G95 Fortran Lessons Learned

During our attempt to convert to Linux, it quickly became apparent that the
included g77 compiler would not suit our needs. We had several pieces of code that used
Fortran 90 components since we used the HP 90 compilers to compile. The effort to
change the code to be {77 compliant would have been tremendous as well as provided
ample opportunity to accidentally introduce bugs. Therefore, a search was made to find a
compiler that would save us from this effort. G935 (www.295.0rg) was the first one we
stumbled upon. Afier downloading and compiling it, we attempted to compile our code
with it. The results were a mixed bag but we slogged our way through and these are the
lessons we learned from our journey.

HP -= X86 Linux Issues

It should be mentioned that there were a couple of issues that were not related to
the fortran compilers but to the conversion from the HP platforms to the X86 Linux
platforms.

1. Endian Change.
One of the more headache-inducing differences between the two platforms is
the change from Big Endian to Little Endian. Mcidas provides the swhbyt4
routine to handle the conversion but it was difficult to know when you had to
swap the bytes. Part of the problem lies in the fact that the some of the Mcidas
routines handle the swap automatically, whereas some do not. Trial and error
seemed the only way to figure this one out.

2. Header Changes.
Some C header files were located in different directories so a few #includes
had to be changed. The man pages were generally good enough to provide the
appropriate path.

3. Signal Code Changes.
The signal handler code for C had to be changed as well. For example, the
sigvector call on the HP changed to sigaction. This change was not that
difficult as the calls generally could be just swapped out. Again, the man
pages were useful for understanding the change.

77 -= (G9S5 Syntax Errors

There were quite a few syntax changes to be made because of the stricter compiler as
well as a few intrinsic name changes which might have been affected in g77 as well. The
following list is in no particular order.

1. Intrinsic DREAL -> REAL

This is a simple fix and is a carryover from the HP Intrinsics. The REAL
function for HP 90 could return either a double or real based on the second

10.

argument supplied to it. G935 has two separate functions to handle these:
REAL and DREAL.,
Ex. VALI = REAL(VAL24) = VALI=REAL(VAL2)

VALI = REAL(VAL2,8) -> VALI=DREAL(VAL2)
Redeclaration Error
(G95 by default does not like it when a variable is redeclared. If for some
reason you need this ability then use the compiler flag:
“-WI,--allow-multiple-definition™.
Intrinsic STAT
changed from 12 to 13 due to returning more information. We also had an
issue with some programs that used STAT as a function name. These were
changed to MYSTAT just to let it compile.
Intrinsic IGETARG -> GETARG
The intrinsic IGETARG changed in two ways. One is the name: IGETARG is
now just GETARG. The second change is that it only accepts two arguments
now. IGETARG had a third argument for the number of characters to grab but
that is no longer valid.
DATA Z statements
DATA statements that initialize integer HEX values(or any Hollerinth) need
to have have single quotes around the number.
Ex. DATA MISS/Z80808080/ ->

DATA MISS/Z"80808080°/
For some reason, g95 does not allow characters to be initialized with HEX.
Our solution was to move the assignment out of a DATA statement.
Ex. DATA SPACE/Z20/ -> SPACE=Z'20’
DO WHILE (1)
DO WHILE (1) is not valid in g95. DO is an equivalent statement that works.
EQUIVALENCE after DATA statement
(395 1s picky about EQUIVALENCE statements concerning variables that
have already been initialized in a DATA statement. Simply move the
EQUIVALENCE before the DATA statement to correct.
CHAR in PARAMETER statement
Some of our code had PARAMATER statements that looked like:

PARAMETER(CHNULL = CHAR(0))

Our approach was to move the assignment down set it with a HEX value.
Ex. CHNULL = Z2°00°

CHSPACE = Z°20r
LOGICAL operators
The proper LOGICAL operators in g95 are .EQV. and .NEQV.
*-1.0 Error
On some math expressions we were getting an error.
Ex. Sst=rsfparm(12.ihrf+1)*-1.0
For some reason, the compiler could not handle the -1.0. To fix the problem
we changed it to:
Ssf = rsfparm(12.ihrf+1)*(-1.0)

11.

12.

13.

We are thinking this is a bug but it is easy enough to work around.

HP Alias

The HP compiler allowed you to use an alias reference a function. G95 does
not have this feature. We just called the functions by their real name.
Integer Pointer '

(95 currently does not support an integer pointer. We had to recode a small
program because of this. It was not a problem for us but could be a stumbling
block if you are heavily dependent on this function.

Compiler flags

In case you are curious these are the flags we are currently using for g95:

-g —fno-second-underscore —Wno=101 —Wuninitialized ~Wno-globals
-fzero ~fsloppy-char —firace=frame —W1,--allow-multiple-definition

G77 -= 95 Runtime Errors

These are a list of the common runtime errors we have seen thus far.

1.

Fortran -> C strings

Since we have Fortran and C calling each other, we have found out that they
don’t always play nice. With g95 and gec, this is more true than it used to be.
When a Fortran is passed to C, it needs to be Null-terminated or C will have
trouble and run off of the end. However, if you null-terminate the string that
passed to the C function, don’t expect any future compare on that string in
Fortran to behave since the string is passed by reference from Fortran. We
have found that as a general run, if you have to pass a string from Fortran to
C, null-terminate a copy and send that instead.

Data initialization

When we started running our programs, we noticed that some values seemed
way off and some programs would bomb because of bad values. G95 by
default does not initialize anything. DATA statements are the proper way, but
the quick and dirty way is the compiler flag —fzero. This will initialize all
scalar variables to 0. NOTE: The arrays still need a DATA statement.
SAVE statements

If you have tried all of the fixes so far but something still is not working, a
good test would be to start adding SAVE statements to vour functions. Some
of our code depended on the feature of the compiler doing a quiet SAVE for
function variables. It seems g77 still does this. G95 does not and this is a
troublesome problem to track down. If you function has ENTRY statements,
be sure and include a SAVE in the top of the function.

WRITE and STDOUT issue

We were trying to write some debug straight to stdout so that it would appear
in the Mctext window but it would not show up. After much testing, it seems
that g95 was not flushing stdout even after the process had finished.
FLUSH(6) took care of the problem.

5. Function return values
[f for some reason you get a return value from a function that is an integer
value of -2147483648, this a big clue that a function is not declared correctly.
This usually happens when there is an IMPLICIT statement that covers the
function but is the wrong data type. Just declare the function as the data type it
should be and this should clear it up.

