable.

4. As remote Data classes (RemoteDatalmpl, RemoteFunctionImpl, RemoteField-
Impl, etc.) that extend java.rmi.server.UnicastRemoteObject and implement
the interfaces in 2. These remote implementations are simple adapters for the
corresponding local implementations (i.e., the classes in 3), except that some
methods check that local implementations get local arguments and remote im-
plementations get remote arguments. Not all Data sub- classes have remote
implementations.

112

The low-level logic of VisAD uses the interfaces in 1 that apply to both local and
remote Data objects. Specifically, method arguments and return values are declared
with the interfaces in 1. When methods are invoked on remote objects Java can decide
at run time whether to pass arguments and return values by copy or by remote refer-
ence, depending on the whether actual argument and return value objects implement
Serializable (the classes in 3) or Remote (the interfaces in 2). This is fundamentally
important because:

Hint 3 (free decision to use remote objects) Application developers have the
freedom to use remote objects wherever they like.

This same replication of classes into four distinct hierarchies is also applied to
DataReference (i.e., DataReference, RemoteDataReference, DataReferencelmpl, Re-
moteDataReferencelmpl) and to the Action class hierarchy (which includes Display).
This allows Displays to be linked to remote DataReference objects to support remote
visualization, and allows connections between remote Displays to support collaborative
visualization. It is even possible that the components of a Tuple or the range samples
of a Field may reside on multiple remote machines - note however that application
developers should exploit such freedom carefully.

When developers need to distinguish between local and remote objects, local objects
can be accessed using the classes in 3, and remote objects can be accessed using the
interfaces in 2. Objects that are going to accessed remotely should use the constructors
of the classes in 4, but declared using the interfaces in 1 or 2.

6.1. Distributed Computing Guidelines and Cautions

The easiest way to develop distributed and collaborative applications is to copy the
patterns in the GoesCollaboration application described in Section 12.3 with com-
plete listing in Appendix B. This section discusses the general guidelines for designing
distributed and collaborative applications, and a few cautions about ways that pro-
gramming in a distributed environment differs from the non-distributed environment.

The addReference method of Display and Cell (inherited from Action) is invoked
by applications to create the network of Data, Display and computational Cell ob-
jects. When the addReference method is invoked for RemoteDisplays and Remote-
Cells, the arguments should be instances of RemoteDataReference. This is because a
local DataReferencelmpl will be passed by copy and the RemoteDisplay or RemoteCell
will be linked with the copy rather than the intended DataReference. Applications can
easily construct RemoteDataReferencelmpl objects for any local DataReferencelmpl

113

objects that they need to link to RemoteDisplays or RemoteCells. Similarly, when
the addReference method is invoked for local Displaylmpl and Celllmpl objects, the
argument should be a local DataReferencelmpl object. The general rule is:

Hint 4 (Connection hint) Connect local to local and remote to remote using ad-
dReference.

In contrast, the addReferences method of Displaylmpl and RemoteDisplaylmpl
can accept a mix RemoteDataReferencelmpl and local DataReferencelmpl arguments.
However, the addReferences method is not defined for the RemoteDisplay interface
(or for the Display interface) and hence may not be invoked remotely. It can only be
invoked locally so local DataReferencelmpl arguments are not copied. That is, the
addReferences method can be used to create links between Data and Displays that are
on different JVMs (i.e., different computers or different Java interpreters running on
the same computer), but may only be invoked on the JVM of the Display.

The rule about connecting local to local and remote to remote also applies to the
setData method of DataReference that creates links between DataReference objects
and Data objects. In particular, only local Datalmpl objects may be the argument
of the setData method of a local DataReferencelmpl object. However, both local and
remote Data objects may be argument of the setData method of a RemoteDataRef-
erence object. This is because many Data subclasses can only be local (e.g., Real,
RealTuple, Tuple, Set). Note, however, that when a local Datalmpl object is the ar-
gument of the setData method of a RemoteDataReference object, then a copy of that
argument is passed to the JVM of the RemoteDataReference object. This can lead to
the following problem if the local Datalmpl argument is mutable (i.e., a FieldImpl or
a FlatField): the application may modify the local Datalmpl object but these changes
will not be reflected in the copy that is actually linked to the RemoteDataReference
object. Developers of distributed applications should remember that:

Attention 5 (Possible divergence between redundant data copies) Local
FieldImpl and FlatField arguments to RemoteDataReference.setData are dangerous.

A Data object may have sub-objects residing on multiple JVMs. This is because
the component arguments to the Tuple constructor and the range sample arguments
to the FieldImpl constructor are declared as Data and may be either local or remote.
This should be used with care. It can result in very poor performance. Furthermore,
data modification events are not propagated from sub- objects to parent objects on
different JVMs.

114

The Data, DataReference, Display and Cell classes all support remote access. How-
ever, only the Data class and its associated metadata classes also support copying be-
tween JVMs. Thus DataReference, Display and Cell objects are fixed to the machine
where they are created (although their methods can be invoked remotely). Copying
Display objects makes no sense, since they are attached to a physical display de-
vice. Cell objects should not be copied between JVMs since they may include calls
to functions written in other programming languages which are not generally portable
between machines. Copying DataReferences is dangerous because they define data
identities in applications.

Developers should think about distributed applications as consisting of DataRef-
erence, Display, Cell and user interface objects with fixed locations, and which com-
municate by exchanging Data and ThingChangedEvents (ThingChangedEvents are
invisible to applications - they are used to notify Displays and Cells when Data values
change).

Finally we offer a few general cautions for programming with distributed objects.
First, beware of static variables that are not constant across all JVMs in any Serializ-
able class. When objects are copied to new JVMs they will encounter new values for
non-constant static variables. For example, if you want to enforce that every instance
of a class have a unique name String, you would do this with a static Vector of names.
But when instances are copied between JVMs there is no way to enforce that names
are unique.

Similarly, beware of using ==’ or ’!|=’ tests between instances of any Serializable
class. Rather, use the equals method and explicitly define the conditions for equality.
For example, an object should probably be equal to a clone of itself.

6.2. Connecting to Remote Machines

In order for applications to communicate with applications on other JVMs they need
a way to obtain remote references to objects on those JVMs. Java RMI provides ways
to:

1. Bind an object to a URL using java.rmi.Naming.rebind(String url, Object obj).

2. Obtain a remote reference to an object bound to a URL using java.rmi.Naming.lookup(String
url).

Rather than requiring applications to bind each remote object to a URL, the VisAD
system provides the RemoteServer interface and the RemoteServerImpl class for serv-
ing and accessing arrays of RemoteDataReference objects. An application can bind
one RemoteServerImpl object to a URL and then use it to serve many RemoteDataRef-
erence objects to applications on other JVMs.

115

10

The GoesCollaboration application described in Section 12.3 and listed in Appendix
B includes examples of how RemoteServerImpl and java.rmi.Naming should be used.

Note that remote implementation classes (in VisAD these have names matching
Remote*Impl) require a second compilation step to generate RMI stub and skel classes.
In JDK this second compilation step is done with the rmic compiler.

Note also that an RMI server must be running on a machine where applications
invoke the java.rmi.Naming.rebind method. In JDK this RMI server is rmiregistry.

6.2.1. RemoteServerlmpl Constructors

Construct a RemoteServerImpl to serve RemoteDataReference to remote JVMs.

Listing 6.1: RemoteServerImpl Constructors

/** construct a RemoteServerImpl and initialize it with
an array of RemoteDataReferencelmpls x*/

public RemoteServerImpl (RemoteDataReferencelmpl [| refs)
throws RemoteException;

6.2.2. RemoteServer Methods

These methods are used to remotely (or locally) access RemoteDataReference objects
from a RemoteServer.

Listing 6.2: RemoteServer Methods

/#% return the RemoteDataReference with index on this
RemoteServer, or null x/
public RemoteDataReference getDataReference(int index)
throws RemoteException;

/#% return the RemoteDataReference with name on this
RemoteServer, or null x/

public RemoteDataReference getDataReference(String name)
throws VisADException, RemoteException;

/#% return an array of all RemoteDataReferences on this
RemoteServer, or null x/

public RemoteDataReference || getDataReferences ()
throws VisADException, RemoteException;

6.2.3. RemoteServerlmpl Methods

These methods are used to set RemoteDataReference objects to be served.

116

10

20

Listing 6.3: RemoteServerImpl Methods

/#*x set one RemoteDataReference in the array on this
RemoteServer (and extend length of array if necessary) =/
public void setDataReference(int index, RemoteDataReference ref)
throws VisADException;

*% set array of all RemoteDataReferences on this RemoteServer x
Y
public void setDataReferences (RemoteDataReference || refs);

6.3. Application Example: Collaborative Direct
Manipulation

In this example users at different workstations visualize and re-draw the same three
Data objects: a Real object, a RealTuple object and a FlatField object. The server
code constructs the Data objects and their DataReferences which it links to a Dis-
play via a DirectManipulationRenderJ3D. It also constructs a RemoteServer for the
DataReferences, and binds it to a URL. The client code looks up the RemoteServer
via the URL, uses it to get the DataReferences, and links them to a Display via a
DirectManipulationRenderJ3D. These examples are based on the DisplayTest class.
Here is the server code:

Listing 6.4: Application Example: Collaborative Direct Manipulation, Server Code

// construct three Data objects ,

FunctionType field_type = new FunctionType (reala, realb);
FlatField field = FlatField.makeField(field_type, 64, false);
Real real = new Real(reala, 2.0);

Real [| reals3 = {new Real(reala, 1.0), new Real(realb, 2.0),
new Real(realc, 1.0)};

RealTuple real_tuple = new RealTuple(reals3);

// construct a Display
displayl = new DisplayImplJ3D("displayl");

// map RealTypes to Display spatial axes

displayl.addMap (new ScalarMap(reala, Display.XAxis));
displayl.addMap(new ScalarMap(realb, Display.YAxis));
displayl.addMap (new ScalarMap(realc, Display.ZAxis));

// 5 pixel size for Real and RealTuple objects
mode = displayl.getGraphicsModeControl () ;
mode . setPointSize (5.0f);

// construct DataReferences for three Data objects and link them
// to Display via DirectManipulationRendererJ3Ds

ref_real = new DataReferenceImpl ("ref real');
ref_real.setData(real);

displayl.addReferences (new DirectManipulationRendererJ3D (),

new DataReference || {ref_reall});

117

30

40

10

20

ref_real_tuple = new DataReferencelImpl("ref real tuple");
ref_real_tuple.setData(real_tuple);
displayl.addReferences (new DirectManipulationRendererJ3D (),
new DataReference|[| {ref_real_tuple});

ref_field = new DataReferenceImpl ("ref field");
ref_field.setData(field);

displayl.addReferences (new DirectManipulationRendererJ3D (),
new DataReference || {ref_field});

// create RemoteDataReferences

RemoteDataReferenceImpl [| rem_data_refs =

new RemoteDataReferencelImpl [3];

rem_data_refs [0] = new RemoteDataReferenceImpl (ref_field);
rem_data_refs[l] = new RemoteDataReferenceImpl (ref_real);
rem_data_refs [2] = new RemoteDataReferenceImpl (ref_real_tuple);

// construct a RemoteServer for the RemoteDataReferences
RemoteServerImpl obj = new RemoteServerImpl (rem_data_refs);

// and bind it to a URL
Naming.rebind (" //:/RemoteServerTest", obj);

Once the server is running, any number of clients can connect and share access to
the same set of three Data objects. Here is the client code:

Listing 6.5: Application Example: Collaborative Direct Manipulation, Client Code

// lookup RemoteServer by URL specified in domain String
RemoteServer remote_obj = (RemoteServer) Naming.lookup (domain);

// get three RemoteDataReferences from RemoteServer

RemoteDataReference field_ref — remote_obj.getDataReference (0);
RemoteDataReference real_ref = remote_obj.getDataReference (1);
RemoteDataReference real_tuple_ref — remote_obj.getDataReference (2) 5

// get RealTupleType of real tuple Data object
dtype = (RealTupleType) real_tuple_ref.getData().getType();

// construct a Display
displayl = new DisplayImplJ3D("display");

// map RealType components of real tuple to Display spatial axes
displayl.addMap (new ScalarMap ((RealType) dtype.getComponent (0),
Display.XAxis));

displayl.addMap (new ScalarMap ((RealType) dtype.getComponent (1),
Display.YAxis));

displayl.addMap (new ScalarMap ((RealType) dtype.getComponent (2),
Display.ZAxis));

// 5 pixel size for Real and RealTuple objects

mode = displayl.getGraphicsModeControl ()

mode . setPointSize (5.0f);

// construct RemoteDisplay to link to RemoteDataReferences
// (recall that we must connect remote to remote)

118

30

RemoteDisplayImpl remote_displayl = new RemoteDisplayImpl(displayl);

remote_displayl.addReferences (new DirectManipulationRendererJ3D(),
new DataReference || {real_ref});

remote_displayl.addReferences (new DirectManipulationRendererJ3D(),
new DataReference || {real_tuple_ref});

remote_displayl.addReferences (new DirectManipulationRendererJ3D(),
new DataReference || {field_ref});

6.4. Collaborative Displays

Collaborative displays refers to displays on different computers that are visually iden-
tical and maintain that consistency in response to changes by users and application
programs. There are a couple ways to construct collaborative displays in VisAD. One
is to use the DisplaylmplJ2D and DisplaylmplJ3D constructors that take a RemoteDis-
play as an argument, as described in Sections 4.6.1 and 4.6.2. These construct displays
that share all data, ScalarMaps and events with the server display referenced by the
RemoteDisplay. The SpreadSheet uses these constructors for its remote collaboration
mode, which is described in Section 10.2.4.

Another way is to construct a RemoteSlaveDisplay, as described in Section 4.8. A
RemoteDisplaylmpl simply receives 2-D images each time its server Displaylmpl up-
dates, and sends all MouseEvents back to the server Displaylmpl. RemoteSlaveDispays
are useful for clients that lack sufficient memory, computing or graphics resources to
visualize an application’s data, so must rely on a server for these resources.

119

7. File Format and Data Form
Adapters

Data form adapters take an identifier for a external data object (i.e., external to
VisAD), such as a fully qualified file name or a URL, and return a VisAD Data
object. The most common data forms are file formats, but data forms may include
any other source of data. Data form adapters provide access to data and metadata
via the VisAD Data and metadata APIs. Adapters include transparent management
of data movement between memory and their native storage medium (e.g., disks for
files), although developers may extend the CachingStrategy class to define their own
data migration policy. The initial release of VisAD only provides transparent data
management for HDF-EOS files.

A given file or other data object can generally be interpreted as many different
VisAD MathTypes. For example, data with the following MathType:

(time -> (temperature, pressure))

could also be read as:

((time -> temperature), (time -> pressure))

The first MathType is usually preferable, since it makes it clear that the temperature
and pressure Fields have the same time sampling. However, in some cases the second
MathType may be preferred, for example to combine this with other data having
the second MathType (and possibly temperatures and pressures with unequal time
samplings).

Similarly, data with the MathType:

(latitude -> (longitude -> pressure))

could also be read as:

((latitude, longitude) -> pressure)

Again, the first MathType is usually preferable, since it makes it clear that the
domain sampling Set of (latitude, longitude) can be factored into a product of latitude
samples and longitude samples. However, the second MathType may be preferable in
order to combine this data with other data whose (latitude, longitude) sampling cannot
be factored, or whose domain MathType is (row, column) with a CoordinateSystem
whose Reference is (latitude, longitude).

Thus our approach is to develop a variety of adapters for each data format, in order
to give application developers and end users a choice of how to interpret data in terms

120

10

20

of the VisAD data model. However, in the initial release of VisAD, however, there is
only a single adapter per data format.

Adapters initially exist for FITS, netCDF, HDF-EOS, GIF and Vis5D file formats.
The contacts for help with each file format are:

FITS Dave Glowacki dglo@ssec.wisc.edu
netCDF Steve Emmerson steve@unidata.ucar.edu
HDF-EOS Tom Rink rink@ssec.wisc.edu
GIF Dave Glowacki dglo@ssec.wisc.edu

VisbD Bill HIbbard hibbard@facstaff.wisc.edu

7.1. Extracting Metadata From Data Objects
Returned by Data Form Adapters

When applications explicitly construct Data objects they must also explicitly construct
their MathTypes and other metadata and so "know" the value of those metadata. In
contrast, Data objects returned by data form adapters are constructed internally by
those adapters, often using metadata from stored data objects, and application must
extract the MathTypes and other metadata of Data objects returned by adapters.
The MathType of any Data object is returned by the getType method of Data.
MathTypes have tree structures that can be recursively "parsed" with code like:

Listing 7.1: Parsing the MathType of any Data object

MathType type = data.getType();

if (type instanceof FunctionType) {
RealTupleType domain = ((FunctionType) type).getDomain;
MathType range = ((FunctionType) type).getRange();

// recursively analyze domain and range

else if (type instanceof RealTupleType) {
int dimension = ((TupleType) type).getDimension ();

RealType [| types = new RealType|[dimension|;
for (int i=0; i<dimension; i++) {
types[i] = (RealType) ((TupleType) type).getComponent (i);

// recursively analyze types

else if (type instanceof TupleType) {
int dimension = ((TupleType) type).getDimension ();
MathType [| types = new MathType|[dimension|;
for (int i=0; i<dimension; i++) {
types[i] = ((TupleType) type).getComponent (i);

// recursivley analyze types

else if (type instanceof RealType) {
// this is a leaf in the MathType "tree"

121

10

// map it to a DisplayRealType, get its default Unit, etc

else if (type insatnceof TextType) {
// this is a leaf in the MathType "tree"

}

Most applications will try to fit MathTypes into broad categories, such as "image",
"grid" or "table". Data displays are defined by ScalarMaps (described in Section
4.1) involving the RealTypes that are extracted from the MathTypes of Data to be
displayed. Applications may define general policies for constructing ScalarMaps for
each broad category of MathTypes. Section 4.1.1 describes some general guidelines for
defining ScalarMaps.

Other metadata such as Units, CoordinateSystems, Sets, ErrorEstimates and miss-
ing data indicators can be extracted from Data objects using methods such as:

Listing 7.2: Extracting other metadata from Data objects

boolean Data.isMissing()

Unit Real.getUnit ()
ErrorEstimate Real.getError ()

Unit [| RealTuple.getTupleUnits ()
CoordinateSystem RealTuple.getCoordinateSystem ()
ErrorEstimate [| RealTuple.getErrors ()

Set Field.getDomainSet ()
Unit [| Field.getDomainUnits ()
CoordinateSystem Field.getDomainCoordinateSystem ()

Unit [] FlatField.getRangeUnits ()

CoordinateSystem FlatField.getRangeCoordinateSystem()
CoordinateSystem FlatField.getRangeCoordinateSystem(int index)
ErrorEstimate [| FlatField.getRangeErrors ()

These methods are documented in the appropriate sub-sections of Section 3.2.

7.2. General Design of Data Form Adapters

Data form and file format adapters extend the abstract class Form in the visad.data
package. Just as adapters allows data stored in different formats to be accessed via
the uniform APT of the VisAD Data and metadata classes, the Form class provides a
uniform API for higher-level data access operations such as open.

Each file format may include multiple sub-classes of Form, each defining a different
policy for how data objects are adapted to the VisAD Data and metadata classes. For
example, different Form sub-classes may return Data objects with different MathTypes

122

10

for the same external data object.

The general design for data form adapters is unfinished, and will be further elab-
orated in later versions of VisAD. Furthermore, the functionality of current adapters
varies between different file formats.

7.2.1. Form Methods

Useful Form methods include:

Listing 7.3: Form Methods

/#x open a data object specified by a String id, commonly a
file name, and return a Datalmpl that adapts it to the
VisAD Data and metadata API x/

public DataImpl open(String id)

throws BadFormException, IOException, VisADExceptionj;

/#x open a data object specified by a URL, and return a Datalmpl
that adapts it to the VisAD Data and metadata API x/

public DataImpl open(URL url)

throws BadFormException, IOException, VisADExceptionj;

/** store data in an external data object specified by a
String id, commonly a file name; only over—write an
existing data object if replace is true x*/

public void save(String id, Data data, boolean replace)
throws BadFormException, IOException, VisADException,
RemoteException;

7.3. FITS Adapter

The FITS file adapter is defined in the visad.data.fits package. It includes one sub-
class of Form, FitsForm, which only implements the open(String id) method. This
can generally adapt primary images, image extensions and binary tables. It does not
initially adapt ASCII tables. The returned Data object simply omits any parts of
FITS files that FitsForm cannot adapt. We want to thank Tom McGlynn of NASA
for his help.

FitsForm has the constructor:

Listing 7.4: FITS Adapter Constructor

public FitsForm();

A FitsForm instance can open any number of FITS files.

123

7.4. netCDF Adapter

The netCDF file adapter is defined in the visad.data.netcdf and visad.data.netcdf.units
packages. It includes one sub-class of Form, Plain, which implements the open(String
id) and save(String id, Data data, boolean replace) methods. We want to thank Russ
Rew and Glenn Davis of the Unidata Program Office for their help.

Plain has the constructor:

public Plain();

A Plain instance can open and save any number of netCDF files.

Plain leaves most netCDF arrays unfactored. However, it will factor netCDF arrays
whose outermost dimension is time (recognized by units convertable with seconds, or
by the name ’time’). Thus, rather than returning a Data object with the MathType:

((time, latitude, longitude, altitude) -> temperature)

it will factor this into:

(time -> ((latitude, longitude, altitude) -> temperature))

This permits time to be mapped to Display. Animation (it could not be mapped to
Animation in the unfactored MathType because the Display could not be guaranteed
that it will be able to factor a Set of time samples for animation steps from the
unfactored MathType).

7.5. HDF-EOS Adapter

The HDF-EOS file adapter is defined in the visad.data.hdfeos and visad.data.hdfeos.hdfeosc
packages. It includes one sub-class of Form, HdfeosDefault, which only implements the
open(String id) method. This can generally adapt grid and swath data, but not point
data. Since the HDF-EOS file format definition is still changing and little data is avail-
able in HDF-EOS format, our HDF-EOQOS file adapter is still unstable, particularly in its
handling of swath metadata. Polar stereo and Lambert conformal CoordinateSystems
are defined for grid data, but grid data in other coordinate systems are not initially
geo-referenced (i.e., they are returned with row-column domains that do not define
any CoordinateSystem relative to latitude-longitude). We want to thank Mike Jones
of NASA for his help.

The HDF-EOS file adapter invokes native methods so its installation includes special
procedures for creating a shared object file.

HdfeosDefault has the constructor:

Listing 7.5: HDF-EOS Adapter Constructor

public HdfeosDefault ();

124

An HdfeosDefault instance can open any number of HDF-EOS files.

The VisAD HDF-EOS file adapter is dependent on software that must be obtained
from NASA and NCSA. Specifically, users must obtain and install HDF4.1r1 from ftp:
//ftp.ncsa.uiuc.edu/HDF/HDF_Current then obtain and install HDF-EOS http://
ulabibm.gsfc.nasa.gov/hdfeos/hdf .html#4. See the visad/data/hdfeos/README.hdfeos
file for installation instructions.

7.6. GIF / JPEG Adapter

The GIF / JPEG file adapter is defined in the visad.data.gif package. It includes one
sub-class of Form, GIFForm, which implements the open(String id) and open(URL
url) methods. These open methods always return a FlatField with MathType

((ImageElement, ImagelLine) -> (Red, Green, Blue))
GIFForm has the constructor:

Listing 7.6: GIFForm Constructor

public GIFForm();

A GIFForm instance can open any number of GIF and JPEG files.

7.7. VisbD Adapter

The Vis5D file adapter is defined in the visad.data.visbd package. It includes one
sub-class of Form, VisbDForm, which implements the open(String id) method. The
initial implementation will only open files where all fields have the same number of
vertical levels, and the returned Data objects do not include CoordinateSystems for
geo-referencing data.

VisbDForm has the constructor:

Listing 7.7: Vis5D Adapter Constructor

public Vis5DForm () ;

A Vis5DForm instance can open any number of Vis5D files.

125

ftp://ftp.ncsa.uiuc.edu/HDF/HDF_Current
ftp://ftp.ncsa.uiuc.edu/HDF/HDF_Current
http://ulabibm.gsfc.nasa.gov/hdfeos/hdf.html#4
http://ulabibm.gsfc.nasa.gov/hdfeos/hdf.html#4

7.8. McIDAS Adapter

The McIDAS file adapter is defined in the visad.data.mcidas package. It includes one
sub-class of Form, AreaForm, which implements the open(String id) and open(URL
url) methods. AreaForm is designed for McIDAS area files (i.e., image files). For
GVAR area files, the returned Data objects include CoordinateSystems that implement
GVAR navigation. The open(URL url) method uses custom URLs for McIDAS ADDE
servers.

AreaForm has the constructor:

Listing 7.8: McIDAS Adapter Constructor

public AreaForm() ;

An AreaForm instance can open any number of McIDAS area files.

7.9. VisAD Adapter (serialized Java objects)

The VisAD file adapter is defined in the visad.data.visad package. It includes one sub-
class of Form, VisADForm, which implements the open(String id), open(URL url), and
save(String id, Data data, boolean replace) methods. VisAD files are simply Datalmpl
objects turned into byte streams by Java serialization.

VisADForm has the constructor:

Listing 7.9: VisAD Adapter Constructor

public VisADForm() ;

A VisADForm instance can open any number of VisAD files.

Note that the main method of VisADForm can be used to convert any VisAD
readable file to a VisAD file. The command:

java -mx64m visad.data.visad.VisADForm in_file out_file.vad

will read in_file in any VisAD-readable format and convert it to a VisAD file in
out_file.vad (note that ".vad" is the standard file name extension for VisAD files).

Note that VisAD classes do not yet implement version IDs and that VisAD class
implementations are still changing. Thus serialized VisAD Datalmpl objects are not
appropriate for long term data storage.

126

7.10. HDF-5 Adapter

The HDF-5 file adapter is defined in the visad.data.hdf5 and visad.data.hdf5.hdf50bjects
packages. It includes one sub-class of Form, HDF5Form, which implements the open(String
id) and save(String id, Data data, boolean replace) methods.

The HDF-5 file adapter invokes native methods so its installation includes special
procedures for installing a native library file.

HDF-5 has the constructor:

Listing 7.10: HDF-5 Adapter Constructor

public HDF5Form() ;

An HDF5Form instance can open any number of HDF-5 files.
The VisAD HDF-5 fila adapter is dependent on software that must be obtained from
NCSA. See the VisAD README file for installation instructions.

127

8. User Interfaces

The primary lesson learned from the C implementation of VisAD, and from experience
with other general visualization systems, is that user interfaces should not reflect the
full generality of the underlying system. The power of VisAD comes from providing
a context in which developers can answer questions like "what is the nature of an
image?" However, end users should not be required to answer such questions in order
to manipulate and visualize their images.

Thus VisAD is designed to support a wide variety of user interfaces that present
choices in terms that are familiar to users. Our specific plans for user interface exper-
iments include:

1. A customizable data viewer applet that data providers can embed in their web
pages to provide browsers with interactive 3-D visualizations of their data. Most
decisions would be made by data providers so that end-user choices are sim-
ple (e.g., select data, animate, rotate view). This applet would allow multiple
browsers to share their choices for collaborative data visualization.

2. A spread-sheet with a Data object and Display of that Data object in each Cell
[4]. Some of these Data objects would be read from files, some would be defined
by the user via direct manipulation, and some would be computed from other
Data objects by simple formulas or by Java programs. Such spread- sheets would
be very useful, particularly with a facility for saving and editing the spread-sheet
configuration (i.e., the MathTypes of each Cell’s Data, the ScalarMaps of each
Cell’s Display, and the files, direct manipulation DataRenderers, formulas and
Java programs that define each Cell’s Data values). Multiple users may share the
same spread-sheet configuration for collaborative development of data analysis
algorithms. The application described in Section 12.3 is a simple collaborative
spreadsheet.

3. A web browser JavaBean and a drag-and-drop interface for copying data found
on the web into VisAD Data objects for input to users’ data analysis programs.
Of course, this will only work for data in formats that are adapted to VisAD
Data classes (see Section 7).

4. Experiments with interactive visualization techniques appropriate for highly spec-
tral satellite data (i.e., hundreds or thousands of spectral channels).

128

5. Implementations of existing visualization user interfaces on top of VisAD, such
as VisbD.

8.1. VisAD User Interface Classes

Extensive libraries of user interface classes are available in the java.awt.swing pack-
ages (also known as the Java Foundation Classes or JFC) and these work well with
VisAD. NCSA’s Habanero is very useful for building distributed and collaborative
user interfaces for use with VisAD. Information about Habanero is available at http:
//www.ncsa.uiuc.edu/SDG/Software/Habanero/. The visad.util package includes
classes for needed user interface components that are not included in JFC, and for
extensions of JFC classes that include connections to VisAD objects.

8.1.1. VisADSlider Constructor

The VisADSIlider class extends java.awt.swing.JPanel. It includes a JSlider, a JLabel,
a DataReference to a Real, and a Cell. If either the JSlider or Real changes value the
VisADSlider updates the other. The JLabel shows the current value.

Several VisADSliders on different JVMs may be connected to the same Remote-
DataReference to create a collaborative user interface slider.

Listing 8.1: VisADSlider Constructor

/#x JSlider values range between low and hi (with initial value
start) and are multiplied by scale to create Real values

of type referenced by ref x/

public VisADSlider (String name, int low, int hi, int start,
double scale, DataReference ref, RealType type)

throws VisADException, RemoteException;

8.1.2. LabeledRGBWidget and LabeledRGBAWidget Constructors

The LabeledRGBWidget and LabeledRGBAWidget classes extend java.awt.Panel. They
provides a way for users to interactively change pseudo-color lookup tables. These
components includes text labels and cursors to help users see the relation between
numerical values and colors. The Display attached to map is updated when the user
changes the color map. One type of constructor lets the application define the range of
values mapped to color, the other uses the range of values defined by auto-scaling (if
not range has been set yet by auto- scaling, the component listens for the appropriate
event).

129

http://www.ncsa.uiuc.edu/SDG/Software/Habanero/
http://www.ncsa.uiuc.edu/SDG/Software/Habanero/

10

20

30

40

Users control LabeledRGBWidget and LabeledRGBAWidget pseudo color tables
using the mouse. Click the left mouse button in the top part of the widget and drag
to redraw the either the red, green, blue or alpha color graph. Click the center or
right button to switch between red, green, blue and alpha graphs. Click the left mouse
button in the bottom part of the widget and drag the arrow to see which RealType
values are associated with the colors in the color bar.

Listing 8.2: LabeledRGBWidget and LabeledRGBAWidget Constructors

/#% this will be labeled with the name of map’s RealType;
the range of RealType values mapped to color is taken from
map.getRange () — this allows a color widget to be used with
a range of values defined by auto—scaling from displayed Data;
if map’s range values are not available at the time this
constructor is invoked, the LabeledRGBWidget becomes a
ScalarMapListener and sets its range when map’s range is set;
the DisplayRealType of map must be Display .RGB and should
already be added to a Display =/

public LabeledRGBWidget (ScalarMap map)

throws VisADException, RemoteException;

/** this will be labeled with the name of map’s RealType;
the range of RealType values (min, max) is mapped to color
as defined by an interactive color widget;

the DisplayRealType of map must be Display .RGB and should
already be added to a Display x/

public LabeledRGBWidget (ScalarMap map, float min, float max)
throws VisADException, RemoteException;

/#x this will be labeled with the name of map’s RealType;
the range of RealType values (min, max) is mapped to color
as defined by an interactive color widget; table initializes
the color lookup table, organized as float [TABLE SIZE][3]
with values between 0.0f and 1.0f;

the DisplayRealType of map must be Display .RGB and should
already be added to a Display x/

public LabeledRGBWidget (ScalarMap map, float min, float max,
float [|[] table)

throws VisADException, RemoteException;

/** this will be labeled with the name of map’s RealType;
the range of RealType values mapped to color is taken from
map.getRange () — this allows a color widget to be used with
a range of values defined by auto—scaling from displayed Data;
if map’s range values are not available at the time this
constructor is invoked, the LabeledRGBAWidget becomes a
ScalarMapListener and sets its range when map’s range is set;
the DisplayRealType of map must be Display .RGBA and should
already be added to a Display x/

public LabeledRGBAWidget (ScalarMap map)

throws VisADException, RemoteException;

/#% this will be labeled with the name of map’s RealType;
the range of RealType values (min, max) is mapped to color
as defined by an interactive color widget;

the DisplayRealType of map must be Display .RGBA and should
already be added to a Display =/

130

50

60

public LabeledRGBAWidget (ScalarMap map, float min, float max)
throws VisADException, RemoteException;

/#x this will be labeled with the name of map’s RealType;
the range of RealType values (min, max) is mapped to color
as defined by an interactive color widget; table initializes
the color lookup table, organized as float [TABLE SIZE|[4]
with values between 0.0f and 1.0f;

the DisplayRealType of map must be Display .RGBA and should
already be added to a Display =x/

public LabeledRGBAWidget (ScalarMap map, float min, float max,
float [|[] table)

throws VisADException, RemoteException;

8.1.3. LabeledRGBWidget and LabeledRGBAWidget Methods
Generally useful methods of LabeledRGBWidget and LabeledRGBAWidget include:

Listing 8.3: LabeledRGBWidget and LabeledRGBAWidget Methods

/#% set maximum size of widget using java.awt.Dimension x/
public setMaximumSize (Dimension d);

8.1.4. SelectRangeWidget Constructor

The SelectRangeWidget class extends java.awt.Canvas. It provides a way for users to
interactively change Display.SelectRange bounds. This component includes text labels
and cursors to help users see and control the range of selected values. The Display
attached to the ScalarMap constructor is updated when the user changes the range.
One constructor lets the application define the range of selectable range values, the
other uses the range of values defined by auto-scaling (if not range has been set yet by

auto-scaling, the component listens for the appropriate event).

Users control the SelectRangeWidget range using the mouse. Change either end of
the range by dragging with the mouse. Click in the middle of the range to move both

ends of the range in unison.

Listing 8.4: SelectRangeWidget Constructor

/#x this will be labeled with the name of map’s RealType;
the range of RealType values defining the bounds of the

selectable range is taken from map.getRange() — this allows
a SelectRangeWidget to be used with a range of values defined
by auto—scaling from displayed Data; if map’s range values

are not available at the time this constructor is invoked,
the SelectRangeWidget becomes a ScalarMapListener and sets
its range when map’s range is set;

131

10

20

10

the DisplayRealType of map must be Display.SelectRange and
should already be added to a Display x/
public SelectRangeWidget (ScalarMap map)
throws VisADException, RemoteException;

/#x this will be labeled with the name of map’s RealType;
the range of RealType values (min, max) is defines the
bounds of the selectable range;

the DisplayRealType of map must be Display.SelectRange and
should already be added to a Display x/

public SelectRangeWidget (ScalarMap map, float min, float max)
throws VisADException, RemoteException;

8.1.5. AnimationWidget Constructor

The AnimationWidget class extends JPanel. It provides a way for users to interactively
change parameters of AnimationControl. The Display attached to the ScalarMap
constructor argument is updated when the user changes animation parameters.

Listing 8.5: AnimationWidget Constructor

/#* the DisplayRealType of map must be Display.Animation and
should already be added to a Display x/

public AnimationWidget (ScalarMap map)

throws VisADException, RemoteException;

/#% the DisplayRealType of map must be Display.Animation and
should already be added to a Display; st is the dwell time
per animation step, in milliseconds =/

public AnimationWidget (ScalarMap map, int st)

throws VisADException, RemoteException;

8.1.6. ContourWidget Constructor

The ContourWidget class extends JPanel. It provides a way for users to interactively
change parameters of ContourControl. The Display attached to the ScalarMap con-
structor argument is updated when the user changes animation parameters.

Listing 8.6: ContourWidget Constructor

/#x the DisplayRealType of map must be Display.IsoContour and
should already be added to a Display x/

public ContourWidget (ScalarMap map)

throws VisADException, RemoteException;

/** the DisplayRealType of map must be Display.IsoContour and

should already be added to a Display; surf is an initial
iso—surface value x/

132

10

20

30

public ContourWidget (ScalarMap map, float surf)
throws VisADException, RemoteException;

/#% the DisplayRealType of map must be Display.IsoContour and
should already be added to a Display; initial iso—lines are
generated for values in an arithmetic progression centered at
base with in increment of interval , between min and max %/
public ContourWidget (ScalarMap map, float interval, float min,
float max, float base)

throws VisADException, RemoteException;

/** the DisplayRealType of map must be Display.IsoContour and
should already be added to a Display; initial iso—lines are
generated for values in an arithmetic progression centered at
base with in increment of interval, between min and max; surf
is an initial iso—surface value; if update is true, then the
range of legals min and max values is updated whenever the
range of data values in map is auto—scaled x/

public ContourWidget (ScalarMap map, float interval, float min,
float max, float base, float surf,

boolean update)

throws VisADException, RemoteException;

8.1.7. GMCW.idget Constructor

The GMCWidget class extends JPanel. It provides a way for users to interactively
change parameters of GraphicsModeControl. The Display attached to the Graphic-
sModeControl constructor argument is updated when the user changes parameters.

Listing 8.7: GMCWidget Constructor

/%% create a GMCWidget for control x/
public GMCWidget (GraphicsModeControl control);

133

9. Simplified Classes for Using
VisAD

There is no doubt that VisAD is powerful, but that power implies a breadth of choices
which can be confusing to developers. This section is about some classes and methods
that are intended to make VisAD easier to use.

The simplest way to use VisAD is through its Spread Sheet, which is described in
Section 10 and provides a way to use VisAD without any user programming at all. It
enables users to read a variety of file formats, display their contents, change the way
they are displayed, and perform simple arithmetic operations on them (e.g., subtract
two images and display the result).

The visad.util. DataUtility class provides the simplest level of support for users who
need to write their own programs. For example, if you have a program that com-
putes some image pixel brightnesses and want to display them, you can use the static
makelmage and makeSimpleDisplay methods of DataUtility to do that in just a couple
lines of code. Given an array of pixel brightnesses float pixels[nlines] [nelements]
the following code creates a VisAD image and displays it:

Listing 9.1: Creating in image from array of pixel brightnesses

FlatField image = DataUtility.makeImage (pixels);
DisplayImpl display = DataUtility.makeSimpleDisplay (image);

JFrame jframe = new JFrame("simple image display");
jframe.setContentPane (((JPanel) display.getComponent ());
jframe.pack () ;

jframe.setVisible (true);

Only the first two lines of code have to do with VisAD: the first creates the data
object (with class FlatField) and the second displays it. The other four lines of code
set up a minimal Java frame for the display. The makeSimpleDisplay method of
DataUtility can create a simple display for almost any VisAD data object. We will
add more methods to DataUtility similar to makelmage, to construct other simple
kinds of data objects, like 2-D and 3-D grids, and tables.

The visad.MathType class provides some useful methods for users who need to
explicitly construct and manipulate MathTypes for more complex data objects. Its
stringToType method enables users to construct complex MathTypes from the short-

134

hand notation described in Section 3.1. Recall that the shorthand MathType for
multi-spectral satellite image of Earth is:

((latitude, longitude)
-> (radiance_channel_1, ..., radiance_channel_N))

The shorthand MathType for the output of a weather model is:

(time -> ((latitude, longitude, altitude)
-> (temperature, pressure, dewpoint, wind_u, wind_v, wind_w)))

And the shorthand MathType for a set of map boundaries is:
set ((latitude, longitude))

The static stringToType method of MathType takes a String argument, which is
assumed to be in this shorthand notation, and returns the corresponding MathType
(of course, MathTypes returned by stringToType do not include any non-null default
Units, CoordinateSystems or Sets). The prettyString method of MathType returns a
String with this shorthand notation for any VisAD MathType.

The guessMaps method of MathType returns an array of ScalarMaps appropriate
for displaying data objects with this MathType. The guessMaps method has one
argument, a boolean threeD, which is true if a 3-D display is OK.

135

10. The VisAD Spread Sheet

The visad.ss package is a "generic" spreadsheet user interface for VisAD. It is intended
to be powerful and flexible, and it can be used to visualize many types of data, without
any programming. It supports many features of a traditional spreadsheet, such as
formulas. The package also provides a class structure such that developers can easily
create their own user interfaces using Spread Sheet cells from the visad.ss package.
For up-to-date information about the VisAD Spread Sheet, see the VisAD Spread
Sheet web page at http://www.ssec.wisc.edu/ curtis/ss.html (this is linked to
the main VisAD web page at http://www.ssec.wisc.edu/"billh/visad.html).

10.1. Spread Sheet Classes

The VisAD Spread Sheet consists a number of classes, plus the following gif files as
user interface icons: cancel.gif, copy.gif, cut.gif, display.gif, import.gif, mappings.gif,
ok.gif, open.gif, paste.gif, save.gif, show.gif. The Spread Sheet classes are:

BasicSSCell This class can be instantiated and added to a JFC user interface. It
represents a single spreadsheet cell with some basic capabilities. It is designed
to be "quiet" (i.e., it throws exceptions rather than displaying errors in error
message dialog boxes).

FancySSCell This class is an extension of BasicSSCell that can be instantiated and
added to a JFC user interface to provide all of the capabilities of a BasicSSCell,
plus some additional, "fancy" capabilities. It is designed to be "loud" (i.e., it
displays errors in error message dialog boxes rather than throwing exceptions).

Formula This class converts formulas to postfix notation for evaluation on a stack. It
is used by FormulaCell.

FormulaCell This class is used internally by BasicSSCell to evaluate formulas.

MappingDialog This class is a dialog box allowing the user to specify ScalarMaps for
the current data set.

SpreaSheet This is the main Spread Sheet user interface class. It manages multiple
FancySSCells.

136

http://www.ssec.wisc.edu/~curtis/ss.html
http://www.ssec.wisc.edu/~billh/visad.html

SSLayout This is the layout manager for the spreadsheet cells and their labels.

10.2. Features of the SpreadSheet User Interface

10.2.1. Basic Commands

The spreadsheet cell with the yellow border is the current, highlighted cell. Any
operation you perform (such as importing a data set), will affect the highlighted cell.
To change which cell is highlighted, click inside the desired cell with a mouse button,
or press the arrow keys. You can also resize the spreadsheet cells, to allow some cells
to be larger than others, by dragging the yellow block between cell labels.

10.2.2. Menu Commands
File Menu

Here are the commands from the File menu:

Import data Brings up a dialog box that allows the user to select a file for the Spread
Sheet to import to the current cell. Currently, VisAD supports the following
file types: GIF, JPEG, netCDF, HDF-EOS, HDF-5, FITS, Vis5D, and serialized
data.

Hint 6 (Need of compiled Adapters) You must have the HDF-EOS and
HDF-5 file adapter native C code compiled in order to import data sets of those
types. See the VisAD README file for information on how to compile this
native code.

Export data to netCDF Exports the current cell to a file in netCDF format. A dialog
box will appear to let you select the name and location of the netCDF file. If
the file exists, it will be overwritten.

Export data to HDF-5 Exports the current cell to a file in HDF-5 format. A dialog
box will appear to let you select the name and location of the HDF-5 file. If the
file exists, it will be overwritten.

Export serialized data Exports the current cell to a file in serialized data format (the
"VisAD"form). A dialog box will appear to let you select the name and location
of the serialized data file. If the file exists, it will be overwritten.

137

Attention 7 (Old serialized files become obsolete) Ezporting a cell as
serialized data is a handy and portable way to store data, but each time the
VisAD Data class hierarchy changes, old serialized data files become obsolete
and will no longer load properly. For long term storage of your data, use the
Export data to netCDF or Export data to HDF-5 command.

Exit Quits the VisAD SpreadSheet User Interface.

Edit Menu

Here are the commands from the Edit menu:

Cut Moves the current cell to the clipboard.

Copy Copies the current cell to the clipboard.

Paste Copies the cell in the clipboard to the current cell.

Clear Clears the current cell.

Setup Menu
Here are the commands from the Setup menu:
New Clears all spreadsheet cells; starts from scratch.

Open Opens a "spreadsheet file." Spreadsheet files are small, containing only the
instructions needed to recreate a spreadsheet. They do not contain any actual
data, but rather the file names and formulas of the cells.

Save Saves a "spreadsheet file" under the current name.

Save as Saves a "spreadsheet file" under a new name.

Display Menu

Here are the commands from the Display menu:

Edit Mappings Brings up a dialog box which lets you change how the Data object
is mapped to the Display. Click a RealType object on the left (or from the

MathType display at the top), then click a display icon from the display panel
in the center of the dialog. The "Current Mappings" box on the lower right will

138

change to reflect which mappings you’ve currently set up. When you’ve set up
all the mappings to your liking, click the Done button and the Spread Sheet will
try to display the data object. To close the dialog box without applying any of
the changes you made to the mappings, click the Cancel button. You can also
highlight items from the "Current Mappings" box, then click "Clear selected" to
remove those mappings from the list, or click "Clear all" to clear all mappings
from the list and start from scratch.

3-D (Java3D) Sets the current cell’s display dimension to 3-D. This setting requires
Java3D. If you do not have Java3D installed, this option will be grayed out.

2-D (Java2D) Sets the current cell’s display dimension to 2-D. This uses Java2D,
which is included with the Java 1.2. However, in this mode, nothing can be
mapped to ZAxis, Latitude, or Alpha. For computers without 3-D acceleration,
this mode will provide better performance, but the display quality will not be
as good as 2-D (Java3D). If you do not have Java3D installed, this is the only
available mode.

2-D (Java3D) Sets the current cell’s display dimension to 2-D. This requires Java3D.
In this mode, nothing can be mapped to ZAxis or Latitude (but things can be
mapped to Alpha). On computers with 3-D acceleration, this mode will probably
provide better performance than 2-D (Java2D). It also has better display quality
than 2- D (Java2D). If you do not have Java3D installed, this option will be
grayed out.

Options Menu

Here are the commands from the Options menu:

Auto-switch to 3-D If this option is checked, cells will automatically switch to 3-D
display mode when mappings are used that require 3-D display mode. In addi-
tion, it will switch to mode 2-D (Java3D) from mode 2-D (Java2D) if anything
is mapped to Alpha or RGBA. If you do not have Java3D installed, this option
is grayed out. Otherwise, this option is checked by default.

Auto-detect mappings If this option is checked, the Spread Sheet will attempt to
detect a good set of mappings for a newly loaded data set and automatically
apply them. This option is checked by default.

Show formula evaluation errors If this option is checked, dialog boxes will pop up
explaining why any formulas entered are illegal or could not be evaluated. If this
option is not checked, the only notification of an error is a large X through the
current cell.

139

Show VisAD controls Displays the set of controls relevant to the current cell (these
controls are displayed by default, but could become hidden at a later time). This
option is not a checkbox, but rather just redisplays the VisAD Controls for the
current cell if they have been closed by the user.

10.2.3. Toolbars
Main Toolbar

The main toolbar provides shortcuts to the following menu items: File Import, Edit
Cut, Edit Copy, Edit Paste, Display Edit Mappings, and Options Show VisAD Con-
trols. The main toolbar has tool tips so each button can be easily identified.

Formula Toolbar

Description The formula toolbar is used for entering file names, URLs, and formulas
for the current cell. If you enter the name of a file in the formula text box, the Spread
Sheet will attempt to import the data from that file. If you enter a URL, the Spread
Sheet will try to download and import the data from that URL. If you enter a formula,
it will attempt to parse and evaluate that formula. If a formula entered is invalid for
some reason, the answer cannot be computed, or the file entered does not exist, the
cell will have a large X through it instead of the normal data box. If the data box
appears, the cell was computed successfully and mappings can be set up.

How To Enter Formulas To reference cells, keep in mind that each column is a letter
(the first column is "A’; the second is 'B’, and so on), and each row is a number (the
first row is ’1’, the second is ’2’; and so on). So, the cell on the top-left is A1, the cell
on Al’s right is B1, and the cell directly below Al is A2, etc.

Any of the following can be used in formula construction:

1. Formulas can use any of the basic operators: + (add), - (subtract), * (multiply),
/ (divide),

2. Formulas can use any of the following binary functions: MAX, MIN, ATAN2,
ATAN2DEGREES

3. Formulas can use any of the following unary functions: ABS, ACOS, ACOSDE-
GREES, ASIN, ASINDEGREES, ATAN, ATANDEGREES, CEIL, COS, COS-
DEGREES, EXP, FLOOR, LOG, RINT, ROUND, SIN, SINDEGREES, SQRT,
TAN, TANDEGREES, NEGATE

4. Unary minus syntax (e.g., B2 * -A1l) is supported.

140

5. Derivatives are supported with the syntax d(DATA)/d(TYPE) where DATA is
a Function, and TYPE is the name of a RealType present in the Function’s

domain. This syntax calls Function’s derivative() method with an error type of
Data.NO_ERRORS.

6. Function evaluation is supported with the syntax DATA1(DATA2) where DATA1
is a Function and DATAZ2 is a Real or a RealTuple. This syntax calls Function’s
evaluate() method.

7. You can obtain an individual sample from a Field with the syntax DATA(N) where
DATA is the Field, and N is a literal integer. Use DATA(0) for the first sample
of DATA. This syntax calls Field’s getSample () method.

8. You can obtain one component of a Tuple with the syntax DATA.N where DATA
is a Tuple and N is a literal integer. Use DATA.O for the first Tuple component
of DATA. This syntax calls Tuple’s getComponent() method.

9. You can extract part of a field with the syntax EXTRACT (DATA, N) where DATA
is a Field and N is a literal integer. This syntax calls Field’s extract() method.
10. Formulas are not case sensitive.

Some examples of valid formulas for cell Al are

SQRT (A2 + B2~5 - MIN(B1, -C1))
d(A2 + B2)/d(ImageElement)
A2(A3)

C2.6

(B1 * C1)(A3).1

Once you've typed in a formula, press Enter or click the green check box button to
the left of the formula entry text box to apply the formula. The red X button will
cancel your entry, restoring the formula to its previous state. The open folder button
to the right of the formula entry text box is a shortcut to the File menu’s Import Data
menu item.

Linking to External Java Code You can link to an external Java method with the

syntax link (package.Class.Method (DATA1, DATA2, ..., DATAn)) where package.Class.Method
is the fully qualified method name and DATA1 through DATAn are each Data objects

or RealType objects. Keep the following points in mind when writing an external Java

method that you wish to link to the SpreadSheet:

1. The signature of the linked method must be public and static and must return a
Data object. In addition, the class to which the method belongs must be public.
The method must have only Data and RealType parameters (if any).

141

2. The method can contain one array argument (Data[] or RealTypel]). In this way,
a linked method can support a variable number of arguments. For example, a
method with the signature

public static Data max(Datal[] d)

that is part of a class called Util could be linked into a SpreadSheet cell with
any number of arguments; e.g.,

1link (Util.max (A1, A2))
1link (Util.max (A2, C3, B1, A1))

would both be correct references to the max method.

Examples of Valid Formulas Here are some examples of valid formulas for cell Al:

sqrt (A2 + B2~5 - min(B1, -C1))

d(A2 + B2)/d(ImageElement)

A2(A3)

C2.6[0]

(B1 * C1) (A3).1

C2 - bxlink(com.happyjava.vis.Linked.crunch(A6, C3, B5))
link(visad.Tuple.makeTuple (A2, A3, A4))

10.2.4. Remote Collaboration

Creating a SpreadSheet RMI server
The first step in collaboration is to create a SpreadSheet RMI server. To launch the
SpreadSheet in collaborative mode, type:

java -mx64m visad.ss.SpreadSheet -server name

where "name" is the desired name for the RMI server. If the server is created
successfully, the title bar will contain the server name in parentheses.

Once your SpreadSheet is operating as an RMI server, other SpreadSheets can work
with it collaboratively.

142

Sharing individual SpreadSheet cells

Any VisAD SpreadSheet has the capability to import data objects from an RMI server.
Simply type the RMI address into the SpreadSheet’s formula bar. The format of the
RMI address is rmi://rmi.address/name/data where "rmi.address" is the IP address
of the RMI server, "name" is the name of the RMI server, and "data" is the name of
the data object desired.

For example, suppose that the machine at address www.ssec.wisc.edu is running
an RMI server called "VisADServ" using a SpreadSheet with two cells, A1 and BI1.
A SpreadSheet on another machine could import data from cell B1 of VisADServ
by typing the following RMI address in the formula bar rmi://wuw.ssec.wisc.edu/
VisADServ/B1. Just like file names, URLs, and formulas, the SpreadSheet will load
the data, showing the data box if the import is successful, or displaying error messages
within the cell if there is a problem.

Cloning entire SpreadSheets

The VisAD SpreadSheet also allows for a more powerful form of collaboration: the
cloning of entire SpreadSheets from a SpreadSheet RMI server. To clone a SpreadSheet
RMI server, type:

java -mx64m visad.ss.SpreadSheet -client rmi.address/name

Where "rmi.address" is the IP address of the RMI server and "name" is the RMI
server’s name. The resulting SpreadSheet will have the same cell layout as the Spread-
Sheet RMI server and the same data with the same mappings. In addition, it will be
linked so that any changes to the SpreadSheet will be propagated to the server and all
its clones.

Note that if a SpreadSheet RMI server does not support Java3D, none of its clones
will be able to either. Thus, for maximum functionality, it is best to make sure that
the machine chosen to be the RMI server supports Java3D.

10.3. Future Plans

Here’s what’s coming in the future for the VisAD Spread Sheet:
e Spreadsheet column and row addition and deletion
e Multiple data per cell
e Direct manipulation support

e Distributed Cells, Data, etc.

143

rmi://rmi.address/name/data
rmi://www.ssec.wisc.edu/VisADServ/B1
rmi://www.ssec.wisc.edu/VisADServ/B1

Remote Spread Sheet cloning with collaboration

Formula enhancements, including composition of multiple Data objects (such as
creating an animation from multiple spreadsheet cells), and dynamic linkage of
Java code into formulas

Misc. user interface enhancements

And of course, bug fixes

144

11. Extending the VisAD Java Class
Library

Object-oriented programming languages like Java allow classes to be extended, and we
have tried to capitalize on this in the design of VisAD. We have specifically designed
classes to be extensible to allow users to add needed functionality. For example:

1. The Set class may be extended to define new Field sampling topologies or new
algorithms for interpolating between samples.

2. The CoordinateSystem class may be extended to define new coordinate trans-
formation algorithms.

3. The Function class may be extended to define non-sampled approximations to
functions, such as harmonic series.

4. The FlatField class may be extended to define specialized classes for images,
grids, tables, etc.

5. The Real class may be extended to define high-precision, multi-word approxima-
tions to real numbers.

6. The Data class and its subclasses may be extended to import new file formats
(or other data sources) as VisAD Data objects.

7. The DataRenderer, DisplayRenderer, DisplayRealType, Control and Shadow-
Type classes may be extended to define new basic rendering techniques including
new direct manipulation techniques.

8. The DataRenderer, DisplayRenderer, Control and ShadowType classes may be
extended to provide visualization support based on graphics APIs other than
Java3D and Java2D.

9. The Cell class may be extended to define new computational algorithms.

10. JavaBean components can be defined that encapsulate the Data, Display, Cell
and user interface (e.g., VisADSlider) classes to provide a visual programming
metaphor for building VisAD applications. We plan to develop such JavaBean
components for VisAD, and encourage others to do so.

145

The ways that classes can be extended are described in more detail in the sections
that document specific class constructors and methods. We recommend that extensions
be put into separate packages. We will be very happy to provide links from the VisAD
web page to web pages describing and serving VisAD extension packages. Please send
an email message to Bill Hibbard at hibbard@facstaff.wisc.edu if you develop a VisAD
extension package.

146

mailto:hibbard@facstaff.wisc.edu

10

12. Application Examples

The easiest way to develop new VisAD applications is by following the pattern of
existing applications. Thus we provide the following source code examples for typical
visualization, analysis and collaboration operations.

12.1. The DisplayTest Class

The DisplayTest and associated TestNN classes in the visad/examples directory (note
these classes do not include a package statement) implement many small tests of
the VisAD system’s visualization and interaction techniques. They are an excellent
source of VisAD coding examples. To see a list of tests, change to the visad /examples
directory and enter the command java DisplayTest.

12.2. Visualizing the HSV Color CoordinateSystem

The HSVDisplay application in the visad/examples directory provides interactive ex-
ploration of the relation between the HSV and RGB color spaces. Here is a section of
code from HSVDisplay that illustrates how CoordinateSystems can be used implicitly
in Display ScalarMaps:

Listing 12.1: Visualizing the HSV Color CoordinateSystem Example

// define an rgb color space

// (not to be confused with system’s RGB DisplayTupleType)
RealType red = new RealType('"red", null, null);

RealType green — new RealType('"green", null, null);
RealType blue = new RealType("blue", null, null);
RealTupleType rgb = new RealTupleType(red, green, blue);

// define an hsv color space

// (not to be confused with system’s HSV DisplayTupleType)
RealType hue = new RealType("hue", CommonUnit.degree, null);
RealType saturation = new RealType("saturation", null, null);
RealType value = new RealType('"value", null, null);

// define the relation between the hsv and rgb color spaces
// using the same HSVCoordinateSystem that the system uses to
// define the relation between its RGB and HSV color spaces
CoordinateSystem hsv_system = new HSVCoordinateSystem(rgb);

147

20

30

40

50

60

70

RealTupleType hsv = new RealTupleType (hue, saturation, value
hsv_system, null);

)

// construct a sampling of the hsv color space;

// since hue is composed of six linear (in rgb) pieces with

// discontinuous derivative bwteen pieces, it should be sampled
at 6xn+1 points with n not too small;

for a given hue, saturation and value are both linear in rgb
// so 2 samples suffice for each of them;

// the HSV — RGB transform is degenerate at satruration = 0.0
// and value = 0.0 so avoid those values;

// hue is in Units of degrees so that must be used in the Set
// constructor

Linear3DSet cube_set —

new Linear3DSet (hsv, 0.0, 360.0, 37,

0.01, 1.0, 2,

0.01, 1.0, 2, null,

new Unit || {CommonUnit.degree, null, null},
null) ;

// construct a DataReference to cube set so it can be displayed
DataReference cube_ref = new DataReferencelImpl ("cube');
cube_ref .setData(cube);

// skip some code to set up Ul

// construct a Display
DisplayImplJ3D displayl = new DisplayImplJ3D("displayl");

// map rgb to the Display spatial coordinates;

// note that red, green and blue do not occur in cube set
'/ but are related to hue, saturation and reference via a
CoordinateSystem that will be applied implicitly by
// Display logic

displayl.addMap(new ScalarMap(red, Display.XAxis));
displayl.addMap(new ScalarMap (green, Display.YAxis));
displayl.addMap (new ScalarMap(blue, Display.ZAxis));

// define colors for points in hsv space

displayl.addMap (new ScalarMap (hue, Display.Hue));
displayl.addMap (new ScalarMap(saturation, Display.Saturation));
displayl.addMap (new ScalarMap(value, Display.Value));

construct mappings for interactive iso—surfaces of

hue, saturation and value;

the ContourControls must be extracted from these ScalarMaps
// to support interactive control of iso—surface levels
ScalarMap maphcontour = new ScalarMap(hue, Display.IsoContour);
displayl.addMap (maphcontour);

ContourControl controlhcontour —

(ContourControl) maphcontour.getControl () ;

ScalarMap mapscontour = new ScalarMap (saturation, Display.IsoContour);

displayl.addMap (mapscontour);
ContourControl controlscontour =
(ContourControl) mapscontour.getControl () ;

ScalarMap mapvcontour = new ScalarMap(value, Display.IsoContour);

displayl.addMap (mapvcontour);
ContourControl controlvcontour =
(ContourControl) mapvcontour.getControl () ;

148

80

display cube_ set;

it will be dispayed as a set of colored, interactive hue,
/ saturation and value iso—surfaces, transformed into rgb space
displayl.addReference (cube_ref);

The HSVCoordinateSystem class is used internally by the system for Displays that
include ScalarMaps to Display.Hue, Display.Saturation, Display.Value or Display. HSV.
Internally, it always has Reference Display.DisplayRGBTuple. However, the HSVDis-
play application constructs a HSVCoordinateSystem whose Reference it maps to Dis-
play spatial axes in order to spatially visualize the geometry of the relation between
HSV and RGB color spaces.

12.3. Collaborative GOES Satellite Sounding Analysis

The GoesCollaboration application is an interactive and collaborative spread sheet
for experimenting with algorithms for analyzing multi-spectral GOES satellite data,
adapted from an application written by Paolo Antonelli and Bob Aune under VisAD
version 1.1 (the C implementation). Figure 1 (which is supplied with some hard
copies of this guide, and is also available at http://www.ssec.wisc.edu/"billh/
figurel.gif) is a screen shot of this application, showing its four Displays and four
slider widgets (there are five Cells linking the Displays and sliders computationally).
The lower-left Display shows vertical atmospheric profiles of pressure, temperature,
water vapor and ozone. When users re-draw these profiles (this is an example of direct
manipulation), the underlying data objects change, which triggers Cells to re- compute
the data objects shown in the other Displays. The four slider widgets on the left can
also be used to change simple Real data values, which trigger other Cells to re-compute
more complex data values.

The GoesCollaboration application is part of the visad.paoloa package. Its source
code, data files and installation instructions are available from the VisAD web page
at http://www.ssec.wisc.edu/"billh/visad.html. Once the GoesCollaboration
application is running on one machine, it may be started on other machines and
connected to the first. This is specified by typing the IP name of the first machine as
the command line argument of GoesCollaboration on other machines. For example,
we could start the first (server) copy of GoesCollaboration on sparc.ssec.wisc.edu by
typing the commands:

rmiregistry &
java visad.paoloa.GoesCollaboration

Then we could start GoesCollaboration (client) on any number of other machines
by typing:

149

http://www.ssec.wisc.edu/~billh/figure1.gif
http://www.ssec.wisc.edu/~billh/figure1.gif
http://www.ssec.wisc.edu/~billh/visad.html

java visad.paoloa.GoesCollaboration sparc.ssec.wisc.edu

These copies of GoesCollaboration will all be connected together so that when the
user drags sliders or re-draws atmospheric profiles in one copy of GoesCollaboration,
all the users will see these changes and their computational consequences in their copies
of GoesCollaboration.

The complete and annotated source code for the GoesCollaboration application is
listed in Appendix B. Note that GoesCollaboration initially determines whether it is
started as a server (with no argument) or as a client (with the IP name of the server as
an argument). As a server it constructs a set of Data and DataReference objects which
it serves via a RemoteServerImpl object bound to a URL. It also constructs sets of Cell,
Display and VisADJSlider (user interface) objects connected to the DataReference
objects. As a client it obtains references to RemoteDataReference objects from the
server, then constructs Display and VisADJSlider objects which it connects to the
RemoteDataReference objects from the server.

The GoesCollaboration application includes Fortran implementations of its science
algorithms, which are invoked via JNI through C wrappers. These are only invoked
by the applications computational Cells, and hence are only invoked by the server
copy of GoesCollaboration. It is possible to run client copies of GoesCollaboration on
machines that cannot run the Fortran science algorithms.

12.4. A Steerable Shallow Fluid Model

The ShallowFluid application allows users to interactively steer Bob Aune’s 2-D shal-
low fluid model. Users can experiment with changes to the gravity constant and other
physical parameters and see their affect on fluid flow. Users can also experiment
with numerical parameters. In particular, users may increase the number of seconds
between simulated time steps and visualize the development of numerical instability.
The ShallowFluid application is part of the visad.aune package. Its source code,
data files and installation instructions are available from the VisAD web page at http:
//www.ssec.wisc.edu/"billh/visad.html

12.5. The JMet Weather Simulation Visualizer

The JMet system is distributed with VisAD in the visad.jmet package and its initial
release can be used to visualize weather model output in netCDF files. For more
information, see the JMet web page at http://allegro.ssec.wisc.edu/jmet/

150

http://www.ssec.wisc.edu/~billh/visad.html
http://www.ssec.wisc.edu/~billh/visad.html
http://allegro.ssec.wisc.edu/jmet/

12.6. Image Animation Using Java2D

The SimpleAnimate class in the visad/examples directory provides an example of ani-
mating a time sequence of satellite images using Java2D. In order to run the SimpleAn-
imate application you need to download and uncompress the netCDF file "images.nc"
from ftp://ftp.ssec.wisc.edu/pub/visad-2.0/images.nc.Z.

To run this application, change to the visad/examples directory and enter the com-
mand:

java SimpleAnimate (step_time_in_ms)

where (step _time in_ms) is an optional parameter giving the animation step time
in milliseconds. The default value is 1000 ms.

12.7. Earth Topography and Bathymetry

The Earth class in the visad/examples directory generates a nice looking interactive 3-
D Earth globe with topography and bathymetry. In order to run the Earth application
you need to download and uncompress the netCDF file "lowresTerrain.nc" from ftp:
//ftp.ssec.wisc.edu/pub/visad-2.0/lowresTerrain.nc.

To run this application, change to the visad/examples directory and enter the com-
mand:

java -Xmx64m Earth lowresTerrain.nc

151

ftp://ftp.ssec.wisc.edu/pub/visad-2.0/images.nc.Z
ftp://ftp.ssec.wisc.edu/pub/visad-2.0/lowresTerrain.nc
ftp://ftp.ssec.wisc.edu/pub/visad-2.0/lowresTerrain.nc

13. Caveats and Future Plans

We wrote the VisAD Java class library because we believe that Java will become the
universal programming language supporting distributed object programming across
the Internet, and because we have faith that compiler and chip designers will bring
Java to the performance levels of other languages (this faith has been justified by the
Java 2 Solaris Production Release, which is as fast as C).

However, for the initial release of VisAD, ubiquity and performance are problems.
As described in Section 3.9, VisAD makes few method calls, so that its speed should
be good once compilers are able to get good speed on loops over arrays of floats and
doubles. Memory performance is also a problem with the current release of Java3D,
which is used by VisAD. This should be improved in version 1.2 of Java3D. Note that
VisAD Data objects can be stored efficiently with appropriate choices of range Sets
in FlatField constructors, although many file adapters just store all input values as
(4-byte) floats. If VisAD throws an OutOfMemoryException, increase memory size of
the Java interpreter with the - mx command line option.

The AuditTrail class is not implemented in the initial release of VisAD. Display
logic is unimplemented for some combinations of ScalarMaps and MathTypes. The
ErrorEstimate, ProductSet and UnionSet classes are not well tested. The file format
adapters may fail to adapt some files, and may not adapt all information in other files.

The initial release of VisAD was essentially simultaneous with the public early access
release of Java3D. Java 2 (aka JDK 1.2) is are required for VisAD. Either Java2D
(included in Java 2) or Java3D can be used for displays. Most vendors have Java 2
alpha releases as of May 1999.

We will continue to add file format adapters and associated metadata classes such as
new CoordinateSystems and Sets. We will develop packages for statistics and mathe-
matical analysis operations. We will add more support for collaborative user interfaces,
and will develop a number of generic user interfaces such as a general spread sheet.

We will try to support developers using VisAD, by fixing bugs, answering questions
and adding requested features. VisAD’s extensibility should enable developers to add
new features to the system.

152

13.1. JavaBean Components

Clearly, since a VisAD consists of a linked network of Data, Display, user interface and
computation Cell objects, users should be able to build these networks visually using
JavaBean components. We plan to implement a variety of JavaBeans to help users

build networks of VisAD objects.

153

14. References

Baltuch, M. S. (1997). Unidata’s internet data distribution (idd) system: two years
of data delivery. In 13th Int. Conf. on Interactive Information and Processing for
Meteorology, Oceanography amd Hydrology, pages 168—171.

Beshers, C. and Feiner, S. (1992). Automated design of virtual worlds for visualizing
multivariate relations. In Visualization ’92, Boston, pages 283-290.

Haber, R. B., Lucas, B., and Collins, N. (1991). A data model for scientific visualization
with provisions for regular and irregular grids. In Visualization 91, pages 298-305.

Hasler, A. F., Dodge, J., and Woodward, R. H. (1991). A high performance inter-
active image spreadsheet. In Preprints of the Seventh International Conference on
Interactive Information and Processing systems for Meteorology, Oceanography and
Hydrology, New Orleans, pages 187-194.

Hibbard, W. L. (1986). 4-d display of meteorological data. proceedings. In Workshop
on Interactive 3D Graphics, pages 23-26, Chapel Hill.

Hibbard, W. L., Anderson, J., Foster, 1., Paul, B., Jacob, R., Schafer, C., and Tyree,
M. (1996). Exploring coupled atmosphere-ocean models using visbd. International
Journal of Supercomputer Applications, 10(2):211-222.

Hibbard, W. L., Dyer, C. R., and Paul, B. (1992). Display of scientific data structures
for algorithm visualization. In Visualization ’92, Boston, pages 139-146.

Hibbard, W. L., Paul, B. E., Santek, D. A., Dyer, C. R., Battaiola, A. L., and Voidrot-
Martinez, M.-F. (1994). Interactive visualization of earth and space science compu-
tations. Computer, 27(7):65-72.

Hibbard, W. L. and Santek, D. A. (1990). The vis5d system for easy interactive
visualization. In Visualization ’90, pages 28-35.

Hibbard, W. L., Santek, D. A., and Tripoli, G. (1991). Interactive atmospheric data
access via high-speed networks. Computer Networks and ISDN Systems, 22(2):103—
109.

154

A.

Constraints on ScalarMaps and
MathTypes

In order to describe the constraints on ScalarMaps and MathTypes used by the De-
faultDisplayRendererJ3D and DefaultDataRendererJ3D classes we must first define a
few terms.

A TupleType is flat if all its components are RealTypes or RealTupleTypes. A
FunctionType is flat if its range is a RealType or a flat TupleType (note that a flat
FunctionType is appropriate for the MathType of a FlatField).

The MathType of each displayed Data object defines a tree structure whose leaves
are RealTypes (TextTypes are ignored). We define terminal nodes as nodes in this
tree that are:

1.
2.
3.

4.

Flat FunctionTypes.
SetTypes.

Flat TupleTypes that are not part of terminal FunctionTypes or other terminal
TupleTypes.

If a displayed Data object is a Real, then its RealType is terminal.

Each terminal node in the MathType tree defines a path through containing Tuple-
Types and FunctionsTypes back to the root of the tree. RealTypes occur in this path
if they are part of:

1.
2.
3.

The terminal node of the path.
A FunctionType in the path, as components of its domain RealTupleType.

A TupleType in the path, either as a RealType component or a RealType sub-
component of a RealTupleType component.

Now the constraints on ScalarMaps and MathTypes can be described as follows:

1.

No two ScalarMaps may have the same Real Type and DisplayRealType (i.e., two
ScalarMaps may not be identical), unless the DisplayRealType is Display.Shape.

155

2. A RealType mapped to Animation or Select Value may only occur in the MathType
of a displayed Data object as the 1-D domain of a FunctionType.

3. Only one RealType occurring in a path to a terminal node may be mapped to
Animation.

4. No RealType may occur more than once in a path, unless that RealType is not
mapped to any DisplayRealType.

5. None of the DisplayRealTypes declared as Single may mapped from multiple Re-
alTypes occurring in a path. Single DisplayRealTypes are: XAxis, YAxis, ZAxis,
Latitude, Longitude, Radius, Animation, ShapeScale, Text, FlowlX, FlowlY,
FlowlZ, Flow2X, Flow2Y and Flow2Z.

6. RealTypes occurring in a path may not be mapped to components of multiple
display spatial tuples. These are DisplaySpatialCartesianTuple and any Display-
TupleTypes with a CoordinateSystem whose Reference is DisplaySpatialCarte-
sianTuple (e.g., DisplaySpatialSpherical Tuple).

In addition to these constraints, there are many other combinations of ScalarMaps
and MathTypes that are nonsensical, that produce uninteresting or trivial data depic-
tions, or that are very difficult or ambiguous to render. Common sense is the best rule
of thumb for defining ScalarMaps.

156

10

20

30

40

B. The GoesCollaboration
Application Source Code

Listing B.1: The GoesCollaboration Application Source Code

GoesCollaboration . java

S~
——

package visad.paoloa;

// VisAD packages

import visad.x;

import visad.util.Delay;

import visad.util.VisADSlider;

import visad.java3d.DisplayImplJ3D;

import visad.java3d.TwoDDisplayRendererJ3D;

import visad.java3d.DirectManipulationRendererJ3D;

// Java packages

import java.io.Filej

import java.rmi.RemoteException;
import java.rmi.NotBoundException;
import java.rmi.AccessException;
import java.rmi.Naming;

import java.net.MalformedURLException;

// JFC packages

import javax.swing.*;

import javax.swing.event.x;
import javax.swing.text .x;
import javax.swing.border.x;

// AWT packages
import java.awt.x;
import java.awt.event .x;

[* %
GoesCollaboration implements the interactive and collaborative
Goes satellite sounding retrieval application using VisAD 2.0.
It is rewritten from the IRGS.v application developed for
VisAD 1.1 by Paolo Antonelli.<P>

*/

public class GoesCollaboration extends Object {

/** RemoteServerImpl for server
this GoesCollaboration is a server if server server != null

157

*/

50

60

70

80

90

100

RemoteServerImpl server_server;

/** RemoteServer for client
this GoesCollaboration is

RemoteServer client_server;

a client if client server != null x/

/**% declare MathTypes x/
RealType nchan;

RealType indx;

RealType nl;

RealType tbc;

RealType tbc_d;

RealType wfn;

RealType pres;

RealType temp;

RealType mixr;

RealType ozone;

RealType pressure;
RealType data_real;
RealType diff;

/**% declare DataReferences x*/

DataReference
DataReference
DataReference
DataReference
DataReference
DataReference
DataReference
DataReference
DataReference
DataReference
DataReference
DataReference

slider
DataReference
DataReference
DataReference

wina_ref ;
tempa_ref ;
mixra_ref ;
ozonea_ref ;
presa_ref ;
diff_col_ref;
diff_ref;
zero_line_ref ;
smr_ref ;
real_tbc_ref;
winb_ref ;
wfna_old_ref;

DataReferences x/

gzen_ref ;
tskin_ref;
in_dx_ref ;

/*% the width and height of the UI frame x/

public static int WIDTH = 1200;

public static int HEIGHT = 1000;

/** type ’java visad.paoloa.GoesCollaboration’ to run
the main thread just exits, since Display, Cell
run the application */

public static void main(String args][])

throws VisADException, RemoteException {
y construct GoesCollaboration application
GoesCollaboration goes = new GoesCollaboration(args);
if (goes.client_server != null) {
goes.setupClient () ;
else if (goes.server_server != null) {
’/ load native method library (only needed for

System.loadLibrary (" GoesCollaboration");

goes .

else {

setupServer () ;

158

this

server)

application ;
and JFC threads

110

120

130

140

150

160

// stand—alone (neither client nor server)
// load native method library
System.loadLibrary (" GoesCollaboration");
goes .setupServer () ;

/**

objects , Display objects, Cell (computational) objects,
and JFC (slider) user interface objects. The Display,
Cell and JFC objects include threads and links to Data
objects (via DataReference objects). Display and Cell
threads wake up when linked Data objects change. Display
and JFC objects wake up on mouse events. Display , Cell
and JFC objects cause changes to Data objects.

Construct the GoesCollaboration application, including Data

Here’s a summary of the event logic among Data, Displays,
Cells , and JSliders:

initialization —>
zero line = 0 —> display4

slider <——gt; in_dx
slider <——> gzen
slider <——> tskin
slider <——> save config
in_dx —> real tbcCell

real tbc = re read 1 c(in_dx)

month = 6

lat = real tbc[18];

(tempa, mixra, ozonea, presa) =

get profil c(lat , month) —> display2

direct manipualtion (in display2) —>

(tempa, mixra, ozonea) —> display2

gzen , tskin, tempa, mixra, ozonea, presa —> wfnbCell

wfnb = goesrte 2 c(gzen, tskin, tempa, mixra, ozonea, presa)

winb, real tbc —> wfnaCell

wina = wfnb.wfn —> displayl
diff DATA = wfnb.tbc[nl=1] — real tbc —> display4
smr = RootMeanSquare (diff DATA) —> display4

save config —> wfna oldCell
wfna old = wfna

wfna , wfna old —> diff colCell
diff col = wfna — wfna old —> display3
*/
public GoesCollaboration (String args|[]|)
throws VisADException, RemoteException {

if (args.length > 0) {
// this is a client

159

170

180

190

200

210

220

// try to connect to RemoteServer

String domain = "//" + args|[0] + "/GoesCollaboration";
try {
client_server = (RemoteServer) Naming.lookup (domain);

catch (MalformedURLException e) {
System.out.println("Cannot connect to
System.exit (0);

catch (NotBoundException e) {
System.out.println("Cannot connect to
System.exit (0);

catch (AccessException e) {
System.out.println("Cannot connect to
System.exit (0);

catch (RemoteException e) {
System.out.println("Cannot connect to
System.exit (0);

}

else { // args.length — 0
// this is a server

/* CTIR: 30 Sep 1998 =x/
// check for the existence of necessary

File f1 = new File("data obs 1.dat");

File f2 = new File("goesrtcf");

if (!'f1.exists() || !f2.exists()) {
System.out.println("This program re

server

server

server

server

data files

quires

"\"data obs 1.dat\"");

System.out.println("and \"goesrtcf)

[

")

")

"D

O

the

data files " +

available at:");

System.out.println (" ftp://ftp.ssec.wisc.edu/pub/visad —2.0/" +
"paoloa—files .tar.Z");

System.exit (1);

}

if ('f2.exists()) {
System.out.println("");
System.exit (2);

}

// try to set up a RemoteServer

server_server — new RemoteServerImpl();
try {
Naming.rebind (" //:/ GoesCollaboration"

}
catch (MalformedURLException e) {
System.out.println("Cannot set up server —
server_server = null;

catch (AccessException e) {
System.out.println("Cannot set up server —
server_server — null;

catch (RemoteException e) {

System.out.println("Cannot set up server —
server_server = null;

160

, server_server);

running as stand—alone");

running as stand—alone");

running

as

stand—alone") ;

230
/** set up as server x*/

void setupServer () throws VisADException, RemoteException {

construct function domain sampling Sets

// construct 1-D Sets

Set linear18 = new LineariDSet (1.0, 18.0, 18);
240 Set linear19 = new Lineari1DSet (1.0, 19.0, 19);

Set linear40 = new LineariDSet (1.0, 40.0, 40);

// construct 2—D Set
Set linear40x18 = new Linear2DSet (1.0, 40.0, 40, 1.0, 18.0, 18);

construct MathTypes for Data objects

250 construct RealTypes used as Function domains
with null Units but non—null default Sets (for
function domain ampllngs)

nchan = new RealType("ruhan , null, lineari8);
indx = new RealType("indx", null, lineari19);

nl = new RealType("nl", null, linear40);

construct RealTypes used as Function ranges
or for simple Real values, with null Units
and null default Sets
260 tbc = new RealType("tbc", null, null);
tbc_d = new RealType("tbc d", null, null);
wfn = new RealType("wfn", null, null);
pres = new RealType("pres", null, null);
temp = new RealType("temp", null, null);
mixr = new RealType ("mixr", null, null);
ozone = new RealType("ozone", null, null);
pressure = new RealType("pressure", null, null);
data_real = new RealType("data real", null, null);
diff = new RealType("diff", null, null);

270

construct RealTupleType used as a Function domain

// with non—null default Set

RealTupleType nl_nchan = new RealTupleType(nl, nchan, null,
11near40x18);

// construct FunctionTypes

FunctionType obs_data = new FunctionType (indx, data_real);

FunctionType wfn_big = new FunctionType(nl_nchan,

new RealTupleType (wfn, tbc));

280 FunctionType tbc_array_dif = new FunctionType (nchan, tbc_d);

FunctionType wfn_array = new FunctionType(nl_nchan, wfn);

FunctionType temp_array = new FunctionType(nl, temp);

FunctionType mixr_array = new FunctionType(nl, mixr);

FunctionType ozone_array — new FunctionType(nl, ozone);

FunctionType pres_array — new FunctionType(nl, pressure);

161

construct Data objects and DataReferences to them

290
// construct weighting function Data object and DataReference
FlatField wfna = new FlatField(wfn_array);
wfna_ref — new DataReferenceImpl ("wfna');
wfna_ref .setData(wfna);

// construct temperature profile Data object and DataReference
FlatField tempa = new FlatField(temp_array);
tempa_ref = new DataReferencelImpl ("tempa');
tempa_ref .setData(tempa);
300
// construct mixing ratio profile Data object and DataReference
FlatField mixra = new FlatField(mixr_array);
mixra_ref = new DataReferenceImpl ("mixra");
mixra_ref .setData(mixra);

// construct ozone profile Data object and DataReference
FlatField ozonea — new FlatField(ozone_array);
ozonea_ref = new DataReferencelImpl ("ozonea');
ozonea_ref .setData(ozonea);
310
// construct pressure profile Data object and DataReference
FlatField presa — new FlatField(pres_array);
presa_ref = new DataReferencelImpl("presa');
presa_ref .setData(presa);

construct weighting function difference Data object
// and DataReference
FlatField diff_col = new FlatField(wfn_array);
diff_col_ref = new DataReferencelImpl ("diff col");

320 diff_col_ref.setData(diff_col);

construct brightness temperature error Data object
// and DataReference

FlatField diff_DATA = new FlatField(tbc_array_dif);
diff_ref — new DataReferenceImpl ("diff");
diff_ref.setData(diff_DATA);

// construct zero line Data object and DataReference
FlatField zero_line = new FlatField(tbc_array_dif);

330 zero_line_ref = new DataReferenceImpl('"zero line'");
zero_line_ref .setData(zero_line);

construct brightness temperature error root mean square
// Data object and DataReference

Real smr = new Real(tbc_d);

smr_ref = new DataReferenceImpl ("smr");

smr_ref .setData(smr);

construct observed brightness temperature Data object

340 // and DataReference
FlatField real_tbc = new FlatField(obs_data);
real_tbc_ref = new DataReferencelImpl("real thc");

real_tbc_ref.setData(real_tbc);

construct compound weighting function Data object
// and DataReference

FlatField wfnb = new FlatField (wfn_big);

winb_ref = new DataReferenceImpl ("wfnb");

162

350

360

370

380

390

400

wfnb_ref .setData(wfnb);

// construct saved weighting function Data object
// and DataReference

FlatField wfna_old = new FlatField(wfn_array);
wfna_old_ref = new DataReferenceImpl ("wfna old");
wfna_old_ref .setData(wfna);

// construct DataReference objects linked to VisADSliders (the
// JSlider constructors will construct Real data objects for

// these, so there is no point in constructing Real data objects
// here)

// DataReference for zenith angle
gzen_ref = new DataReferenceImpl('"gzen');

// DataReference for skin temperature

tskin_ref = new DataReferencelImpl("tskin');

// DataReference for index into model atmospheres
in_dx_ref = new DataReferenceImpl ("in dx");

// DataReference used to trigger copying wfna to wfna_ old
DataReference save_config_ref = new DataReferenceImpl ("save config'");

// set up Displays for server
DisplayImpl [| displays = new DisplayImpl [4];
setupDisplays (displays) ;
if (server_server != null) {
for (int i = 0; i &1t; displays.length; i++) {
server_server .addDisplay (new RemoteDisplayImpl (displays[i]));
}

}

// set up user interface
setupUI (displays, in_dx_ref, save_config_ref, gzen_ref, tskin_ref);

// initialize zero reference line for brightness temperature errors
double [[[] zero_line_x = zero_line.getValues();

for (int i=0; i&1lt;zero_line_x[0].length; i++) zero_line_x [0][i] = 0.0;
zero_line.setSamples(zero_line_x);

// make sure Data are initialized
new Delay (1000) ;

gzen_ref .incTick () ;
save_config_ref.incTick();

new Delay (1000);

// construct computational Cells and links to DataReferences

// that trigger them

// construct a real tbcCell

163

410 real_tbcCell real_tbc_cell = new real_tbcCell();
real_tbc_cell.addReference(in_dx_ref);
new Delay (500) ;

/ construct a wfnbCell
wfnbCell wfnb_cell = new wfnbCell () ;
wifnb_cell.addReference(gzen_ref);
winb_cell.addReference (tskin_ref);
winb_cell.addReference (tempa_ref);
winb_cell.addReference (mixra_ref);
420 wfnb_cell.addReference (ozonea_ref);
wfnb_cell.addReference (presa_ref);
new Delay (500) ;

construct a wfnaCell
wfnaCell wfna_cell = new wfnaCell ();
wfna_cell.addReference (wfnb_ref);
wina_cell.addReference (real_tbc_ref);
new Delay (500) ;

430 // construct a wfna oldCell
wfna_oldCell wfna_old_cell = new wfna_oldCell();
wfna_old_cell.addReference (save_config_ref);
new Delay (500) ;

/ construct a diff colCell

diff_colCell diff_col_cell = new diff_colCell();
diff_col_cell.addReference (wfna_ref);
diff_col_cell.addReference (wfna_old_ref);

new Delay (500);

440
if (server_server != null) {
set RemoteDataReferencelmpls in RemoteServer
RemoteDataReferenceImpl [| refs =
new RemoteDataReferencelImpl [4];
refs [0] =
new RemoteDataReferencelImpl ((DataReferenceImpl) gzen_ref);
refs[1] =

new RemoteDataReferencelImpl ((DataReferenceImpl) tskin_ref);
450 refs [2] =
new RemoteDataReferencelImpl ((DataReferenceImpl) in_dx_ref);
refs [3] =
new RemoteDataReferencelImpl ((DataReferenceImpl) save_config_ref);

server_server .setDataReferences (refs);

make sure Data are initialized (again)
460 new Delay (1000);
gzen_ref .incTick () ;
save_config_ref.incTick();

/x% set up as client x/

void setupClient () throws VisADException, RemoteException {

470 get RemoteDataReferences

164

480

490

500

520

530

RemoteDataReference [| refs =

if (refs = null) {

System.out.println("Cannot connect to

System.exit (0) ;

}

gzen_ref = refs[0];
tskin_ref = refs|[1];
in_dx_ref = refs|[2];
DataReference save_config_ref —
// set up Displays for client
DisplayImpl []
displays [0] =

new DisplayImplJ3D(client_server
displays [1] =

new DisplayImplJ3D(client_server
displays [2] =

new DisplayImplJ3D(client_server
displays [3] =

new DisplayImplJ3D(client_server

// set up user interface

setupUI (displays, in_dx_ref, save_

/** set up Displays; return construc
void setupDisplays(DisplayImpl []| dis

throws VisADException, RemoteEx

construct Displays and link to

construct Display 1
/ the text name is used only for
DisplayImplJ3D displayl = new Disp
// construct ScalarMaps for
explicitly set data range for
invert scale)

(using default

client_server.getDataReferences () ;

server");

refs [3];

displays = new DisplayImpl [4];

.getDisplay ("displayl"));
.getDisplay ("display2"));
.getDisplay ("display3"));

.getDisplay ("display4"));

config _ref , gzen_ref ,

ted Displays in
plays)
ception {

displays array

Data objects

DisplayRenderer) ;
debugging
layImplJ3D ("displayl");

Display 1;
nl values

(in order to

S’calarMap mapinl = new ScalarMap(nl, Display.YAxis);

mapinl.setRange (40.0, 1.0);
displayl.addMap (mapinl);

// setRange is not invoked for
use auto—scaling from actual

oth

displayl.addMap (new ScalarMap (nchan,
displayl.addMap (new ScalarMap (wfn,
displayl.addMap (new ScalarMap (wfn,
displayl.addMap (new ConstantMap (0.5f,

displayl.addMap (new
GraphicsModeControl model =
model.setScaleEnable (true);

// link weighting function
// (using default DataRenderer and
displayl.addReference (wfna_ref);

data

ConstantMap (0.5f,

Data object to

er ScalarMaps — they will
values
Display.XAxis));
Display.Green));
Display.ZAxis));
Display.Red))
Display.Blue)

ik

displayl.getGraphicsModeControl () ;

displayl

a null array of ConstantMaps)

165

tskin_ref);

* /

construct Display 2 and its ScalarMaps (using non—default

// 2—D DisplayRenderer)

DisplayImplJ3D display2 —

new DisplayImplJ3D("display2", new TwoDDisplayRendererJ3D());

explicitly set data range for nl values (in order to

// invert scale)

540 ScalarMap map2nl = new ScalarMap(nl, Display.YAxis);
map2nl.setRange (40.0, 1.0);
display2.addMap (map2nl);

/ map temp, mixr and ozone to XAxis and

/ set axis scale colors

ScalarMap map2temp = new ScalarMap(temp, Display.XAxis);

display2.addMap (map2temp) ;

map2temp.setScaleColor (new float [] {1.0f, 0.0f, 0.0f});

ScalarMap map2mixr = new ScalarMap(mixr, Display.XAxis);
display2.addMap (map2mixr) ;

550 map2mixr.setScaleColor (new float[] {0.0f, 1.0f, 0.0f});
ScalarMap map2ozone — new ScalarMap (ozone, Display.XAxis);

display2.addMap (map2ozone) ;
map2ozone.setScaleColor (new float [] {0.0f, 0.0f, 1.0f});
display2.addMap (new ScalarMap (pressure, Display.XAxis));

GraphicsModeControl mode2 = display2.getGraphicsModeControl ();
mode2.setLineWidth (2.0f);
mode2.setScaleEnable (true);

560 // color temperature profile red
ConstantMap [| tmaps = {new ConstantMap (1.0f, Display.Red),
new ConstantMap (0.0f, Display.Green),
new ConstantMap (0.0f, Display.Blue) };

/ color mixing ratio profile green

ConstantMap [| mmaps = {new ConstantMap (0.0f, Display.Red),
new ConstantMap(1.0f, Display.Green),
new ConstantMap (0.0f, Display.Blue) };

570 // color ozone profile blue
ConstantMap [| omaps = {new ConstantMap (0.0f, Display.Red),
new ConstantMap (0.0f, Display.Green),
new ConstantMap (1.0f, Display.Blue) };

/ color pressure profile white
ConstantMap [| pmaps = {new ConstantMap (1.0f, Display.Red),
new ConstantMap (1.0f, Display.Green),
new ConstantMap (1.0f, Display.Blue) };
580 enable direct manipulation for temperature, mixing ratio
and ozone profiles; do not enable direct manipulation for
pressure ;
note that addReferences rather than addReference is
invoked for non—default DataRenderers (in this case,
DirectManipulationRendererJ3D) ;
note also that addReference and addReferences may take
an array of ConstantMaps that apply only to one Data
/ object
display2.addReferences (new DirectManipulationRendererJ3D (),
590 tempa_ref , tmaps);
display2.addReferences (new DirectManipulationRendererJ3D(),
mixra_ref , mmaps);

166

display2.addReferences (new DirectManipulationRendererJ3D (),
ozonea_ref , omaps);
display2.addReference (presa_ref , pmaps);

/ construct Display 3 and its ScalarMaps
DisplayImplJ3D display3 = new DisplayImplJ3D("display3");

600 explicitly set data range for nl values (in order to
invert scale)
ScalarMap map3nl = new ScalarMap(nl, Display.YAxis);
map3nl.setRange (40.0, 1.0);
display3.addMap (map3nl);
display3.addMap (new ScalarMap(nchan, Display.XAxis));
display3.addMap (new ScalarMap (wfn, Display.ZAxis));
display3.addMap (new ScalarMap (wfn, Display.Green));
display3.addMap (new ConstantMap (0.5f, Display.Red));
display3.addMap (new ConstantMap (0.5f, Display.Blue));
610

GraphicsModeControl mode3 = display3.getGraphicsModeControl () ;
mode3.setScaleEnable (true);

/ link weighting function difference Data object to display3
display3.addReference (diff_col_ref);

construct Display 4 and its ScalarMaps (using non—default
// 2—D DisplayRenderer)

620 DisplayImplJ3D display4 —

new DisplayImplJ3D("display4", new TwoDDisplayRendererJ3D());

display4 .addMap (new ScalarMap (nchan, Display.XAxis));

// explicitly set data range for tbc d values

ScalarMap map4tbc_d = new ScalarMap(tbc_d, Display.YAxis);

map4tbc_d.setRange (—40.0, 40.0);

display4 .addMap (map4tbc_d);

set pointSize = 5 in display4 to make single Real value smr
easily wvisible
630 GraphicsModeControl mode4 — display4.getGraphicsModeControl ()

mode4 .setPointSize (5.0f);
mode4 .setLineWidth (2.0f) ;
mode4 .setScaleEnable (true);

link brightness temperature error, zero line and brightness
temperature error root mean square Data objects to display4

display4.addReference (diff_ref);

display4.addReference (zero_line_ref);

display4.addReference (smr_ref);

640

/ return Displaylmpls

displays [0] = displayl;

displays 1| = display?2;

displays [2] = display3;

displays [3] = display4;

/*% construct user interface using JFC x/
650 void setupUI (DisplayImpl || displays, DataReference in_dx_ref,
DataReference save_config_ref , DataReference gzen_ref ,
DataReference tskin_ref)
throws VisADException, RemoteException {

167

construct JFC user interface with JSliders linked to
Data objects , and embed Displays into JFC JFrame

660 // create a JFrame
JFrame frame = new JFrame ("GoesCollaboration");
WindowListener 1 = new WindowAdapter () {

public void windowClosing(WindowEvent e) {System.exit (0);}
}
frame.addWindowListener (1);
frame.setSize (WIDTH, HEIGHT);
frame.setCursor (Cursor.getPredefinedCursor (Cursor . DEFAULT_CURSOR));
)

Dimension screenSize = Toolkit.getDefaultToolkit ().getScreenSize();
frame.setLocation(screenSize.width/2 — WIDTH/2,
670 screenSize.height /2 — HEIGHT/2);

// create big panel JPanel in frame

JPanel big_panel = new JPanel();

big_panel.setLayout (new BoxLayout (big_panel, BoxLayout.X_AXIS));
big_panel.setAlignmentY (JPanel.TOP_ALIGNMENT);
big_panel.setAlignmentX (JPanel . LEFT_ALIGNMENT);
frame.getContentPane ().add(big_panel);

/ create left hand side JPanel for sliders and text

680 JPanel left = new JPanel(); // FlowLayout and double buffer
left.setLayout (new BoxLayout (left, BoxLayout.Y_AXIS));
left.setAlignmentY (JPanel.TOP_ALIGNMENT);
left.setAlignmentX (JPanel . LEFT_ALIGNMENT);
big_panel.add(left);

construct JLabels

// (JTextArea does not align in BoxLayout well, so use JLabels)

left.add (new JLabel("Interactive GOES satellite sounding " +
"retrieval"));

690 left.add (new JLabel ("using VisAD — see:"));
left.add(new JLabel(" "));
left.add (new JLabel (" http://www. ssec.wisc.edu/” billh /visad.html"));
left.add (new JLabel (" "));
left.add (new JLabel("for more information about VisAD."));
left.add (new JLabel(" "))

;
left.add(new JLabel (" Bill Hibbard, Paolo Antonelli and Bob Aune"));
left.add(new JLabel ("Space Science and Engineering Center"));
left.add(new JLabel (" University of Wisconsin — Madison"));
left.add(new JLabel(" "));

700 left.add(new JLabel(" "));
left.add (new JLabel ("Move index slider to retrieve a new model"));
left.add (new JLabel ("atmosphere."));

left.add(new JLabel(" "));

left.add (new JLabel ("Touch ref. conf. slider to save a new"));

left.add (new JLabel("reference for weighting function " +
"difference."));

left.add (new JLabel (" "));

left.add (new JLabel("Move zenith angle and skin T sliders to"));
left.add (new JLabel ("to modify atmosphere conditions."));

710 left.add (new JLabel (" "));
left.add (new JLabel ("Rotate scenes with left mouse button."));
left.add (new JLabel (" "));
left.add (new JLabel ("Redraw temperature, water vapor and ozone " +
"with"));

168

720

730

740

750

760

770

left.add(new JLabel("right mouse button to modify model " +
"atmosphere."));

left.add (new JLabel (" "));

left.add (new JLabel (" "));

/ create sliders JPanel

JPanel sliders = new JPamnel ();
sliders.setName (" GoesCollaboration Sliders");
sliders.setFont (new Font ("Dialog", Font.PLAIN, 12));
sliders.setLayout (new BoxLayout (sliders, BoxLayout.Y_AXIS));
sliders.setAlignmentY (JPanel. TOP_ALIGNMENT);
sliders.setAlignmentX (JPanel . LEFT_ALIGNMENT);
left.add(sliders);

construct VisADSliders linked to Real Data objects and embedded

// in sliders JPanel

sliders.add(new VisADSlider ("index", 1, 2234, 1, 1.0, in_dx_ref,
RealType.Generic));

sliders.add (new JLabel (" "));

sliders.add(new VisADSlider ("save as ref. conf.?", 0, 1000, 0, 1.0,
save_config _ref , RealType.Generic));

sliders.add(new JLabel (" "));

sliders.add(new VisADSlider ("zenith angle (deg)", 0, 65, 35, 1.0,
gzen_ref , RealType.Generic));

sliders.add (new JLabel (" "));

sliders.add (new VisADSlider ("skin T (K)", 250, 340, 300,
tskin_ref , RealType.Generic)

1.0,
)3
construct JPanel and sub—panels for Displays
JPanel display_panel = new JPanel();
display_panel.setLayout (new BoxLayout (display_panel,
BoxLayout .X_AXIS));
display_panel.setAlignmentY (JPanel.TOP_ALIGNMENT);
display_panel.setAlignmentX (JPanel.LEFT_ALIGNMENT) ;
big_panel.add(display_panel);

JPanel display_left = new JPanel();
display_left.setLayout (new BoxLayout (display_left,
BoxLayout .Y_AXIS));
display_left.setAlignmentY (JPanel.TOP_ALIGNMENT);
display_left.setAlignmentX (JPanel .LEFT_ALIGNMENT);
display_panel.add(display_left);

JPanel display_right = new JPanel();
display_right.setLayout (new BoxLayout (display_right ,
BoxLayout .Y_AXIS));
display_right.setAlignmentY (JPanel.TOP_ALIGNMENT);
display_right.setAlignmentX (JPanel.LEFT_ALIGNMENT) ;
display_panel.add(display_right);

// get Display panels
JPanel panell = (JPanel) displays [0].getComponent ();
JPanel panel2 = (JPanel) displays|[l].getComponent ();
))
)

5

JPanel panel3 = (JPanel) displays [2].getComponent (
JPanel panel4 = (JPanel) displays|[3].getComponent (

3

make borders for Displays and embed in display panel JPanel
Border etchedBorder10 =
new CompoundBorder (new EtchedBorder (),
new EmptyBorder (10, 10, 10, 10));
panell.setBorder (etchedBorder10);

169

780

790

800

810

820

830

panel2.setBorder (etchedBorder10);
panel3.setBorder (etchedBorder10);
panel4 .setBorder (etchedBorder10);

/ make labels
JLabel displayl_label = new JLabel("weighting

for

JLabel displayla_label —

new JLabel ("vertical
JLabel display2_label = new JLabel ("model atmosphere

JLabel display2a_label —
new JLabel ("temperature
JLabel display2b_label —
new JLabel ("water vapor

level

Displays

(Y) vs

(red),

ozone

(green) ,

channel

pressure

(X)");

(blue) ,");

(white)

temperature
reference

function");

profile");

")

JLabel display3_label = new JLabel("weighting function difference");
JLabel display3a_label —
new JLabel("vertical level (Y) vs channel (X)");
JLabel display4_label = new JLabel("brightness
JLabel display4a_label = new JLabel("with zero
JLabel display4b_label =
new JLabel ("root mean square error (single point

embed Displays

display_left

display_left.

display_left

display_left .
display_left.

display_left
display_left

.add (panell);

panel2);

and their

(
add (displayl_
.add(displayla_label);
(
(
(

add (display2_

labels in

label);

label);

.add(display2a_label);
.add(display2b_label);

display panel

display_right
display_right
display_right.
display_right.
display_right
display_right.
display_right.

frame.

.add (panel3);

.add(display3_label);

add (display3a_label);

add

paneld);

add (display4a_label);
add (display4b_label);

make the JFrame visible
setVisible (true);

(

E
.add(display4_label);

(

(

/*% get observed
water—vapor

class

public void
// get ind
int
if (in_dx

read observed brightness

float [][]
re_read_1_

brightness

doAction ()
ex into model

in_dx = (int) ((Real)

<1 ||

mixing—ratio ,
real_tbcCell extends CellImpl {

temperatures ,
ozone and

throws VisADException ,

atmospheres

return ;

data_b = new float [1][19];

c(in_dx,

data_b[0]) ;

pressure

as well as

Remot

)"

JPanel

temperature ,

profiles x/

eException {

in_dx_ref.getData()).getValue();
in_dx > 2234)

temperatures from data obs 1.dat

((FlatField) real_tbc_ref.getData()).setSamples(data_b);

obtain

and ozo
and lat
// also
float lat

get

climatological
ne
itude
fixed

mixing—ratio
amongst the FASCODE model

pressure

temperature ,
profiles by

levels

= data_b [0][18];

170

water—vapor

interpolating
atmospheres;

mixing—ratio ,
in month

errors");
line and");

int month = 6;
float [|[] t_x = new float [1][40];
float [|[] m_x = new float [1][40];
840 float [[[] o_x = new float [1][40];
float [|[] p_x = new float [1][40];
get_profil_c (lat, month, t_x|[0], m_x[0], o_x[0], p_x[0]);

FlatField) tempa_ref.getData

((.setSamples (t_x);
((FlatField) mixra_ref.getData

((

((

)
)).setSamples (m_x);
§§)‘setSamples(o_x);

.setSamples (p_x);

FlatField) ozonea_ref.getDat
FlatField) presa_ref.getData

—~R ~~

}
}

/** compute weighting function of channel versus vertical level x/
class wfnbCell extends CellImpl {

public void doAction() throws VisADException, RemoteException {
/ get zenith angle and skin temperature
float gzen = (float) ((Real) gzen_ref.getData()).getValue();
float tskin = (float) ((Real) tskin_ref.getData()).getValue();

// compute weighting function of channel versus vertical level
860 float [|[] t_x = Set.doubleToFloat (((FlatField)
tempa_ref .getData()).getValues());
float [][] m_x = Set.doubleToFloat (((FlatField)
mixra_ref .getData()).getValues());
float [|[] o_x = Set.doubleToFloat (((FlatField)
ozonea_ref .getData()).getValues ());
float [|[] p_-x = Set.doubleToFloat (((FlatField)
presa_ref.getData()).getValues());
float [|[] wfn = new float [2][40x18];
goesrte_2_c(gzen, tskin, t_x[0], m_x[0], o_x[0], p_x][O],
870 win [0] , wfn[1]);
((FlatField) wfnb_ref.getData()).setSamples (wfn);
}

}

/#x compute brightness temperature errors and root mean square x*/
class wfnaCell extends CellImpl {

public void doAction() throws VisADException, RemoteException {
// compute brightness temperature errors
880 float [][] t_x = new float [1][];
float [|[] wfn =
Set .doubleToFloat (((FlatField) wfnb_ref.getData()).getValues());
t_x[0] = wfn[O0];
((FlatField) wfna_ref.getData()).setSamples(t_x);
float [|[] real_tbc_x = Set.doubleToFloat (((FlatField)
real_tbc_ref.getData()).getValues());
float [|[] diff_DATA_x = new float [1][18];
float squ_mod = 0.0f;
for (int c¢=0; c&1lt;18; c+-+)
890 diff _DATA_x [0][c] = wfn[1][0 + 40 % c|] — real_tbc_x[0][c]
squ_mod += diff_DATA_x[0][c] = diff _DATA_x[O|[c] / 18.0f;

((FlatField) diff_ref.getData()).setSamples(diff_DATA_x);

smr is root mean square of brightness temperature errors
smr_ref .setData(new Real(tbc_d, Math.sqrt(squ_mod)));

171

}

900 /** save a copy of wfna in wfna_ old =/
class wfna_oldCell extends CellImpl {

public void doAction() throws VisADException, RemoteException {
// save a copy of wfna in wfna old (i.e., wfna old = wfna)
wfna_old_ref .setData(
(FlatField) ((FlatField) wfna_ref.getData()).clone());
}
}

910 /*% compute diffﬁcol = wfna — anaiold */
class diff_colCell extends CellImpl {

public void doAction() throws VisADException, RemoteException {
// compute diff col = wfna — wfna old
diff_col_ref.setData(
wina_ref.getData().subtract(wfna_old_ref.getData()));
}

}

920 /#** native method declarations, to Fortran via C x/
private native void re_read_1_c(int i, float [] data_b);

private native void goesrte_2_c(float gzen, float tskin, float[] t
float [| w, float[| ¢, float][]| p,
float [| wfn, float [] tbecx);

)

private native void get_profil_c(float rlat, int imon, float [] tpro,
float [| wpro, float [] opro,
float [| pref);
930

172

	Introduction
	System Availability
	Package Structure
	Authorship, Copyright, History and Support

	Overview
	A Very Simple Application Example
	A Simple Application Example
	Flexible Design by Reduction to Elements
	The Value of Integrated Metadata
	Toolkit for Designing Interaction Techniques

	Data Model
	MathTypes
	RealType Constructors
	TextType Constructor
	TupleType Constructor
	RealTupleType Constructors
	FunctionType Constructor
	SetType Constructor
	MathType Methods
	ScalarType Methods
	RealType Methods
	TupleType Methods
	RealTupleType Methods
	FunctionType Methods
	SetType Methods
	Application Example: Synthesizing MathTypes
	Application Example: Analyzing MathTypes

	Data Class Hierarchy
	Real Constructors
	Text Constructor
	Tuple Constructors
	RealTuple Constructors
	Field Constructors
	Data Methods
	Real Methods
	Text Methods
	Tuple Methods
	RealTuple Methods
	Function Methods
	Field Methods
	Application Example: Synthesizing Fields

	Units
	Unit Methods
	SI Variables
	BaseUnit Methods
	CommonUnit Variables

	CoordinateSystems
	CoordinateSystem Constructors
	CoordinateSystem Methods

	Sets
	Defining Interpolation Algorithms by Extending the Set Class
	The Delaunay Class for Irregular Sets
	Set Constructors
	Set Methods
	SimpleSet Methods
	Delaunay Constructors

	ErrorEstimates
	ErrorEstimate Constructors

	AuditTrails
	Missing Data
	FlatFields - Data Operations and Efficiency
	FlatField Constructors
	FlatField Methods

	Immutable Data
	DataReferences
	DataReference Constructors
	DataReference Methods

	Application Example: Arrays versus VisAD Functions
	Subtracting Images as Pixel Arrays in C
	Subtracting Images as Pixel Arrays in VisAD
	Subtracting Images as Functions in VisAD

	Visualizations
	ScalarMaps and DisplayRealTypes
	Common Sense and ScalarMaps
	DisplayRealType and DisplayTupleType Constructors
	DisplayRealType Methods Useful for Extending DataRenderer
	ScalarMap and ConstantMap Constructors
	Generally Useful ScalarMap Methods
	ScalarMap Methods Useful for Extending DataRenderer
	ConstantMap Methods
	ScalarMapListener Methods
	ScalarMapEvent Methods
	Application Example: ScalarMaps and ConstantMaps

	DataRenderers and DisplayRenderers
	Java3D DataRenderer and DisplayRenderer Constructors
	Java2D DataRenderer and DisplayRenderer Constructors
	DataRenderer Methods
	DisplayRenderer Methods
	DisplayRendererJ2D Method
	DisplayRendererJ3D Method

	Controls
	Control Methods
	ControlListener Methods
	ControlEvent Methods
	AnimationControl Methods
	ColorControl Methods
	ColorAlphaControl Methods
	ContourControl Methods
	FlowControl Methods
	GraphicsModeControl Methods
	ProjectionControl Methods
	RangeControl Methods
	ShapeControl Methods
	ValueControl Methods
	TextControl Methods

	Mouse Interactions and Direct Manipulation
	Changing Data Values by Redrawing Data Depictions
	Application Example: Interactive Scaling

	ShadowTypes
	The Display Class
	Java3D Display Constructors
	Java2D Display Constructors
	Display Methods
	DisplayImpl Methods
	RemoteDisplayImpl Methods
	DisplayListener Methods
	DisplayEvent Methods

	Shapes
	VisADGeometryArray Shapes
	The PlotText.render_label Method

	RemoteSlaveDisplays
	RemoteSlaveDisplayImpl Constructor
	RemoteSlaveDisplayImpl Method

	Computational Cells
	Cell Constructors
	Cell Methods
	ActionImpl Methods

	Distributed Computing
	Distributed Computing Guidelines and Cautions
	Connecting to Remote Machines
	RemoteServerImpl Constructors
	RemoteServer Methods
	RemoteServerImpl Methods

	Application Example: Collaborative Direct Manipulation
	Collaborative Displays

	File Format and Data Form Adapters
	Extracting Metadata From Data Objects Returned by Data Form Adapters
	General Design of Data Form Adapters
	Form Methods

	FITS Adapter
	netCDF Adapter
	HDF-EOS Adapter
	GIF / JPEG Adapter
	Vis5D Adapter
	McIDAS Adapter
	VisAD Adapter (serialized Java objects)
	HDF-5 Adapter

	User Interfaces
	VisAD User Interface Classes
	VisADSlider Constructor
	LabeledRGBWidget and LabeledRGBAWidget Constructors
	LabeledRGBWidget and LabeledRGBAWidget Methods
	SelectRangeWidget Constructor
	AnimationWidget Constructor
	ContourWidget Constructor
	GMCWidget Constructor

	Simplified Classes for Using VisAD
	The VisAD Spread Sheet
	Spread Sheet Classes
	Features of the SpreadSheet User Interface
	Basic Commands
	Menu Commands
	Toolbars
	Remote Collaboration

	Future Plans

	Extending the VisAD Java Class Library
	Application Examples
	The DisplayTest Class
	Visualizing the HSV Color CoordinateSystem
	Collaborative GOES Satellite Sounding Analysis
	A Steerable Shallow Fluid Model
	The JMet Weather Simulation Visualizer
	Image Animation Using Java2D
	Earth Topography and Bathymetry

	Caveats and Future Plans
	JavaBean Components

	References
	Constraints on ScalarMaps and MathTypes
	The GoesCollaboration Application Source Code

