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1.  INTRODUCTION

Remote sensing indicators are now widely used in
agriculture for monitoring crop condition and fore-
casting yield (Wardlow et al. 2012, Basso et al. 2013,
Rembold et al. 2013). Prominent indicators include
empirical vegetation indices, such as the normalized

difference vegetation index (NDVI) and the en -
hanced vegetation index (EVI), which track crop
progress and evolution in green biomass amount
(Kogan et al. 2003, Mkhabela et al. 2005, 2011,
Becker-Reshef et al. 2010, Esquerdo et al. 2011, Fer-
nandes et al. 2011, Gusso et al. 2013, Kouadio et
al. 2014). Other more physically based vegetation
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ABSTRACT: There is a growing demand for timely, spatially distributed information regarding
crop condition and water use to inform agricultural decision making and yield forecasting efforts.
Thermal infrared remote sensing of land-surface temperature has proven valuable for mapping
evapotranspiration (ET) and crop stress from field to global scales using energy balance models.
This is because canopy temperature is strongly regulated by the transpiration flux, which is
reduced under stress conditions. This study investigates the utility of an evaporative stress index
(ESI), computed using the thermal-based Atmosphere–Land Exchange Inverse (ALEXI) surface
energy balance model, for explaining yield variability over the Czech Republic for the period
2002−2014. ESI timeseries, representing standardized anomalies in the actual-to-reference ET
ratio and an indicator of vegetation health, are compared with yield data collected for winter
wheat and spring barley crops in 32 agricultural districts, comprising a range of climatic conditions
within the Czech Republic. Correlations between ESI and yield anomalies vary with climatic
region, with strongest correlations identified in the more drought-prone South Moravian districts
and weaker relationships in the wetter highlands regions. In most regions, correlations with
spring barley yield anomalies exceeded performance for winter wheat. For both crops, correla-
tions peaked during the 1 to 2 mo period prior to the nominal harvest date. These results provide
guidance for effective integration of remotely sensed moisture stress indicators within operational
yield forecasting systems.
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indices describe light-harvesting capacity or photo-
synthetic rates, including the leaf area index (LAI),
the fraction of absorbed photosynthetically active
radiation (fAPAR), or fluorescence spectral features
(Lobell et al. 2002, Doraiswamy et al. 2005, Zhang et
al. 2005, Rizzi & Rudorff 2007, López-Lozano et al.
2015, Guan et al. 2016). Other remote sensing indica-
tors reflect various aspects of the surface moisture
status, i.e. water supply measured as rainfall, water
storage in the soil profile and groundwater retrieved
using microwave radiometers or gravimetry, and
plant water use assessed via satellite-based esti-
mates of evapotranspiration (ET) (Anderson et al.
2007, Bolten et al. 2010, AghaKouchak & Nakhjiri
2012, Houborg et al. 2012).

Many studies have investigated correlations
between satellite indices and crop yields, with the
goal of identifying robust advance indicators of yield
anomalies at harvest (e.g. Unganai & Kogan 1998,
Bastiaanssen & Ali 2003, Johnson 2014, Anderson et
al. 2016). These combined studies have demon-
strated that no single indicator prevails always and
everywhere, with relative performance depending
on climate, soils, management, crop type, and grow-
ing season, as well as specific sensor limitations.
For this reason, multi-indicator approaches have
emerged to support operational drought and yield
monitoring efforts (e.g. Bastiaanssen & Ali 2003,
Doraiswamy et al. 2007, Anderson et al. 2012b, John-
son 2014). To support these new approaches, we
need to better understand the major drivers of yield
correlation variability for different indices in order
to be able to optimally combine available satellite
assets.

This study focuses on the behavior of the evapora-
tive stress index (ESI), an indicator of agricultural
drought expressed as standardized anomalies in the
ratio of actual-to-potential ET as retrieved using a
land surface temperature (LST) based energy bal-
ance algorithm (Anderson et al. 2011, 2013, 2015). ET
estimates based on LST have the advantage of being
more sensitive to variations in both soil surface and
root-zone moisture content in comparison with sim-
pler crop coefficient techniques (Anderson et al.
2012a). LST contains thermal signals of both plant
stress and soil moisture deficiency, with elevated
canopy and soil temperatures resulting from de -
creased transpiration and soil evaporation fluxes
(Moran 2003). Thermal infrared (TIR) retrievals of
LST can provide moisture information at smaller spa-
tial scales than are currently accessible through
microwave remote sensing, enabling mapping down
to sub-field scales (Anderson et al. 2012a). In addi-

tion, studies have demonstrated that LST-based ET
estimates often provide earlier warning of declining
vegetation health than do standard reflectance-
based vegetation indices, particularly during rapid
drought onset events (Otkin et al. 2013, 2014, 2015,
2016).

Anderson et al. (2016) evaluated the performance
of ESI as an indicator of agricultural drought in
Brazil, using yield data collected at both the state and
municipal levels as a metric of drought impact. ESI
showed advantages over LAI and precipitation
anomalies, particularly in response to rapidly chang-
ing moisture conditions in northeast and southern
Brazil. The variability in ESI correlations with yield
anomalies over the country was found to be strongly
related to local volatility in yield, with lower perform-
ance in states showing low year-to-year variability in
yield due to more stable growing conditions and
rainfall. In some cases, excess moisture can lead to
yield reductions, e.g. due to waterlogging or mois-
ture-favoring pests and diseases. Changes in crop
management and technology over the period of
analysis can further confound correlation analyses.

In this study, factors influencing ESI-yield correla-
tions are investigated using yield data collected at
the district scale from 2002 to 2014 in several agricul-
tural regions within the Czech Republic (CR), which
span a range in growing conditions related to local
climate and elevation. The study compares ESI per-
formance for 2 important cereal crops in Czech agri-
cultural production: winter wheat and spring barley.
These crops together comprise the highest planted
acreage in field crops in the CR, and encapture dif -
ferent growing seasons (winter vs. spring), which
expose the crops to different seasonal impacts in
terms of timing and strength of moisture sensitivities
(Hlavinka et al. 2009, Trnka et al. 2012). 

2.  MATERIALS AND METHODS

2.1.  Study area

The study area in the CR is outlined in Fig. 1, along
with maps of relevant physical characteristics of the
region including elevation and cropping intensity.
The districts analyzed in the study (listed in Table 1
and delineated in Fig. 1a) were selected because
they had a full record of annual yields for both winter
wheat and spring barley over the study period. These
districts lie within the regions of Central, South and
Northeast Bohemia (STC, JHC, and HKK, respec-
tively), South Moravia (JHM), Northwest and Central
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Moravia (OLK), and a region straddling the Bohemian-
Moravian highlands (VYS).

In the CR, the intensity of cropped area is highest
at the lower elevations (JHM, STC and OLK) due
to more favorable climate and water availability
(Fig. 1b,c). While most crops in the CR are rainfed,
irrigation is used to a limited extent as a supplemen-
tal water source, mostly for high value crops at the
lowest elevations, e.g. in the river valleys in JHM and
STC. In the highland regions, rainfall is more plenti-
ful due to terrain-enhanced precipitation. JHC

includes forested mountainous terrain bordering
Germany, and has the lowest average cropping
intensity of the regions studied.

2.2.  Yield data and crop characteristics

This study focuses on 2 major cereal crops grown in
the Czech Republic: winter wheat (Triticum aestivum
L.) and spring barley (Hordeum vulgare). Together,
they represented in 2015 >42% of arable land (31%
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Fig. 1. Study area for investigation of relationships between the evaporative stress index (ESI) and crop yields in the Czech
 Republic (CR): (a) districts and regions included in the analysis (see Table 1 for abbreviations); (b) average elevation (m a.s.l.); 

(c) percent cropland in each 0.05° grid cell
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for winter wheat and 11% for spring barley) accord-
ing the Czech Sta tistical Office (https://vdb.czso.cz/
vdbvo2/faces/en/ index. jsf). The percentage of total
acreage comprised of spring barley was even higher
in the early part of the analyzed period due to the
higher demand for feed grain. Winter wheat is typi-
cally sown in late September and spring barley in
late March. They are usually harvested from early
July to mid August, depending on the season.

These crops were chosen in part to investigate dif-
ferences in ESI sensitivity for winter versus spring
crops. Winter crops are typically less sensitive to
spring and summer droughts because they already
have well-established rooting systems as the warm
growing season commences (Hlavinka et al. 2009).
However, they are more sensitive to fall drought and
lack of snow cover (Zahradníček et al. 2015). Estab-
lishing a parity between spring and winter cereal
crops distributes climatic risk and may be an effec-
tive means for climatic adapation.

Yield data for the period 2002−2014 were obtained
primarily from the Ministry of Agriculture of the
Czech Republic (http://eagri.cz/public/web/en/ mze/).
In districts and years where it was difficult to find any
existing data, yield estimates from the Czech Agrar-
ian Chamber were used (www.agrocr.cz/?lang=2).
The Czech Agrarian Chamber is an organization of
entities doing business in agriculture, forestry and
the food industry, and supporting business activities
in these areas.

These yield estimates were developed from statisti-
cal surveys of farmers operating in each agricultural
district, and may have some level of bias due to sam-
pling structure. Differences in the composition and
size of the farm sample might also be an issue in
 several districts. The yield estimates therefore have
some level of uncertainty and tend to be lower than
observations obtained from small experimental
fields. Furthermore, yield estimates are based on
area harvested rather than area planted. On years
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Abbre- District Region Elevation Avg crop- Avg barley Avg wheat 
viation (m a.s.l.) land (%) yield (t ha−1) yield (t ha−1)

BN Benešov Středočeský kraj (STČ), 430 66 3.9 5.4
BE Beroun Central Bohemia 378 59 3.2 4.1
KD Kladno 315 78 4.4 5.3
KO Kolín 255 80 4.9 5.6
KH Kutná Hora 361 71 4.8 5.9
MB Mladá Boleslav 256 66 5.2 5.8
NB Nymburk 195 75 5.0 5.7
PY Praha-východ 302 70 5.1 5.9
PB Příbram 483 50 3.9 4.9
RA Rakovník 409 60 4.0 5.0

JH Jindřichův Hradec Jihočeský kraj (JHČ), 509 47 4.1 4.9
PI Písek South Bohemia 447 57 3.9 4.9
ST Strakonice 477 66 3.8 5.0

HK Hradec Králové Královéhradecký 243 74 5.5 6.5
JC Jičín kraj (HKK), 308 68 5.2 6.2
NA Náchod Northeast Bohemia 422 62 4.4 5.7
RK Rychnov nad Kněžnou 465 53 4.4 5.2
TU Trutnov 582 42 3.9 5.1

BK Blansko Jihomoravský kraj 485 52 4.3 5.1
BI Brno-venkov (JHM), South Moravia 325 68 4.5 5.2
BV Břeclav 195 80 3.9 4.6
HO Hodonín 252 68 4.2 4.9
VY Vyškov 342 67 5.2 5.8
ZN Znojmo 301 81 4.2 5.0

OC Olomouc Olomoucký kraj (OLK), 406 62 5.5 6.5
PV Prostějov Northwest/Central 374 77 5.5 6.5
PR Přerov Moravia 307 77 4.8 5.7

HB Havlíčkův Brod Kraj Vysočina (VYS), 494 67 4.5 5.3
JI Jihlava Bohemian-Moravian 579 63 4.8 5.8
PE Pelhřimov Highlands 570 65 4.4 5.3
TR Třebíč 473 75 4.1 5.3
ZR Ždár nad Sázavou 577 61 4.7 5.5

Table 1. Abbreviations and summary data for districts and regions in the Czech Republic considered for study of relationships
between the evaporative stress index (ESI) and wheat and barley yields. Average (Avg) percentages of cropland are based on
Moderate Resolution Imaging Spectroradiometer (MODIS) data; crop yields show values for winter wheat and barley for the 

period 2002−2014
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with very poor growing conditions, these estimates
may underestimate true yield losses as abandoned
crops are not accounted for. Still, they reasonably
represent existing variability in the yield levels that
can be explained by climatic factors and have been
effectively used for spatial analyses of agricultural
production in the CR (e.g. Hlavinka et al. 2009, Trnka
et al. 2012).

2.3.  Evaporative stress index

The ESI represents standardized anomalies in the
ratio of actual-to-reference ET (fRET), highlighting
areas where landscape evaporative fluxes, including
the crop transpiration rate in cropped areas, are
higher or lower than normal for a given seasonal
interval. Normalization by reference ET reduces the
impact of climate and radiation drivers on the ET
flux, making the ESI more specifically responsive to
soil moisture drivers. A standard FAO-56 Penman-
Monteith reference ET for grass (Allen et al. 1998) is
used for normalization, based on sensitivity tests by
Anderson et al. (2013).

This study uses ESI data for 2002−2014 extracted
from a global product created at 0.05° resolution
(roughly 5 km) and weekly timesteps. The actual
ET data are generated with the time-differential
Atmo sphere-Land Exchange Inverse (ALEXI) sur-
face energy balance model using day-night tempera-
ture differences from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) on board the Aqua
satellite (Anderson et al. 2015). The global ESI prod-
ucts are routinely created for 4, 8 and 12 wk (roughly
1, 2 and 3 mo) composite timeframes to represent dif-
ferent temporal scales of drought and pluvial condi-
tions. These products are referred to as ESI-1, ESI-2
and ESI-3, respectively. Composited fRET values over
these time frames are dif ferenced with climatological
mean values and normalized by the variability in
fRET over the period of record. For more details, see
Anderson et al. (2015).

2.4.  Regional variables

2.4.1.  Elevation

Elevation data (Fig. 1b) were obtained from the
Global 30-Arc-Second Elevation dataset (GTOPO30;
Gesch et al. 1999) and averaged onto the 0.05° ESI
grid. Elevation is one factor used to understand vari-
ations in the ESI−yield relationships.

2.4.2 Percent cropland

Percent cropland in Fig. 1c was extracted from a
global 1 km consensus land-cover product which is
based on a harmonization of several individual products
(Tuanmu & Jetz 2014), including GlobCover (Bicheron
et al. 2011), the MODIS land-cover product (MCD12Q1;
Friedl et al. 2010), GLC2000 (Bar tholomé & Belward
2005) and DISCover-IGBP (Loveland & Belward 1997).
The product was aggregated to the 0.05° ESI grid.

2.4.3.  Climatological variables

District level measures of average air temperature
and precipitation for April to September were
obtained from Hlavinka et al. (2009). These variables
were determined from station data collected over the
period 1961−2000. Although these data do not over-
lap the period of record studied here, we make the
assumption that the relative inter-district variability
in climatological variables has not changed signifi-
cantly, although the absolute values are not likely to
be stationary.

2.5.  Yield correlations

To better constrain the analysis to agricultural
zones within each district, ESI data were averaged
over each district area using only pixels with percent
cropland >50% as defined by the MODIS product
described in Section 2.4.2. This threshold was se -
lected to minimize contributions from pixels with
predominantly forest, urban or natural vegetation
cover while still retaining a reasonable sample size
for district averaging. Anderson et al. (2015) demon-
strated that the ESI behavior of forested areas in
Brazil in the face of drought significantly differed
from that of agriculture and short vegetation. This
may be due to a combination of physiological effects
or deeper rooting depths characteristic of forests,
which add resilience to moisture deficit events.
Masking contributions from forest and other non-
agricultural landcovers improved ESI-yield correla-
tions in the current study.

Yield anomalies were computed at the district level
as departures from a linear regression in time over
the 2002−2014 period to remove trends in increasing
annual yield that may result from technological
advances, land management changes or genetic
improvements in cultivars, as follows:

yield (u,y)’ = yield (u,y) – yield lin(u,y) (1)
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where u is the political unit in question (CR district),
y is the year, and yield lin is given by a linear temporal
fit to all yield data for that unit over the period of
record.

ESI-yield correlations were quantified using the
Pearson correlation coefficient (r) computed from ny
× ns samples, where ny = 13 is the number of years of
yield data included in the analysis (2002−2014), and
ns is the number of districts included in a regional
evaluation, which varies from region to region.

For district-level yield analyses, correlations were
computed at 7 d intervals between ESI-3 and yield
anomalies (Eq. 1). In order to identify optimal com-
positing windows during the growing season when
an index is most predictive of at-harvest yield, a
2-dimensional correlation space was computed for
each index, crop and region. In these analytical plots,
the x-axis represents the end-date of the index aver-
aging window, and the y-axis represents the length
of the window.

3.  RESULTS AND DISCUSSION

3.1.  Regional timeseries

Annual maps of ESI-3 (3 mo composites) and
detrended yield anomalies for winter wheat and

spring barley crops in the targeted districts for 2002−
2014 are shown in Fig. 2. ESI maps for Week 26 (3 mo
period ending 2 July) and Week 30 (ending 29 July)
are included to represent the periods of peak correla-
tion with winter wheat and spring barley yield anom-
alies, respectively (see Section 3.2). In general, there
is reasonable spatial and temporal correspondence
between the 2 datasets. Drought years (2003, 2006,
2007 and 2012) with large yield reductions were cap-
tured by negative anomalies in the ESI. In addition,
the high-yield years of 2004 and 2014 are associated
with positive ESI values (green in Fig. 2). JHM shows
particularly strong interannual volatility in yields
(e.g. contrast 2011, 2012 and 2013), related to highly
variable rainfall amounts. The 2012 drought in some
south Moravian districts was classified as the worst in
130 years, with subtantial yield reductions (particu-
larly in winter crops) and even wildfire outbreaks,
which are fairly rare in the region (Zah radníček et al.
2015). In 2009 and 2010, differences in ESI-3 maps
between Weeks 26 and 30 indicate rapidly changing
moisture conditions during the summer season, in
both cases associated with average or below-average
yields.

In Fig. 3, time series of district-averaged ESI and
yield data for representative districts in each region
provide an example of inputs to the temporal cor -
relation analyses discussed in the following sections.
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Fig. 2. Time series of maps for 2002−2014 of the 3 mo composite evaporative stress index (ESI-3; in units of sigma values) for
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These plots clearly demonstrate widespread yield
reductions in both 2003 and 2012, particularly in
Moravia (JHM and OLK), corresponding to mid-year
negative spikes in ESI. However, as in the case of
2007 or most recently 2015, even quite pronounced
spring or summer drought may not necessarily lead
to severe yield reduction. In these years, the impacts
were mitigated, particularly for winter crops, by an
earlier start of season which caused the crops to over-
winter better and in general establish deeper and
more resilient root systems (Trnka et al. 2015). In
contrast, droughts that occur in late fall the prior year
will be more detrimental to winter crop yields (e.g. in
2012).

3.2.  Correlation strength and timing

Results of the regional correlation analyses are sum-
marized in Fig. 4, using detrended yield anomaly and
ESI-3 timeseries with a 1 wk averaging window to
suppress noise. Data from all target districts within
each region were combined to increase sample size.
Correlations are significant (p < 0.01) for r > 0.4 for
JHC and OLK (3 districts), r > 0.3 for HKK, VYS and
JHM (4 to 5 districts), and r > 0.2 for STC (10 districts).
The week on the x-axis indicates the end of the 3 mo
ESI composite used in the correlation computation.

The range in peak correlation strength is similar
between crops (0.4 to 0.8), but regionally more
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diverse for winter wheat than for spring barley,
which is typically above 0.6 (excluding JHC). Due to
the longer growing season, winter wheat crops are
susceptible to a wider range of climatic events than is
spring barley, including fall and summer droughts as
well as winter snow cover duration and frosts (Kolář
et al. 2014). In some districts, this will reduce index−
yield correlations or diffuse them over a broader
range in time. Correlations tend to peak earlier for
winter wheat, during the 3 mo period ending around
Weeks 26 to 28 (early to mid July), with earlier and
higher peaks in Moravia than in the Bohemian
regions. Spring barley peak correlations occur be -
tween Weeks 28 to 30 (mid to late July). Using ESI-1,
the peaks correlations occur about 2 wk earlier,
although the results have higher noise levels (not
shown; the utility of shorter compositing intervals for
crop modeling is discussed further in Section 3.4). In
general, these findings are consistent with the nomi-
nal April−June periods of peak moisture sensitivity
identified for these crops by Hlavinka et al. (2009)
using a modified Palmer drought severity index,
encompassing the critical yield-determining pheno -
phases of grain development for both crops.

For both crops, JHC is an outlier, with statistically
insignificant ESI−yield anomaly correlations (<0.4)
throughout the growing season suggesting that mois-
ture limitations on crop growth are not strong. This
may be due in part to the higher preciptation rates
and relatively shallow groundwater tables character-

istic of this region. Also the proportion of agricultural
land used for growing wheat and barley in JHC is
small compared to the other regions studies, with
large areas of the region’s cropped land used for graz-
ing or fodder production. In contrast, JHM shows the
highest peak correlations, between 0.7 and 0.8. Large
year-to-year variations in yield experienced in this re-
gion (noted in Section 3.1) contribute to the higher
magnitudes of correlation here. The regional curves
in Fig. 4 for CR crops demonstrate a significantly
higher degree of inter-coherence in comparison with
results obtained for state-level yields over Brazil (An-
derson et al. 2016), likely due to the much smaller geo -
graphic extent of the study area in the current analysis.

Correlation window maps in Fig. 5 (described in
Section 2.5) expand on the information in Fig. 4,
showing correlations obtained over a broad range of
index averaging windows. The maps represent cor-
relations obtained for all districts combined, and seg-
regated by region. These plots demonstrate the con-
sistency in peak correlation timing between regions
(i.e. the location of green maxima along the x-axis),
as well as the relative strength of correlation be -
tween ESI and crop yields. OLK shows a tendency
toward anticorrelation with ESI conditions (r ~ −0.4)
around Week 10 for both crops. While this is likely an
artifact of the specific set of moisture patterns that
occured during the period of record, it does highlight
the rapid high-amplitude within-season variability in
ESI characteristic of this region (see Fig. 3). JHC, on
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the other hand, shows signals of even stronger anti-
correlation with moisture conditions in the year prior
to the current growing season. This too appears to be
an artifact, driven largely by strong yield anomalies
of opposite magnitude in 2003 and 2004 (Fig. 3). Such
artificial features should diminish as more years of
yield and remote sensing data become available.

Based on Fig. 5, the ranking in peak correlation
strength by region is similar between crops, with
JHM and OLK (Moravia) having the highest correla-
tions, followed by HKK and STC (Bohemia), with
JHC and VYS (southern highlands) consistently hav-
ing the lowest correlations. Fig. 6 details correlation
window maps for districts within JHM, demonstrat-
ing a consistency in correlation structures typical
within most of the regions analyzed. Yield departures
in the BV district for both crops are strongly related

to ESI variations, with peak correlations of 0.85 for
winter wheat and 0.81 for spring barley occurring
around Weeks 26 to 27. BV is located in a valley at
the confluence of the Dyje and Morava rivers, and is
the climatologically warmest and driest of all the dis-
tricts studied, accounting for the high susceptibility
of crops to the moisture limiting conditions expressed
in the ESI. Potential drivers of regional and inter-
district variations in correlation strength are further
considered in the following section.

3.3.  Regional maps of correlation properties

Fig. 7 contains maps of various quantities describ-
ing the spatial variation in correlation between ESI
and yield anomalies (timing and magnitude of peak
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correlation, and regression yield errors) and potential
drivers thereof (yield variability, cropping intensity,
elevation, climate). Here ‘yield error’ is defined as
the root mean square difference of the observed
yield departures around the ESI-yield regression
developed for the week with peak correlation. While
it is not a true expected error in predicted yield since
it has not been established using an independent
data sample, it does provide some estimate of the
expected spatial variability in predicted yield accu-
racy based on the quality of the regression. As more
years of yield data become available, independent
testing will become more feasible. Relative yield
error is computed as yield error divided by the aver-
age yield observed over the 13 yr period of record.

In particular, we examine the role of elevation, cli-
mate, and yield stability, as described by the coeffi-

cient of variation (CV) in observed yield over time, as
potential factors that might influence the correlation
between ESI and yield anomalies in the CR. At higher
elevations, the likelihood is increased that energy
limitations (i.e. temperature and insolation) dominate
over moisture constraints represented in the ESI. In
areas with low yield variability, due to reliable grow-
ing conditions or irrigation or other factors that may
stabilize yield from year to year, lower correlation
coefficients may be expected with any crop indicator
due to limitations in the range of variation (López-
Lozano et al. 2015, Anderson et al. 2016).

As seen in Fig. 7 and in the scatter plots in Fig. 8,
each of these factors appears to be spatially related to
ESI correlation strength. The lowest ESI correlations
are uniformly obtained at the highest elevations. This
relationship reflects the effects of elevation-dependent
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precipitation and temperature regimes, with higher
correlations under the drier and warmer climates
typically found at lower elevations in the CR, charac-
terizing moisture-limiting growth conditions as in
JHM (Fig. 7). These low elevation areas also tend to
have higher interannual yield variability. Similar

relationships were evident in agricultural regions in
Brazil, where highest ESI performance was observed
in the semiarid northeast regions, as well as the more
humid south which experienced several episodes of
flash drought during the study period (Anderson et
al. 2016). In the higher elevation districts where rain-
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Fig. 7. Maps of properties describing ESI−yield anomaly correlation strength (r-values) for wheat and barley and potential fac-
tors that may influence correlations, including yield coefficient of variation (CV), elevation, percentage of cropland, and clima-

tological temperature and precipitation rates
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fall is typically adequate and growing degree days
may be a more relevant constraint, it may be that
anomalies in LST itself might outperform ESI in
terms of yield correlation.

Anomalous districts (KO, MB and NV; shown by
red markers in Fig. 8) with relatively low ESI-yield
correlations at low elevations, particularly for wheat,
are located close to the Labe River (in Germany,
known as the Elbe River) in the STC region. These
districts also have unusually low yield CV amongst
the low-elevation districts (along with HK, also near
the Labe River). The lower ESI performance in STC
compared to JHM may be related to somewhat
higher regional rainfall rates. Furthermore, the 0.05°
ESI signal in this area may be capturing additional
moisture signals from shallow groundwater and
riparian vegetation along the Labe, or from irrigated
fields, which while not extensive, are most con -
centrated in this region. Hain et al. (2015) discuss
impacts of ancillary land-surface moisture sources on
ET estimates retrieved with ALEXI. This may point to
the benefit of using higher resolution ESI products
for the CR, to better mask non-agricultural sub-pixel
contributions to the perceived crop stress signal.

Relative yield error in the optimal regression func-
tion for both winter wheat and spring barley is rela-
tively uniform across regions with the exception of
districts in JHC and VYS, where JH, ST, JI and PE
have average errors >20% (Fig. 7). Errors in yield de-
partures around the ESI regression function for the
week of peak correlation are ~13% for both crops in
districts at elevations <450 m, with the highest errors
in districts >500 m (Fig. 9).  Future investigations
will quantify actual prediction errors for each yield-
reporting district within the CR.

3.4.  Spatiotemporal considerations for an
 operational yield forecasting system

In this study, a 3 mo ESI composite was used to sup-
press temporal noise in the correlation curves and to
better highlight regional variability in the relationship
between ET and yield anomalies. This window, how-
ever, is too broad to capture in detail stress events oc-
curing during specific critical phenological stages,
such as flowering, when crop yield development is
most sensitive to soil moisture deficits. Similarly, the
5 km resolution of the ESI product used here does not
allow for the discernment of differences in phenologi-
cal development between indi vidual crop types. De-
layed emergence of a subset of crops within a 5 km
pixel, due for example to unusually wet or cold condi-
tions around the planting date, can result in a negative
ET anomaly during green-up, which may be falsely
 interpreted as a drought signal (Anderson et al. 2013).

Yield correlation analyses, such as those presented
here, can be considered a first step in elucidating the
relative value of remotely sensed indices as pre -
dictors of yield anomalies, as well as general spatial
and temporal patterns of index performance. With
this understanding, the indicators can be more effec-
tively combined within the context of a physiologi-
cally based crop modeling framework that takes into
consideration stress timing relative to phenological
stage in predicting yield impacts. For yield forecast-
ing applications, the moisture stress datastreams will
be most usefully developed at spatial resolutions
where a significant number of pure crop pixels can
be extracted over the region of interest, and at the
highest temporal resolution afforded by the remote
sensing methods employed.
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The average field size in the CR is relatively large
in comparison with neighboring countries in the
European Union due to the period of collectivization
that occurred after World War II, making this region
conducive for agricultural remote sensing studies.
The 2010 Agricultural Census for the CR (www. czso.
cz/ csu/czso/2127-12-eng_n_2012-2) gives an estimated
mean field block size (i.e. the part of the field with the
same crop in a given season) as being over 20 ha
(~450 × 450 m2),which is 2 orders of magnitude larger
than in 1948. A new prototype ALEXI ET product at
375 m resolution, generated using day-night LST dif-
ferences from the Visible Infrared Imaging Radiome-
ter Suite (VIIRS) (the MODIS follow-on instrument)
may provide sufficient pure crop pixels for this
region. Alternatively, a data fusion system combining
ET retrievals from MODIS (~daily, 1 km resolution)
and Landsat (bi-weekly, 30 m resolution) could be
employed to generate ET datasets at daily timesteps
and 30 m resolution (Cammalleri et al. 2013, 2014,
Semmens et al. 2016). In practice, a dynamic crop
mask would be applied to time-series maps of actual-
to-reference ET ratio (fRET) at 30 or 375 m to extract
samples of pure pixels for a given crop type. These
samples would then reaggregated to the yield moni-
toring unit (e.g. district level) to produce a localized
crop-specific moisture stress function, e.g. of the
form as described Doorenbos & Kassam (1979). A 2
wk to 1 mo fRET compositing window would better
isolate stress events  occurring during moisture-sensi-
tive periods of crop  development while still affording
some noise reduction capacity. Ongoing research is
exploring a combination of high spatiotemporal reso-
lution moisture stress functionals, developed using
the data fusion techniques described above, with re -
motely sensed crop phenology metrics mapped at a
similar spatial scale to constrain spatially distributed
crop modeling systems of varying complexity (F. Gao
et al. unpubl.).

4.  CONCLUSIONS

This paper investigates drivers of spatial variability
in correlations between ESI products, developed at
0.5° spatial resolution using MODIS retrievals of
day−night LST difference, and detrended yield
anomalies for spring barley and winter wheat crops
grown in several agricultural districts in the CR. For
ESI-3 timeseries (3 mo compositing window), correla-
tions for both crops peaked for composite end dates
in early-to-mid July, indicating maximum index
 sensitivity during the April to June period coincid-

ing with the spring and summer drought period.
Peak correlation coefficients for winter wheat were
more variable among districts than for spring barley,
re sulting from the longer growing season exposure to
different yield-limiting climatic events.

The results suggest that ESI will be most beneficial
for yield estimation in agricultural districts where
crop growth is primarily moisture-limited; in the
Czech Republic, these are at lower elevations which
are climatologically warmer and drier. Higher resolu-
tion ESI products may be of benefit in some of the
districts analyzed, to better mask out sub-pixel con-
tributions from ancillary moisture sources in riparian
and irrigated areas, and from non-agricultural land-
cover classes. A prototype ESI product at 375 m
 resolution, generated using VIIRS day-night LST dif-
ferences, will be evaluated for improved perform-
ance in these heterogeneous agricultural landscapes.

Future work will compare ESI performance with
that of other indices used for routine drought moni-
toring in the CR (e.g. www.intersucho.cz/en/) based
on modeled soil moisture (Hlavinka et al. 2011) and
remotely sensed vegetation condition as reflected in
NDVI anomalies, and with anomalies in LST which
may better capture energy-limiting crop growth con-
ditions at higher elevations. The ultimate goal is to
integrate remote sensing indicators conveying mois-
ture and energy constraints within a spatially distrib-
uted crop modeling framework that can appropri-
ately apply these constraints during phenologically
sensitive stages of crop growth to forecast yield
impacts.
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