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[1] Due to the influence of evaporation on land-surface temperature, thermal remote
sensing data provide valuable information regarding the surface moisture status. The
Atmosphere-Land Exchange Inverse (ALEXI) model uses the morning surface
temperature rise, as measured from a geostationary satellite platform, to deduce surface
energy and water fluxes at 5–10 km resolution over the continental United States. Recent
improvements to the ALEXI model are described. Like most thermal remote sensing
models, ALEXI is constrained to work under clear-sky conditions when the surface is
visible to the satellite sensor, often leaving large gaps in the model output record. An
algorithm for estimating fluxes during cloudy intervals is presented, defining a moisture
stress function relating the fraction of potential evapotranspiration obtained from the
model on clear days to estimates of the available water fraction in the soil surface layer
and root zone. On cloudy days, this stress function is inverted to predict the soil and
canopy fluxes. The method is evaluated using flux measurements representative at the
watershed scale acquired in central Iowa with a dense flux tower network during the Soil
Moisture Experiment of 2002 (SMEX02). The gap-filling algorithm reproduces
observed fluxes with reasonable accuracy, yielding �20% errors in ET at the hourly
timescale, and 15% errors at daily timesteps. In addition, modeled soil moisture shows
reasonable response to major precipitation events. This algorithm is generic enough
that it can easily be applied to other thermal energy balance models. With gap-filling, the
ALEXI model can estimate hourly surface fluxes at every grid cell in the U.S. modeling
domain in near real-time. A companion paper presents a climatological evaluation of
ALEXI-derived evapotranspiration and moisture stress fields for the years 2002–2004.

Citation: Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas (2007), A climatological study of

evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation,

J. Geophys. Res., 112, D10117, doi:10.1029/2006JD007506.

1. Introduction

[2] Given current trends in population growth and climate
change, it will become increasingly critical to be able to
accurately monitor the earth’s water resources at regional,
continental, and global scales. One component of the land
surface water budget that can be readily monitored by
satellite is water loss to the atmosphere, or evapotrans-
piration (ET). Robust, operational methodologies for map-
ping ET, soil moisture, and moisture stress over large areas

using remote sensing will have widespread utility in a
variety of resource management and forecasting appli-
cations. Evapotranspiration is a critical variable in hydro-
logic modeling: for forecasting river stage and flood
potential, and for constraining recharge in groundwater
simulations. ET and other surface fluxes provide important
boundary conditions for numerical weather prediction and
general circulation models. Routine spaceborne soil mois-
ture and moisture stress mapping will also benefit efforts in
drought detection, yield forecasting, fire prediction, and
agricultural and military trafficability assessment.
[3] Prognostic assessments of evapotranspiration using

water budget models such as the Variable Infiltration
Capacity [VIC; Liang et al., 1994; Wood et al., 1992] model
and the Soil and Water Assessment Tool [SWAT; Arnold
et al., 1998] require input fields of spatially distributed
precipitation, derived through surface gauge networks,
radar, satellite imagery, and/or modeling. In these models,
ET is regulated by the moisture content in the soil profile,
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which is updated each timestep based on predicted infil-
tration and depletion rates. These rates depend strongly on
the accuracy of the input fields of precipitation and soil
hydraulic properties, quantities that are difficult to specify at
regional or continental scales, and on the accuracy of the
soil model itself [Beljaars et al., 1996]. Biases in these
fields result in cumulative errors in soil moisture pools and
associated fluxes, which can become large in the long-term
if there are no mechanisms for periodic correction [Betts
et al., 1997; Schaake et al., 2004].
[4] In contrast, diagnostic satellite assessments can

accomplish a complete update of the current surface
moisture state whenever the remote sensing data are avail-
able. In general, these models do not require precipitation as
an input, nor do they need information about subsurface soil
texture: instantaneous ET rates are linked to observables like
land-surface temperature and vegetation cover fraction.
Examples of this type of modeling approach include the
Surface Energy Balance System [SEBS; Su, 2002], the
Surface Energy Balance Algorithm for Land [SEBAL;
Bastiaanssen et al., 1998], the temperature/NDVI (Normal-
ized Difference Vegetation Index) triangle method [Gillies
et al., 1997], and the Two-Source Energy Balance model
[TSEB; Norman et al., 1995]. The disadvantage to diag-
nostic modeling is that the output record often suffers large
spatial and temporal gaps due to cloud cover and infrequent
image availability as governed by the satellite overpass
schedule.
[5] In this and in a companion paper [Anderson et al.,

2007b, hereinafter referred to as A2], we investigate the
utility of a thermal infrared (TIR) remote sensing approach
to monitoring ET at continental scales that incorporates
methods for addressing the spatiotemporal limitations of
diagnostic modeling. The Atmosphere-Land Exchange
Inverse (ALEXI) model [Anderson et al., 1997] is unique
among existing thermal ET models in that:
[6] (a) ALEXI is based on a two-source land-surface

representation (the TSEB), which treats the land surface
as a composite of soil and vegetation elements with diffe-
rent temperatures, fluxes, and atmospheric coupling. This
results in a single model formulation that can be applied to a
wide range of canopy and moisture stress conditions,
including partially vegetated surfaces.
[7] (b) ALEXI inherently uses the high-temporal reso-

lution (�hourly) information provided by geostationary
satellites to reduce sensitivity to sensor bias and to provide
time-continuous flux predictions over continental scales.
[8] Mecikalski et al. [1999] recorded an initial attempt at

a regional-scale application of ALEXI over the central U.S.
using observations from the Geostationary Operational
Environmental Satellite (GOES). The input data sources
and modeling techniques have been subsequently improved,
and now include a means for deducing moisture stress and
available soil water from modeled ET rates. In addition,
techniques have been developed for predicting fluxes on
cloudy days when thermal satellite imagery is not available,
and for extrapolating instantaneous fluxes estimated at
discrete imaging times to full hourly coverage at each grid
cell in the modeling domain. Vegetation cover fraction is
derived from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) leaf area index product (MOD15A).

[9] In this paper we describe the enhancements made to
the model and demonstrate the gap-filling technique in
comparison with large-scale flux measurements from the
Soil Moisture-Atmospheric Coupling Experiment of 2002
[SMACEX; Kustas et al., 2005]. In A2, a 3-year climato-
logical analysis of continental-scale evaporative fluxes and
moisture stress at 10-km spatial resolution over the U.S. will
be presented. Ultimately, a coupling of prognostic and
diagnostic modeling systems may provide the optimal
means for performing time-continuous hydrologic monito-
ring over large spatial scales.

2. Model Description

2.1. The ALEXI Model

2.1.1. Interpretation of the Thermal
Land-Surface Signature
[10] Surface energy balance models estimate ET by parti-

tioning the energy available at the land surface (RN - G,
where RN is net radiation and G is the soil heat conduction
flux, in Wm�2) into turbulent fluxes of sensible and latent
heating (H and lE, respectively,Wm�2):

RN � G ¼ H þ lE ð1Þ

where l is the latent heat of vaporization (J kg�1) and E is
evapotranspiration (kg s�1 m�2 or mm s�1). Surface
temperature is a valuable metric for constraining lE
because varying soil moisture conditions yield a distinctive
thermal signature: moisture deficiencies in the root zone
lead to vegetation stress and elevated canopy temperatures,
while depletion of water from the soil surface layer causes
the soil component of the scene to heat up rapidly.
[11] The land-surface representation in ALEXI model is

based on the series version of the two-source energy balance
model of Norman et al. [1995; see also Kustas and Norman,
1999, 2000]. The TSEB partitions the composite surface
radiometric temperature, TRAD, into characteristic soil and
canopy temperatures, TS and TC, based on the local vege-
tation cover fraction apparent at the thermal sensor view
angle, f (q):

TRAD qð Þ � f qð ÞTC þ 1� f qð Þ½ 	TS ð2Þ

(Figure 1), where equation 2 is a linear approximation to an
aggregation of surface radiance values. With this informa-
tion, the TSEB evaluates the soil (subscript ‘s’) and the
canopy (‘c’) energy budgets separately, computing system
and component fluxes of net radiation (RN = RNC + RNS),
sensible and latent heat (H = HC + HS and lE = lEC + lES),
and soil heat conduction (G). Because angular effects are
incorporated into the decomposition of TRAD, the TSEB can
accommodate thermal data acquired at off-nadir viewing
angles and can therefore be applied to geostationary satellite
images. An overview of the TSEB equation set is given in
Appendix A.
[12] The TSEB has a built-in mechanism for detecting

thermal signatures of stress in the soil and canopy. A
modified Priestley-Taylor (PT) relationship [Priestley and
Taylor, 1972], applied to the divergence of net radiation
within the canopy (RNC), provides an initial estimate of
canopy transpiration [lEC; Tanner and Jury, 1976], while
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the soil evaporation rate (lES) is computed as a residual to
the system energy budget. If the vegetation is stressed and
transpiring at significantly less than the potential rate, the
PT equation will overestimate lEC and the residual lES will
become negative. Condensation onto the soil is unlikely
midday on clear days, and therefore lES < 0 is considered a
signature of system stress. Under such circumstances, the
PT coefficient is throttled back until lES � 0 (expected
under dry conditions). Both lEC and lES will then be some
fraction of the potential ET rates associated with the canopy
and soil components of the scene; these ratios are integral to
the soil moisture estimation scheme described below.
2.1.2. Regional-Scale Boundary Conditions
and Execution
[13] For regional-scale applications of the TSEB model,

meteorological boundary conditions in air temperature, TA
in Figure 1, must be specified at the spatial resolution of the
thermal data (typically 
10 km). Due to localized feedback
between the land and atmosphere, this input field cannot be
interpolated with adequate accuracy from standard synoptic
measurements, with typical spacing in the U.S. of 100 km.
To overcome this limitation, the TSEB has been coupled
with an atmospheric boundary layer model, thereby simu-
lating land-atmosphere feedback and its effect on local air
temperature internally. In the ALEXI model, the TSEB is
applied at two times during the morning ABL growth phase
(approximately t1 = 1.5 and t2 = 5.5 h after local sunrise),
using radiometric temperature data obtained from a geosta-
tionary platform like GOES or Meteosat at spatial reso-
lutions of 5–10 km. Energy closure over this interval is
provided by a simple slab model of ABL development
[McNaughton and Spriggs, 1986], which relates the rise
in air temperature in the mixed layer to the time-integrated
influx of sensible heat from the land surface (Figure 1). As
a result of this configuration, ALEXI uses only time-
differential temperature signals, thereby minimizing flux

errors due to absolute sensor calibration and atmospheric
and spatial effects [Kustas et al., 2001]. The primary
radiometric signal is the morning surface temperature rise,
while the ABL model component uses only the general
slope (lapse rate) of the atmospheric temperature profile
[Anderson et al., 1997; see also Appendix A], which is
more reliably analyzed from synoptic radiosonde data than
is the absolute temperature reference.
[14] At each GOES observation time, the TSEB simul-

taneously balances energy budgets associated with the
canopy, the soil and the composite land-surface system.
Input data required to execute ALEXI are listed in Table 1
and operational sources are discussed below. Primary out-
puts from ALEXI are instantaneous values of TA, G, RN,
RNC, RNS, lE, lEC, lES, H, HC, and HS at times t1 and t2.
In addition, the source temperatures TC and TS are evalu-
ated at each GOES observation time and have intrinsic
value for modeling canopy photosynthesis and soil respi-
ration [Anderson et al., 2000].
2.1.3. Validation
[15] To validate the 5–10 km resolution output fields

generated by ALEXI, the coarse-scale flux estimates can
be spatially disaggregated to micrometeorological scales
resolving the flux sensor footprint (typically of dimension
�100 m) using a technique referred to as DisALEXI
[Norman et al., 2003]. Anderson et al. [2007a] review
ALEXI/DisALEXI validation experiments conducted in
rangeland and agricultural landscapes in Oklahoma
[Anderson et al., 2004b; Norman et al., 2003] and Iowa
[Anderson et al., 2005]. Typical root-mean square-deviations
(RMSDs) in comparison with tower flux measurements of H
and lE are 35–40 Wm�2 (15%) at the 30–120 m
disaggregation scale. Comparisons of disaggregated fluxes
have also been made with respect to transect measure-
ments made with flux aircraft, yielding RMSD values of

Figure 1. Schematic diagram representing the two-source land-surface scheme (left) and the time-
integrated ABL closure component (right) of the ALEXI model.
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35 Wm�2 for H and lE and accurate reconstruction of
observed spatial variability [Kustas et al., 2006].

2.2. Available Water Model

[16] To simulate the effects of soil moisture depletion on
evapotranspiration, many prognostic land-surface models
use a simple soil moisture stress function relating the
model-predicted available water fraction ( fAW) to a factor
( fPET) used to decrement actual ET (E; mm s�1) from the
potential rate expected under unstressed conditions (PET;
mm s�1):

fPET ¼ E

PET
: ð3Þ

[17] The available water fraction is defined as the ratio of
actual plant-available water (AW) divided by the available
water capacity of the soil (AWC):

fAW ¼ AW

AWC
¼

q� qwp
� �

� d

qfc � qwp
� �

� d
ð4Þ

where d (mm) is the thickness of the soil layer supplying
water to the transpiring vegetation, and qwp and qfc (m3 m�3)
are the volumetric soil water contents at the wilting point
and field capacity, respectively, and q is the current moisture
content. The stress function, mapping values of fAW to fPET
(i.e., fPET = fn [ fAW]), can be either derived from physical
principles, for example relating to soil and plant water
potentials [e.g., Campbell and Norman, 1998], or it can be
modeled empirically using surface flux and soil moisture
observations [e.g., Stewart and Verma, 1992].
[18] In diagnostic models, ET is diagnosed directly from

the remote sensing data and therefore the stress function can
be inverted ( fAW = fn�1[ fPET]) to infer soil moisture
conditions at the time of the image acquisition. The two-
source model further partitions ET into soil and canopy
components, allowing us to probe dimensionless moisture
conditions in the soil surface layer ( fAWsfc) and root-zone
( fAWrz), respectively, given model estimates of the compo-
nent PET fractions:

fPETc ¼
Ec

PETc

fPETs ¼
Es

PETs

ð5Þ

Segregation of these two moisture pools is possible with the
TSEB model because moisture content in the plant root-
zone regulates transpiration rates, while soil evaporation is
driven by moisture within the top few centimeters of the soil
profile. The depletion rates associated with these two pools
have very different time constants [weeks vs. days,
respectively; Kim and Verma, 1990; Brutsaert and Chen,
1995; Porté-Agel et al., 2000]. Once the surface layer has
dried, its hydraulic connectivity with the sub-surface is
significantly reduced and the two moisture pools become
effectively decoupled [Capehart and Carlson, 1997;
Carlson et al., 1995].
[19] A wide range of stress functional forms can be found

in the literature [Abramopoulos et al., 1988; Brutsaert,
1984], including linear functions [e.g., Mahfouf and
Noilhan, 1991], piecewise linear or threshold models
[e.g., Mahrt and Pan, 1984], and non-linear forms [e.g.,
Campbell and Norman, 1998] with varying degrees of
complexity and dependence on soil textural properties and
vegetation type. Appropriate functions may also depend
on the size of the model pixel and sub-pixel heterogeneity
in soil conditions [Chen et al., 1996]. For large-scale
applications, linear functions are often preferred because
the sensitivity to soil moisture is constant, and less detailed
information about soil properties is required [Betts et al.,
1997; Song et al., 2000].
[20] A qualitative summary of the existing observations

of canopy response to moisture stress suggests that fPET �1
as fAW falls from 1 to �0.5, and then fPET decreases
approximately linearly toward 0 for smaller values of fAW.
ALEXI uses a normalized logistic function that captures
these characteristics without discontinuity:

fPET ¼ fn fAW½ 	 ¼ ln Wð Þ
ln Wfð Þ ð6aÞ

where

W ¼ W0Wf

W0 þ Wf �W0ð Þ exp �mfAWð Þ ð6bÞ

is a logistic growth equation commonly used in agricultural
modeling [e.g. France and Thornley, 1984] and W0 = 1,
Wf = 800, and m = 12 (see Figure 2). The m parameter
controls the position and sharpness of the cutoff. The
functional in equation 6 qualitatively reproduces the
expected behavior while remaining independent of soil

Table 1. Primary ALEXI Input Data Sources

Data Purpose Source Product Resolution

Clear sky:
TRAD1, TRAD2 Surface temperature change GOES 5–10 km
LAI Assign f (�), hc, d, z0, " MODIS 1 km
Landcover type Assign hc, d, z0, a, s UMD global 1 km
Wind Aerodynamic resistances ASOS/AWOS 40 kma

Lapse rate profile ABL growth model Radiosonde 40 kma

�s(z), qs(z) Atmospheric corrections Radiosonde 40 kma

Cloud amount Cloud mask GOES 10 km
Sdi, Ldi Hourly net radiation GOES 20 km

Cloudy sky:
Soil texture (0–5 cm, 5–200 cm) Assign AWC STATSGO 1 km
aSynoptic data (�100-km spacing) have been analyzed to a 40-km resolution grid within the analysis component of the

Cooperative Institute for Meteorological Satellite Studies (CIMSS) mesoscale model [Diak et al., 2003].

D10117 ANDERSON ET AL.: EVAPOTRANSPIRATION AND MOISTURE STRESS

4 of 17

D10117



texture. While stress functions like equation 6 more
generally refer to vegetation response to soil moisture, the
overall characteristics of the function mimic those of the
two-stage soil drying process, with a potential evaporation
stage 1 phase, and a second stage where the evaporation rate
decreases non-linearly [Ritchie, 1972]. For the sake of
simplicity, the same functional is applied here to both canopy
transpiration and soil evaporation.
[21] In this study, estimates of potential soil and canopy

ET have been based on the Priestley-Taylor approximation
[Priestley and Taylor, 1972; see Appendix B]. While this
approximation may underestimate latent heat flux when the
vapor pressure deficit of the atmosphere is large [Kustas
and Norman, 1999], it is used to maintain consistency with
the method used to predict canopy transpiration in the
TSEB and because it requires minimal parameterization.
In future applications, the Priestley-Taylor coefficient could
be varied geographically as a function of vapor pressure
deficit or canopy conductance.

2.3. Gap-Filling Techniques

[22] ALEXI requires clear-sky conditions during the time
interval t1 to t2 to obtain the required surface temperature
data and to satisfy model assumptions of linear sensible heat
rise during the morning boundary layer growth phase
(equation A16). As an example, the map of solar radiation
for 30 April 2003 in Figure 3a reveals a thick band of clouds
covering the northern states of the U.S. at time t2, while
Figure 3b shows the distribution of pixels passing the t1– t2
cloud screening and other input tests, where latent heat
could be directly computed on this day. For 2002–2004,
ALEXI provided on average 30% daily coverage over the
continental US. To facilitate climatological investigations of
land-surface fluxes, simple techniques for filling extant gaps
in ALEXI coverage have been investigated.
[23] The filling of fluxes on cloudy days is accomplished

by maintaining running pools of available water for the root
zone (5–200 cm) and soil surface layer (0–5 cm) at each
pixel: AWrz = fAWrz � AWCrz and AWsfc = fAWsfc � AWCsfc,
respectively. These pools are updated via inversion of

equation 6 on days when the pixel is clear, using the
modeled soil and canopy latent heat fluxes to infer soil
moisture conditions. On cloudy days, equation 6 is applied
directly to predict the fluxes as in the prognostic approach.
[24] The cloud-filling procedure is as follows. For all

days (clear or cloudy), hourly fluxes of potential ET are
computed for the canopy and soil system components and
integrated to daytime totals, hPETCi and hPETSi, respec-
tively, where hXi indicates the daily integral of quantity X.
This step is facilitated by hourly estimates of downwelling
solar and longwave radiation, which can be obtained under
both clear and cloudy conditions from GOES imagery [Diak
et al., 1996, 2000].

Figure 3. Model fields demonstrating the gap-filling
technique as applied to ALEXI output for 30 April 2003:
(a) insolation at time t2, showing the distribution of cloud
cover; (b) latent heat flux estimates at time t2 for pixels
passing the cloud-screen; (c) a cloud-filled field of latent
heating at time t2.

Figure 2. Soil moisture stress function (equation 6) used
in the gap-filling algorithm, relating fPET to AWF (thick
solid line). Also, shown are simple functions used in other
modeling frameworks, including linear (dashed) and piece-
wise linear (thin solid) relationships.
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[25] On clear days, the available water pools AWrz and
AWsfc are updated based on the evaporative stress detected
in the canopy and soil model components, as reflected in
fPETc and fPETs:

fPETC ¼ Ech i
PETch i

fAWrz ¼ fn�1 fPETc½ 	
AWrz ¼ fAWrz

*AWCrz

AWrz;next ¼ AWrz � Ech i

fPETs ¼
Esh i

PETsh i
fAWsfc ¼ fn�1 fPETc½ 	
AWsfc ¼ fAWsfc*AWCsfc

AWsfc;next ¼ AWsfc � Esh i

ð7Þ

where fn�1[fPET] is the moisture stress function (equation 6)
inverted to solve for fAW. In equation 7, daytime total actual
ET fluxes, hECi and hESi, are extrapolated from instan-
taneous values at t2 as described in Appendix C. The final
step decrements the moisture pools by that day’s water loss
to determine AW for the next day.
[26] On cloudy days, these steps are inverted:

fAWrz ¼
AWrz

AWCrz

fPETc ¼ fn fAWrz½ 	
Ech i ¼ fPETc* PETch i

AWrz;next ¼ AWrz � Ech i

fAWsfc ¼
AWsfc

AWCsfc

fPETs ¼ fn fAWsfc

� �
Esh i ¼ fPETs* PETsh i

AWsfc;next ¼ AWsfc � Esh i

ð8Þ

This process continues, with daily depletions accounted for,
until the next clear day when both surface and root zone
moisture pools can be updated.
[27] This gap-filling approach assumes a degree of ‘‘self-

preservation’’ [Brutsaert and Sugita, 1992] in the fPET ratio
from day to day, after accounting for daily evaporative
losses. Brutsaert and Chen [1996] and Porté-Agel et al.
[2000] find that the fraction of equilibrium ET (proportional
to PET) is more conservative over periods of several days
than are other reference flux indices, like the evaporative
fraction or the Bowen ratio, when adjusted for soil moisture
depletion. The method is insensitive to errors in specifi-
cation of the Priestley-Taylor coefficient, as long as the
coefficient is relatively stable over periods of several days.
[28] A disadvantage to this scheme is that moisture

updates will not occur until the first clear day following a
precipitation event. In other words, there may be a few days
lag before the impact of rainfall over a given pixel is
reflected in that pixel’s available water pools. On average,

the moisture pools in 75% of the U.S. domain are updated at
least once every 6 days, while 95% are updated at least
every 20 days (Figure 4). The average frequency of update
varies spatially and temporally across the domain according
to the regional cloud cover climatology.
[29] A cloud-filled map of instantaneous latent heat flux

at time t2 on 30 April 2003 is shown in Figure 3c. While the
cloud-filling algorithm described here is designed for a two-
source land-surface model, it could also be easily imple-
mented for a one-source model by maintaining a single
moisture pool for the full soil column. The two-source
model adds value in that the surface and root-zone pools
can be depleted at different rates, as is observed in nature.
Note, however, that model sensitivity to the two moisture
pools depends on the local vegetation cover fraction. Under
high cover conditions, estimates of fAWsfc become more
uncertain, and there is little remote sensing information on
fAWrz in areas of sparse vegetation. In these extremes,
available water estimates from the unsampled pools should
be considered indeterminate. Fortunately, the corresponding
component PET values will also be low in these areas, so
the impact of this loss of information on predicting ET is
minimal.

3. Model Input Data

[30] The ALEXI model and associated gap-filling algo-
rithms have been applied over a grid covering the continental
U.S. at 10-km resolution and over regional sub-domains
associated with specific field experiments at 5-km resolution.
Required model input data and operational data sources are
listed in Table 1 and described briefly below.

3.1. Surface Radiometric Temperature

[31] The ALEXI model uses two morning observations
of surface radiometric temperature acquired at times t1 =
1.5 h and t2 = minimum(5.5 h past local sunrise, 1 h before
local noon). The minimization constraint on t2 is imposed
to ensure that the assumption of a linear rise in H during
the t1– t2 time interval (equation A16) is fulfilled over a
wide range in latitude.
[32] Brightness temperature data used over the conti-

nental domain for 2002–2004 were obtained with the
GOES-10 (western US) and -12 (east) Sounder instruments
within the 10.2–11.2 mm (Band 4) window, aggregated to a
10-km resolution grid, while data for the 5-km regional
grids were acquired from the GOES Imager 10.8 mm
channel. GOES view zenith angle varies over the continental
U.S. between 25 and 60�. Directional brightness temperature
was atmospherically corrected and converted to a radiometric
temperature value using a technique described by French
et al. [2003], which requires vertical profiles of potential
temperature and mixing ratio and an estimate of directional
surface emissivity, e(q). A semi-empirical expression for e(q)
as a function of nominal soil and leaf emissivities (eS and eC,
respectively, currently fixed at 0.94 and 0.97), fractional
vegetation cover, and thermal view angle was developed by
fitting simulated data created with the Cupid soil-plant-
atmosphere model [Norman et al., 1990].
[33] Rigorous flagging of cloud-contaminated pixels is

critical to obtaining reasonable flux estimates. Appearance
of clouds around time t2 reduces the apparent surface

Figure 4. Percent of model domain updated on average as
a function of composite time interval.

D10117 ANDERSON ET AL.: EVAPOTRANSPIRATION AND MOISTURE STRESS

6 of 17

D10117



temperature change, mimicking wetter conditions, while
clouds at time t1 augment DTRAD and result in high
modeled sensible heat rates. Clouds in the intervening
period cause non-monotonic fluctuations in sensible heat,
in conflict with equation A16. A standard GOES Sounder
product (nominally 10-km resolution) quantifying effective
cloud amount (CA) using a CO2 absorption technique
[Menzel et al., 1983; Schreiner et al., 2001] was therefore
inspected for the time period t1 to t2; cells are flagged as
cloudy if CA > 1% at any time during this interval.

3.2. Vegetation Cover Amount

[34] The fraction of vegetation cover apparent at the GOES
view angle, f (q), was derived from the 1-km MODIS/Terra
8-day composite LAI product from [MOD15A, Collection
4; Myneni et al., 2002] via equation A2. LAI data tiles
covering the continental U.S. were mosaicked and repro-
jected from the MODIS sinusoidal grid to geographic
coordinates at 0.01� resolution (�1 km) using a nearest
neighbor assignment with the MODIS Reprojection Tool.
Data at 0.01� were then aggregated to the �0.09� (10 km)
ALEXI grid as an unweighted average. To generate daily
LAI fields, the 8-day composites were bi-linearly inter-
polated in time.

3.3. Canopy Characteristics

[35] Satellite-derived fractional cover estimates have been
used in conjunction with a gridded land-surface classifica-
tion to assign relevant surface parameters such as roughness

length and radiometric properties. The current study
employs the University of Maryland (UMD) 1-km Global
Landcover Product [Hansen et al., 2000], which contains 12
vegetation classes. The dominant landcover class in each
10-km grid cell within the continental model domain is
mapped in Figure 5.
[36] Subpixel landcover information at the 1-km scale has

been used to estimate aggregate surface parameters for the 5
and 10-km resolution ALEXI model grids. Aggregate
values (x) of leaf size (used in determining canopy boundary
layer resistance, Rx) and leaf absorptivity in the visible,
near-infrared, and thermal wave bands (avis, aNIR, and aTIR;
used in net radiation partitioning, Appendix A) were com-
puted as a weighted average of values expected for each
class (xi; Table 2):

x ¼
X
i

nixi

�X
i

ni ð9Þ

where ni is the number of 1-km pixels in class i within a
given 5 or 10-km ALEXI grid cell. To simulate pheno-
logical changes in surface roughness properties, the
expected canopy height has been tied to both class and
vegetation cover fraction. Within each class, canopy height
is scaled linearly with f(0) between a seasonal minimum and
maximum value (see Table 2):

hc;i ¼ hcmin;i þ f 0ð Þ hmax;i � hmin;i;

� �
ð10Þ

Figure 5. Landcover classification used in ALEXI.
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and then the momentum roughness (zo,i) and displacement
height (di) parameters are computed for each class as cover-
dependent fractions of the canopy height [Massman, 1997].
Canopy and displacement heights were then aggregated
directly via equation 9, whereas area-averaged roughness
length, z0, at the 5 and 10-km scale was determined using
the approach of Mason [1988]:

ln
zb � d

z0

� �	 
�2

¼ 1P
i

ni

X
i

ni

ln zb�di
z0;i

� h i2 ð11Þ

which averages drag coefficients at an effective blending
height (zb, assumed to be at 50 m above ground level; agl)
to preserve surface stress in upscaling.
[37] Anderson et al. [2005] demonstrated the impact of

vegetation clumping (e.g., as in row crops) on the
interpretation of the surface radiometric signature by the
TSEB model. Neglect of clumping effects results in a
modest overestimation of sensible heating in ALEXI.
Here, a nadir clumping index of 0.9 is assumed for the
crop land-cover class, while all other classes are assigned
a value of 1.0.

3.4. Downwelling Radiation

[38] Downwelling solar and longwave radiation were
estimated at each pixel in the ALEXI grid using hourly
GOES-based products at 20-km resolution [Diak et al.,
1996, 2000]. The upwelling components of net radiation
are predicted by the TSEB model itself, based on diag-
nosed canopy and soil temperatures and estimates of
surface emissivity and albedo parameterized primarily in
terms of landcover type and vegetation cover fraction (see
Appendix A).
[39] Otkin et al. [2005] compared GOES insolation esti-

mates to pyranometer data from 11 sites in the United States
Climate Reference Network (USCRN) over a continuous
15-month period. Average root mean square errors of 19%
and 10% were obtained for predictions at hourly and daily
timesteps, respectively (including both clear and cloudy-sky
conditions), which are comparable to the best results that

have reported in the literature for satellite-based radiation
algorithms.

3.5. Surface and Upper Air Meteorological Data

[40] Shelter-level wind speed and air temperature data
from the U.S. synoptic surface network were analyzed to a
40-km grid using the analysis component of the CIMSS
(Cooperative Institute for Meteorological Satellite Studies)
Regional Assimilation System (CRAS) mesoscale forecast
model [Diak et al., 1992; Wu et al., 1995]. Air temperature
is used only in the PET assessments, and the overall model
is not very sensitive to this input [Anderson et al., 1997].
[41] Upper-air (radiosonde) data at mandatory and signi-

ficant levels were also analyzed to the three-dimensional
grid of the CRAS, constructed with 40 vertical levels
(25 of them below the 600 hPa level in the atmosphere)
to preserve a high level of vertical detail in the ABL.
These vertical profiles were then interpolated to the
ALEXI grid using a nearest neighbor technique as opposed
to level-by-level interpolation, which can generate non-
physical profiles. Derived lapse rate profiles are used in
the ABL submodel, while both temperature and mixing
ratio profiles are used to atmospherically correct the GOES
brightness temperatures.

3.6. Soil Properties

[42] Gridded available water capacity data have been
derived from the State Soil Geographic Database [STATSGO;
Miller and White, 1998] 1-km soil texture data set for the
continental U.S. (CONUS), which contains 11 soil layers
within a total column depth of 2.5 m. The data set was
aggregated to the ALEXI grid resolution by identifying the
dominant profile within each coarse-scale pixel; nominal
AWC values were subsequently computed for the 0–5 cm
and 5–200 cm layers, with qwp and qfc indexed by texture class
(Table 3).

4. Validation of the Gap-Filling Algorithm

[43] Rigorous testing of the gap-filling algorithms
described here requires time-continuous flux measurements
made at the scale of the ALEXI grid cell. Single towers

Table 2. Landcover Classification Systems Used in the ALEXI and DisALEXI Models, Along With Parameters

That Vary According to Landcover Class Including the Seasonal Maximum and Minimum Canopy Heights (hmax

and hmin), Leaf Absorptivity (a) in the Visible, NIR, and TIR Bands, and Nominal Leaf Size (s)a

Class Description hmin (m) hmax (m) avis aNIR aTIR s (m)

1 Water 0 0 – – – –
2 Evergreen Needleleaf Forest 15.0 15.0 0.89 0.60 0.95 0.05
3 Evergreen Broadleaf Forest 15.0 15.0 0.87 0.40 0.95 0.10
4 Deciduous Needleleaf Forest 10.0 10.0 0.89 0.60 0.95 0.05
5 Deciduous Broadleaf Forest 10.0 10.0 0.86 0.37 0.95 0.10
6 Mixed Cover 1.0 2.5 0.88 0.51 0.95 0.05
7 Woodland 5.0 5.0 0.87 0.49 0.95 0.05
8 Wooded Grassland 1.0 2.5 0.85 0.36 0.95 0.05
9 Closed Shrubland 0.6 0.6 0.85 0.37 0.95 0.02
10 Open Shrubland 0.5 0.5 0.83 0.35 0.95 0.02
11 Grassland 0.1 0.6 0.82 0.28 0.95 0.02
12 Cropland 0.0 0.6 0.83 0.35 0.95 0.05
13 Bare Ground 0.0 0.2 0.82 0.57 0.95 0.02
14 Urban and Built Up 6.0 6.0 0.84 0.37 0.95 0.02
aThe ALEXI classification system is based on the UMD 1-km Global Landcover Product [Hansen et al., 2000].
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cannot adequately sample the variability in fluxes in a
heterogeneous landscape at the 5–10 km scale, while flux
aircraft provide only snapshots of land-surface conditions at
specific points in time [Anderson et al., 2007a]. Spatially
and temporally intensive data sets collected during the Soil
Moisture Experiment of 2002 (SMEX02) and related Soil
Moisture-Atmospheric Coupling Experiment (SMACEX),
conducted in June and July in the Walnut Creek (WC)
Watershed just south of Ames, Iowa, provide a unique
opportunity for direct comparison with regional scale flux
predictions and evaluation of gap-filling techniques.

4.1. SMEX02 Validation Data

[44] A reference LAI map over the WC watershed was
retrieved from the Normalized Difference Water Index
NDWI = (NIR � SWIR)/(NIR + SWIR) [Gao, 1996], com-
puted using 30-m resolution, atmospherically corrected im-
agery from Landsat 5Thematic Mapper and Landsat 7
Enhanced Thematic Mapper + (collectively referred to as
TM) Bands 4 (near infrared; NIR) and 5 (shortwave infrared;
SWIR). The retrieval relationship was developed empirically
by Anderson et al. [2004a] in comparison with in-situ
measurements of LAI, and yields a RMSD of 0.66 at the
30-m scale and a minimal bias (TM-observed) of �0.02
(Figure 6a). TM data were available for mapping LAI on day
of year (DOY) 174, 182 and 189, a period of rapid crop
growth.
[45] The flux data used for validation were acquired at

10 EC towers in the WC watershed between DOY 167–189
(June 16 to July 8) of 2002. Of these, 5 towers were located in
cornfields, and 5 in soybean, proportionally representative of
the general cropping census within the WC area for that year
[Doraiswamy et al., 2004]. Average tower measurements
agreed well with fluxes observed by aircraft flying transects
over the watershed, suggesting the network-average flux
provided good characterization of watershed-scale fluxes
[Anderson et al., 2005]. For more details regarding the
SMACEX EC and supporting data, see Prueger et al.
[2005]. In the flux comparisons presented below, an energy
budget closure correction has been applied to the sensible and
latent heat flux data, enforcing H + lE = RN � G while
preserving the observed Bowen ratio [Twine et al., 2000].

4.2. MODIS Leaf Area Index

[46] Because ET is strongly dependent on vegetation
cover amount, it is important to verify that the MODIS
LAI product behaves reasonably at the ALEXI grid scale

over the SMACEX timeframe. Figure 6c–f shows a compa-
rison between the MODIS LAI product and TM-derived
LAI at 0.01� (�1 km, the resolution of the MODIS
product), 0.02�, 0.05�, and 0.09� (10 km, the resolution of
the continental-scale ALEXI grid) for days 174, 182 and
189 during SMACEX. The MODIS product was bi-linearly
interpolated in time between 8-day product dates to the
TM imaging dates, and aggregation of both setdatasets
was accomplished through averaging LAI at the highest
resolution.
[47] The scatter between MODIS and TM LAI aggregated

to 1 km (RMSD � 0.7; Figure 6c) exceeds that of the TM
validation at 30-m resolution (Figure 6a). With increasing
pixel scale, the discrepancies between the TM and MODIS
LAI estimates progressively diminish. Agreement at 5–
10 km resolution (0.05�–0.09�) is acceptable from a
modeling standpoint, with RMSD � 0.3 (Figure 6e–f ).
Averaging over the extent of the watershed domain, the
MODIS product reproduces the TM-derived time-behavior
well over the period of sampling (Figure 6b).
[48] While the discrepancies at 1-km resolution are large,

the Collection 4 MODIS LAI product appears to provide
good temporal information regarding LAI at the 5–10 km
scale over the WC watershed during SMACEX. The product
may be more problematic for other time periods and for other
landcover classes, particularly in forest where LAI tends to be
overestimated [Fang and Liang, 2005; Wang et al., 2004].
Some of these issues may be addressed in the next LAI
product release (Collection 5), using improved retrieval
algorithms for woody vegetation [Yang et al., 2005].

4.3. Gap-Filling Techniques

[49] The cloud-filling and daytime-extrapolation algo-
rithms described in Section 2 were applied to ALEXI flux
evaluations over a 5-km resolution grid covering the upper
Midwest [Anderson et al., 2005]. Figure 7 shows hourly
predictions of solar radiation (Sd) and the four major flux
components during daylight hours (Sd > 0), averaged over
the WC domain (4 � 8 grid cells). The instantaneous values
derived directly by ALEXI at time t2 under clear-sky
conditions are indicated in the lE plot (11 points); fluxes
at all other times have been gap-filled (265 points). Also
shown for reference are hourly flux measurements from
SMACEX, representing an average of data from all towers
in the WC watershed; a scatterplot representation of these
comparisons at hourly and daytime-integrated timescales is
provided in Figure 8, with statistical measures in Table 4.
[50] The gap-filling technique appears to provide reason-

able estimates of hourly fluxes over this agricultural
landscape, reproducing the observed increase in evapo-
transpiration as the crops mature. The RMSD in the gap-
filled estimates of hourly latent heating is 60 Wm�2 (19%
mean absolute percent difference, MAPD), while combining
all flux components yields a RMSD of 48 Wm�2 (19%
MAPD; Figure 8a). This can be compared to the 30 Wm�2

(10%) errors associated with the subset of points generated
directly by ALEXI under clear-sky conditions [Anderson
et al., 2005]. At the daily timescale, the RMSD for ET is
1.7 MJm�2 d�1 (11% MAPD) and 1.6 MJm�2 d�1 (13%
MAPD) for all fluxes combined (Figure 8b). The GOES
hourly solar radiation product in general provides accurate
forcing for the simulations, with a RMSD of 66 Wm�2

Table 3. Soil Moisture Retention Properties Assigned to Each

Soil Texture Class

Texture Class �wp �fc
Sand 0.033 0.091
Loamy Sand 0.055 0.125
Sandy Loam 0.095 0.207
Silt Loam 0.133 0.330
Silt 0.133 0.330
Loam 0.117 0.270
Sandy Clay Loam 0.148 0.255
Silty Clay Loam 0.208 0.366
Clay Loam 0.197 0.318
Sandy Clay 0.239 0.339
Silty Clay 0.250 0.387
Clay 0.272 0.396
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Figure 6. Comparison of MODIS LAI to Landsat TM estimates derived from an empirical regression
against ground observations collected during SMEX02: (a) Landsat (30-m resolution) vs. observed LAI;
(b) time-evolution of TM and MODIS LAI aggregated to the watershed scale; and MODIS vs. TM LAI
aggregated to (c) 0.01�; (d) 0.02�; (e) 0.05�; and (f ) 0.09� resolution.
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(8% MAPD) with respect to spatially averaged pyrano-
meter readings.
[51] The largest errors in daily sensible and latent heat

fluxes occur on DOY 180 and 189 (Figure 7), both purpor-
tedly clear days on which ALEXI executed over the WC
domain. These days characterize conditions that can be prob-
lematic for the ALEXI algorithm, so a review is instructive.
[52] On DOY 180, a cloud band over the watershed at

time t1 went undetected by the GOES cloud mask, result-
ing in an overestimation of DTRAD and therefore H by
�100 Wm�2 midday. Around dawn, the cloud detection
product transitions from a nighttime algorithm, focusing
on IR bands, to a daytime scheme using visible informa-
tion [Schreiner et al., 2001]. Under some atmospheric
conditions, clouds can occasionally be missed during this
transition window [Schreiner, 2005, personal communi-

cation]. Incorporating additional information, for example
a comparison of hourly GOES-derived insolation and
albedo values with clear-sky estimates, may improve early
morning cloud detection.
[53] ALEXI predicts positive sensible heat fluxes peaking

at 140 Wm�2 on DOY 189, while fluxes observed on the
ground were small in the morning and went negative
midday. The cause of this discrepancy is two-fold. First,
the GOES-based insolation algorithm overestimated insola-
tion on DOY 188–189, presumably due to increased
atmospheric aerosol content carried by smoke from an
outbreak of forest fires in the western U.S. [Walthall et al.,
2004]. Net radiation was likewise overestimated, increasing
all components of the modeled surface energy budget.
Furthermore, tower-based measurements showed afternoon
shelter-level air temperature exceeding surface temperature,

Figure 7. Time series comparison of hourly flux estimates from ALEXI with hourly measurements
from the SMEX02 tower network, both averaged over the WC watershed domain. Instantaneous fluxes at
time t2, generated directly by ALEXI under clear-sky conditions, are indicated in the bottom panel (open
circles). All other model fluxes have been gap-filled.
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a sign of local warm-air advection likely driving the
negative sensible heat fluxes [Li et al., 2006]. Effects of
horizontal advection are not currently included in the ABL
growth submodel in ALEXI, but can be incorporated using
the techniques of Diak and Whipple [1993], using a compa-
rison between temperature soundings at 0 and 12 UTC or
simulated soundings from a mesoscale forecast model.

4.4. Available Water Fraction

[54] ALEXI-derived partitioning of soil moisture between
the root-zone and soil surface is demonstrated in Figure 9,
showing a time history of modeled AWFrz and AWFsfc
during SMEX02, averaged over the WC study domain. Also
shown are the timing and magnitudes of local precipitation

events, as measured on average by the WC rain gauge
network. Dates when the domain was predominantly clear
and area-averaged soil moisture pools were updated by
ALEXI are indicated; AWF values during intervening
cloudy intervals were filled as discussed above.
[55] The ALEXI-derived available water fraction, parti-

cularly in the surface layer, responds to the major rainfall
event occurring on DOY 191. The modeled response,
however, is delayed until the first clear day following the
event (DOY 194), when the surface can again be viewed by
the satellite sensors. The surface then dries rapidly over the
next two days (both clear, and thus directly modeled by
ALEXI), as would be expected. Warm-air advection on
DOY 189 caused the model to underestimate the observed
latent heating, resulting in an under-prediction of AWFsfc on
this day and masking the impact of the minor rainfall events
on DOY 185–187.
[56] Prior to the rainfall event on DOY 191 there is a slow

depletion in the modeled root-zone soil moisture (the noise
spike on DOY 180 is due to incomplete cloud clearing as
described in the previous section). While there was stress-
induced leaf curl observed at the margins of some corn
fields during this dry-down period, the vegetation stress at
the watershed scale represented by these model results was
likely only moderate. The model estimates a 20% reduction
in canopy transpiration due to stress by DOY 190.
[57] In general, the gross response of model-predicted soil

moisture to antecedent precipitation over the WC watershed
is reasonable. Due in part to decreasing sensitivity to the soil
surface temperature as the crop canopy closes, predictions of
AWFsfc exhibit higher noise than do those of AWFrz; the
opposite would likely be the case under low vegetation cover
conditions. Still, it is encouraging that there appears to be a
detectable thermal signal of increased soil surface moisture
associated with this rainfall event even under relatively dense
vegetation cover (LAI � 3; Figure 6b).

5. Conclusions and Future Research

[58] A strategy has been presented for computing time-
continuous fluxes over continental scales using thermal
remote sensing data from a geostationary satellite platform.
This strategy fills flux estimates during gaps in the remote
sensing record because of intermittent cloud cover. It is
assumed that the fraction of potential ET (fPET) derived on
clear days is conserved (minus evaporative depletion of soil
moisture resources) until the next clear day. On clear days,
fPET is mapped to an available water fraction (AWF); on
cloudy days, this mapping is inverted to predict the evapo-
rative fluxes. At the end of each day, the current AWF is
depleted by that day’s evaporative extractions.
[59] The gap-filling methodology uses a two-source

model of the land-surface energy balance (TSEB), which
partitions system fluxes between the soil and vegetated
components of the modeling scene and allows differential
adjustment of moisture pools in the soil surface and root
zone layers, which have very different time constants in
terms of moisture release. The rapid soil evaporation that
occurs right after rainfall can be differentiated from the
longer term trends in the root zone, which are more directly
tied to crop health and projected yield. This gap-filling
strategy could be easily adapted for use with single-source

Figure 8. Scatterplot comparison of modeled and mea-
sured watershed-average fluxes from SMEX02 at (a) hourly
and (b) daily timesteps.
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energy balance models by linking to a single moisture pool
describing the bulk soil profile. However, the dynamic
interactions between soil moisture and ET may not be as
well represented by such a system.
[60] When coupled with an ABL growth model to provide

atmospheric temperature boundary conditions, the TSEB can
be executed over regional scales. The resulting ALEXImodel
and gap-filling techniques were applied to a 2-week data set
collected during the SMACEX/SMEX02 field experiments,
where a high density tower network and associated aircraft
flights allowed good characterization of fluxes at the water-
shed scale. Continuous, gap-filled predictions agreed with
watershed-average tower measurements to within 19% for
hourly fluxes and 13% for daytime totals. The highest errors
were incurred on days when the early-morning cloud mask
failed to detect cloud-contaminated thermal pixels, and when
strong warm-air advection reduced observed sensible heat
flux to negative values by midday.
[61] The time behavior of modeled available water frac-

tion, in the root zone and in the soil surface layer, was
qualitatively examined in comparison with precipitation
measurements. The modeled moisture in the surface layer
(top 5 cm) responds quickly to major rainfall events and then
quickly subsides, whereas root-zone moisture changes are
more gradual during a dry-down period, as expected. In

future studies, these responses will be evaluated quantita-
tively in comparison with extensive ground-based measure-
ments and microwave-derived soil moisture maps that were
collected during SMEX02 and with measurements from Soil
Climate Analysis Network (SCAN). Work is underway to
evaluate the utility of ALEXI thermal-based soil moisture
predictions in terms of assimilation into prognostic hydro-
logic models [Crow et al., 2005] and initialization of meso-
scale forecast models [Hain et al., 2005b]. Assessments
using data from the Oklahoma Mesonet have demonstrated
that ALEXI has considerable skill in retrieving volumetric
soil moisture content in comparison with fields from the Eta
Data Assimilation System [EDAS; Hain et al., 2005a].
[62] This exercise has identified several aspects of the

ALEXI modeling system that can be refined in future
studies. Better cloud-screening and atmospheric correction
algorithms should reduce noise in daily flux evaluations by
improving the DTRAD signal. In addition, a correction for
horizontal advection of temperature can be assessed using a
mesoscale forecast model, this will be especially important
in regions of mountainous terrain. The soil moisture and
moisture stress fields from ALEXI require further validation
in other ecological and climatic systems to demonstrate
general utility. Localized studies with the TSEB can be used
to tune the shape of the crop and soil stress functions to

Table 4. QuantitativeMeasures ofALEXIModel Performancea in EstimatingWC-AverageTower Fluxes

Flux N

O MBE RMSD

% ErrorW m�2 W m�2 W m�2

Hourly
RN 265 342 10 60 12
G 265 54 8 21 31
H 265 69 13 44 48
LE 265 233 �11 58 19
All 1060 174 5 48 19

Daily
RN 10 18.6 1.4 1.4 7
G 10 2.3 0.7 0.8 31
H 10 3.2 0.6 2.1 43
LE 10 13.0 0.15 1.7 11
All 40 9.3 0.7 1.6 13
aHere N is the number of observations, O is the mean observed flux, RMSD is the root-mean square difference

between the modeled (P) and observed (O) quantities, MBE is the mean-bias-error (P � O), and the percent error is
defined as the mean-absolute-difference between P and O divided by the mean observed flux.

Figure 9. Available water fraction estimates from ALEXI for the root zone (grey line) and soil surface
layer (black line) vs. DOY, averaged over the WC watershed. Larger symbols indicate values generated
by the clear-sky algorithm in ALEXI; all other values were gap-filled. Also, shown are daily watershed-
averaged precipitation rates.
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better represent the temporal evolution of surface and root-
zone moisture measurements.
[63] TheALEXI land-surfacemodeling framework has been

applied to GOES thermal imagery collected over the continen-
tal U.S. from 2002 to 2004. The results of a 3-year climato-
logical study of surface moisture and evaporative conditions
over the U.S. are presented in a companion paper (A2).

Appendix A: The ALEXI Model

[64] The surface boundary conditions in ALEXI are
provided by the TSEB model [Norman et al., 1995], which
extracts soil and canopy temperatures (Ts and Tc) from
composite directional surface radiometric temperature
(TRAD(q)) measurements acquired by satellite:

TRAD qð Þ ffi f qð ÞTc þ 1� f qð Þ½ 	Ts ðA1Þ

where f(q) is the fractional cover:

f qð Þ ¼ 1� exp
�0:5W qð ÞF

cos q

� �
ðA2Þ

F is the leaf area, and W(q) is the vegetation clumping factor
apparent at view angle q [Anderson et al., 2005].
[65] In TSEB, equations A1 and A2 are solved simulta-

neously with a set of equations describing the surface
energy budget for the soil, canopy, and composite land-
surface system:
System, soil, and canopy energy budgets:

RN ¼ H þ lE þ G ðA4Þ

RNS ¼ HS þ lES þ G ðA5Þ

RNC ¼ HC þ lEC ðA6Þ

Net radiation:

RN ¼ RNS þ RNC ðA7Þ

RN ¼ Ld � Luð Þ þ Sd � Suð Þ
¼ Ld � 1� tCð ÞLC � tCLS þ 1� Að ÞSd ðA8Þ

RNS ¼ Ld;s � Lu;s
� �

þ Sd;s � Su;s
� �

¼ tCLd þ 1� tCð ÞLC � LS þ 1� rSð ÞSd;s ðA9Þ

Sensible heat:

H ¼ HS þ HC ¼ rcp
TAC � TA

RA

ðA10Þ

HS ¼ rcp
TS � TAC

RS

ðA11Þ

HC ¼ rcp
TC � TAC

RX

ðA12Þ

Latent heat:

lE ¼ lES þ lEC ðA13Þ

lEC ¼ aCfg
D

Dþ g
RNC ðA14Þ

Soil conduction heat:

G ¼ agRNS ðA15Þ

Here RN is net radiation, H is sensible heat, lE is latent heat,
G is the soil heat conduction flux, T is temperature, R is a
transport resistance, r is air density, cp is the heat capacity of
air at constant pressure, g is the psychometric constant, andD
is the slope of the saturation vapor pressure vs. temperature
curve. The subscripts ‘A’, ‘AC’, and ‘X’ signify properties of
the air above and within the canopy, and within the leaf
boundary layer, respectively, while ‘S’ and ‘C’ refer to fluxes
and states associated with the soil and canopy components of
the system. The soil heat conduction flux is computed as a
fraction ag of the net radiation below the canopy, at the soil
surface [equation A15; Choudhury et al., 1987], with ag =
0.31 typical of values derived from mid-morning flux
observations, the period when ALEXI is applied [Kustas et
al., 1998]. In equation A14, transpiration is tied to the net
radiation divergence in the canopy (RNC) through a modified
Priestley-Taylor relationship [Priestley and Taylor, 1972],
where ac is a coefficient with a nominal value of 1.3 that is
downward-adjusted if signs of vegetative stress are detected
(see main text) and fg is the fraction of green vegetation in the
scene. Justification for this parameterization of lEC is
provided by Norman et al. [1995].
[66] The series resistance formalism described here

allows both the soil and the vegetation to influence the
microclimate within the canopy air space, as shown in
Figure 1. The resistances considered include RA, the aero-
dynamic resistance for momentum between the canopy and
the upper boundary of the model (including diabatic cor-
rections); RX, the bulk boundary layer resistance over all
leaves in the canopy; and RS, the resistance through the
boundary layer immediately above the soil surface. Mathe-
matical expressions for these resistance terms are given by
Norman et al. [1995].
[67] In equations A1–15, RN is the net radiation above

the canopy, RNC is the component absorbed by the canopy,
and RNS is the component penetrating to the soil surface.
The longwave components of RN and RNS are a function of
the thermal radiation from the sky (Ld), the canopy (Lc) and
the soil (Ls), and the coefficient of diffuse radiation trans-
mission through the canopy (tc). The shortwave compo-
nents depend on insolation values above the canopy (Sd)
and above the soil surface (Sd,s), and the reflectivity of the
soil-canopy system (A) and the soil surface itself (rs). Based
on the work of Goudriaan [1977], Campbell and Norman
[1998] provide analytical approximations for tc and A for
sparse to deep canopies, depending on leaf absorptivity in
the visible, near-infrared and thermal bands, rs, and leaf
area index [see Appendix B in Anderson et al., 2000 for
further information].
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[68] The ALEXI model uses an atmospheric boundary
layer (ABL) closure technique to evaluate the morning
evolution of air temperature, TA, in the surface layer. Using
radiometric temperature data at times t1 and t2 (about 1.5
and 5.5 h past local sunrise) and initial estimates of air
temperature, the TSEB surface model component of ALEXI
(equations A1–A15) computes instantaneous sensible heat
flux estimates H1 and H2. Assuming a linear functional form
for H(t) during this morning interval, a time-integrated heat
flux can be obtained:

Zt2
t1

H tð Þdt ¼ 1

2
H2t2 � H1t1½ 	: ðA16Þ

McNaughton and Spriggs [1986] give a conservation
equation relating the rise in height (z) and potential
temperature (qm) of the mixed layer to the time-integrated
sensible heating from the surface:

Zt2
t1

H tð Þdt ¼ rcp z2qm2 � z1qm1ð Þ � rcp

Zz2
z1

qs zð Þdz; ðA17Þ

where qs(z) represents an early morning ABL potential
temperature sounding. Near the land surface, the mixed layer
potential temperature and the air temperature are related by

qm ¼ Ta
100

p

� �R=cp

ðA18Þ

where p is the atmospheric pressure (in kPa) andR/cp = 0.286.
Because differential surface temperature measurements are
more reliable than absolute temperature measurements, in
practice z1 (the ABL height at time t1) is fixed at some small
value (50 m), and the change in modeled qm is to allowed to
govern the ABL growth based on the lapse rate profile above
z1 [as opposed to diagnosing both z1 and z2; see Anderson et
al., 1997]. While this equation A17 represents a very
simplified treatment of entrainment, McNaughton and
Spriggs [1986] found that it produces reasonable values of
simulated ET, although boundary layer height z2 is some-
times greatly overestimated. The surface and boundary layer
components of the model iterate until the time-integrated
sensible heat flux estimates from both components converge.
Anderson et al. [1997] provide further details concerning the
solution sequence used in the ALEXI model.

Appendix B: Potential Evapotranspiration

[69] Potential canopy transpiration is computed using the
Priestley-Taylor approximation applied to the net radiation
divergence in the canopy [Norman et al., 1995; Tanner
and Sinclair, 1983], similar to the initial estimate used in
the TSEB (equation A14) but in units of water amount
(mm s�1):

PETc ¼
�C

�
fg

�

�þ �
RNc ðB1Þ

where aC = 1.3.

[70] Potential soil evaporation is estimated following
Tanner and Jury [1976], again with a modified PT
approximation. Tanner and Jury argue that under full
canopy cover, a soil PT coefficient (aS) of 1 should be
used to describe soil evaporation, because the airspace
above the soil will become almost fully saturated and
evaporation will approach the equilibrium value. For
bare soil conditions, however, aS should approach a
potential value of 1.3. Between these endpoints, the
coefficient depends on the value of a canopy transmis-
sion factor:

t ¼ exp �0:45F=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosfs

p� 
ðB2Þ

where fs is the solar zenith angle, in comparison with a
critical value tcrit = 0.5:

for 	 
 	crit; �s ¼ 1

for 	 > 	crit; �s ¼ �C � �C � 1ð Þ 1� 	ð Þ
1� 	critð Þ

	 

:

ðB3Þ

Then

PETs ¼
�s

�

�

�þ �
RNs: ðB4Þ

Hourly values of RNC, RNS, PETC and PETS are obtained
using GOES-based downwelling short- and long-wave
radiation products [Diak et al., 1996, 2000], which can be
evaluated at up to 15-minute intervals under both clear and
cloudy conditions.

Appendix C: Extrapolation From Instantaneous
to Hourly and Daily Fluxes

[71] A common technique for extrapolating instantaneous
satellite-based flux estimates to daily totals is to assume that
the evaporative fraction (EF), given by the ratio of latent
heat to the available energy, is constant during daylight
hours for a given day [Gurney and Hsu, 1990; Shuttleworth
et al., 1989; Sugita and Brutsaert, 1991]. Given the value of
EF determined at the ALEXI modeling time (t2) along with
hourly estimates of RN and G at times ti, which can be
obtained from GOES, hourly values of system sensible and
latent heating can be computed for days with clear mornings
as:

lEi ¼ EF RNi � Gið Þ
Hi ¼ RNi � Gi � lEi:

ðC1Þ

Previous studies have shown that daily total fluxes
estimated using the EF measured at midday underestimate
observed totals by 5–10% [Brutsaert and Sugita, 1992;
Crago, 1996; Gurney and Hsu, 1990; Sugita and Brutsaert,
1991; Zhang and Lemeur, 1995], therefore EF is defined
here as

EF ¼ 1:1
lE2

RN2 � G2

ðC2Þ

using flux components computed at modeling time t2.
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[72] For clear pixels, hourly fluxes from the soil compo-
nent of the two-source system are obtained as

EFS ¼ 1:1
lES2

RNS2 � G2

lESi ¼ EFS RNSi � Gið Þ
HSi ¼ RNsi � Gi � lESi

ðC3Þ

while the canopy components are determined as residuals:

lECi ¼ lEi � lESi

HCi ¼ Hi � HSi
ðC4Þ

(similar results are obtained by computing soil fluxes as the
residual). Hourly Eci and Esi are integrated to provide the
daily total water extractions hECi and hESi used to update
the root-zone and soil surface moisture pools (equation 7).
[73] For cloudy pixels, hourly values of latent heat flux

are simply estimated from hourly PETi and contempo-
raneous stress function values, while sensible heat is com-
puted as a residual to the component energy budget:

ECi ¼ fPETc * PETCi

HCi ¼ RNCi � ECi

ESi ¼ fPETs * PETSi

HSi ¼ RNSi � ESi � Gi
ðC5Þ

[74] Acknowledgments. This work was supported by the NASA
EOS and Land Surface Hydrology Programs. In particular, funding for this
research was provided primarily by NASA grant NAG13-99008 and in part
by USDA Cooperative Agreement 58-1265-1-043.

References
Abramopoulos, F., C. Rosenzweig, and B. Choudhury (1988), Improved
ground hydrology calculations for global climate models (GCMs): Soil
water movement and evapotranspiration, J. Climate Appl. Meteorol., 1,
921–941.

Anderson, M. C., J. M. Norman, G. R. Diak, W. P. Kustas, and J. R.
Mecikalski (1997), A two-source time-integrated model for estimating
surface fluxes using thermal infrared remote sensing, Remote Sens.
Environ., 60, 195–216.

Anderson, M. C., J. M. Norman, T. P. Meyers, and G. R. Diak (2000),
An analytical model for estimating canopy transpiration and carbon
assimilation fluxes based on canopy light-use efficiency, Agric. For.
Meteorol., 101, 265–289.

Anderson, M. C., C. M. U. Neale, F. Li, J. M. Norman, W. P. Kustas,
H. Jayanthi, and J. Chavez (2004a), Upscaling ground observations of
vegetation water content, canopy height, and leaf area index during
SMEX02 using aircraft and Landsat imagery, Remote Sens. Environ.,
92, 447–464.

Anderson, M. C., J. M. Norman, J. R. Mecikalski, R. D. Torn, W. P.
Kustas, and J. B. Basara (2004b), A multi-scale remote sensing model
for disaggregating regional fluxes to micrometeorological scales,
J. Hydrometeor., 5, 343–363.

Anderson, M. C., J. M. Norman, W. P. Kustas, F. Li, J. H. Prueger, and J. M.
Mecikalski (2005), Effects of vegetation clumping on two-source model
estimates of surface energy fluxes from an agricultural landscape during
SMACEX, J. Hydrometeorol., 6, 892–909.

Anderson, M. C., W. P. Kustas, and J. M. Norman (2007a), Upscaling tower
and aircraft fluxes from local to continental scales using thermal remote
sensing, Agron. J., 99, 240–254.

Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. P. Otkin, and
W. P. Kustas (2007b), A climatological study of evapotranspiration
and moisture stress across the continental U.S. based on thermal
remote sensing: II. Surface moisture climatology, J. Geophys. Res.,
doi:10.1029/2006JD007507, in press.

Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams (1998),
Large area hydrologic modeling and assessment. Part I: Model develop-
ment, J. Amer.Water Resour. Assoc., 34, 73–89.

Bastiaanssen, W. G. M., M. Menenti, R. A. Feddes, and A. A. M. Holtslag
(1998), A remote sensing surface energy balance algorithm for land
(SEBAL); 1. Formulation, J. Hydrol., 212–213, 198–212.

Beljaars, A., P. Viterbo, M. Miller, and A. Betts (1996), The anomalous
rainfall over the US during July 1993 — sensitivity to land-surface para-
meterization and soil moisture, Monthly Weather Rev., 124, 362–383.

Betts, A. K., F. Chen, K. E. Mitchell, and Z. I. Janjic (1997), Assessment
of the land surface and boundary layer models in two operational
versions of the NCEP Eta model using FIFE data, Mon. Weather
Rev., 125, 2896–2916.

Brutsaert, W. (1984), Evaporation into the atmosphere: theory, history and
applications, D. Reidel, Boston.

Brutsaert, W., and D. Chen (1995), Desorption and the two stages of drying
of natural tallgrass prairie, Water Resources Res., 31, 1305–1313.

Brutsaert, W., and D. Chen (1996), Diurnal variation of surface fluxes
during thorough drying (or severe drought) of natural prairie, Water
Resources Res., 32, 2013–2019.

Brutsaert, W., and M. Sugita (1992), Application of self-preservation in the
diurnal evolution of the surface energy budget to determine daily evapo-
ration, J. Geophys. Res., 97, 18,377–18,382.

Campbell, G. S., and J. M. Norman (1998), An introduction to environ-
mental biophysics, Springer-Verlag, New York.

Capehart, W. J., and T. N. Carlson (1997), Decoupling of surface and
near-surface soil water content: A remote sensing perspective, Water
Resources Res., 33, 1383–1395.

Carlson, T. N., R. R. Gillies, and T. J. Schmugge (1995), An interpretation
of methodologies for indirect measurement of soil water content, Agric.
For. Meteorol., 77, 191–205.

Chen, F., K. Mitchell, J. Schaake, Y. Xue, H. Pan, V. Koren, Q. Y. Duan,
M. Ek, and A. Betts (1996), Modeling of land surface evaporation by
four schemes and comparison with FIFE observations, J. Geophys. Res.,
101, 7251–7268.

Choudhury, B. J., S. B. Idso, and R. J. Reginato (1987), Analysis of an
empirical model for soil heat flux under a growing wheat crop for esti-
mating evaporation by an infrared-temperature-based energy balance
equation, Agric. For. Meteorol., 39, 283–297.

Crago, R. D. (1996), Comparison of the evaporative fraction and the
Priestley-Taylor a for parameterizing daytime evaporation, Water
Resources Res., 32, 1403–1409.

Crow, W. T., F. Li, and W. P. Kustas (2005), Intercomparison of spatially
distributed models for predicting surface energy flux patterns during
SMACEX, J. Hydrometeorology, 941–953.

Diak, G. R., and M. S. Whipple (1993), Improvements to models and
methods for evaluating the land-surface energy balance and ‘effective’
roughness using radiosonde reports and satellite-measured skin temper-
ature data, Agric. For. Meteor., 63, 189–218.

Diak, G. R., D. Kim, M. S. Whipple, and X. Wu (1992), Preparing for the
AMSU, Bull. Amer. Meteor. Soc., 73, 1971–1984.

Diak, G. R., W. L. Bland, and J. R. Mecikalski (1996), A note on first
estimates of surface insolation from GOES-8 visible satellite data, Agric.
For. Meteorol., 82, 219–226.

Diak, G. R., W. L. Bland, J. R. Mecikalski, and M. C. Anderson (2000),
Satellite-based estimates of longwave radiation for agricultural appli-
cations, Agric. For. Meteorol., 103, 349–355.

Diak, G. R., J. R. Mecikalski, M. C. Anderson, J. M. Norman, W. P. Kustas,
R. D. Torn, and R. L. DeWolf (2003), Estimating land-surface energy
budgets from space: Review and current efforts at the University of
Wisconsin-Madison and USDA-ARS, Bull. Amer. Meteorol. Soc., 85,
65–78.

Doraiswamy, P. C., J. L. Hatfield, T. J. Jackson, B. Akhmedoc, J. Prueger,
and A. Stern (2004), Crop condition and yield simulations using Landsat
and MODIS, Remote Sens. Environ., 92, 548–559.

Fang, H., and S. Liang (2005), A hybrid inversion method for mapping leaf
area index from MODIS data: experiments and application to broadleaf
and needleleaf canopies, Remote Sens. Environ., 94, 405–424.

France, J., and J. H. M. Thornley (1984), Mathematical Models in Agri-
culture, 335 pp., Butterworths and Co., London.

French, A. N., J. M. Norman, and M. C. Anderson (2003), A simple and
fast atmospheric correction for spaceborne remote sensing of surface
temperature, Remote Sens. Environ., 87, 326–333.

Gao, B. (1996), NDWI — A normalized difference water index for remote
sensing of vegetation liquid water from space, Remote Sens. Environ., 58,
257–266.

Gillies, R. R., J. Cui, T. N. Carlson, W. P. Kustas, and K. S. Humes (1997),
Verification of a method for obtaining surface soil water content and
energy fluxes from remote measurements of NDVI and surface radiant
temperature, Int. J. Remote Sens., 18, 3145–3166.

Goudriaan, J. (1977), Crop micrometeorology: a simulation study, Simula-
tion Monographs, Wageningen.

Gurney, R. J., and A. Y. Hsu (1990), Relating evaporative fraction to
remotely sensed data at the FIFE site, paper presented at Symposium
on FIFE: First ISLSCP Field Experiment, Boston, MA, February 7–9,
1990.

D10117 ANDERSON ET AL.: EVAPOTRANSPIRATION AND MOISTURE STRESS

16 of 17

D10117



Hain, C. R., J. R. Mecikalski, and M. C. Anderson (2005a), Validation of
ALEXI-derived volumetric soil moisture over the continental United
States, paper presented at American Meteorological Society.

Hain, C. R., J. R. Mecikalski, M. C. Anderson, and W. Lapenta (2005b),
Initialization of a numerical mesoscale model with ALEXI-derived volu-
metric soil moisture observations, paper presented at American Meteo-
rological Society.

Hansen, M. C., R. S. Defries, J. R. G. Townshend, and R. Sohlberg (2000),
Global land cover classification at 1 km spatial resolution using a classi-
fication tree approach, Int. J. Remote. Sens., 21, 1331–1364.

Kim, J., and S. B. Verma (1990), Components of surface energy balance in a
temperate grassland ecosystem, Boundary-Layer Meteorol., 51, 401–417.

Kustas, W. P., and J. M. Norman (1999), Evaluation of soil and vegetation
heat flux predictions using a simple two-source model with radiometric
temperatures for partial canopy cover, Agric. For. Meteorol., 94, 13–25.

Kustas, W. P., and J. M. Norman (2000), A two-source energy balance
approach using directional radiometric temperature observations for
sparse canopy covered surfaces, Agronomy J., 92, 847–854.

Kustas, W. P., G. R. Diak, and J. M. Norman (2001), Time difference
methods for monitoring regional scale heat fluxes with remote sensing,
Land Surface Hydrology, Meteorology, and Climate: Observations and
Modeling, 3, 15–29.

Kustas, W. P., J. Hatfield, and J. H. Prueger (2005), The Soil Moisture
Atmosphere Coupling Experiment (SMACEX): Background, Hydrome-
teorlogical Conditions and Preliminary Findings, J. Hydrometeor., 6,
791–804.

Kustas, W. P., Z. Zhang, and T. J. Schmugge (1998), Combining optical and
microwave remote sensing for mapping energy fluxes in a semiarid
watershed, Remote Sens. Environ., 64, 116–131.

Kustas, W. P., M. C. Anderson, A. N. French, and D. Vickers (2006), Using
a remote sensing field experiment to investigate flux footprint relations
and flux sampling distributions for tower and aircraft-based observations,
Adv. Water Res., 29, 355–368.

Li, F., W. P. Kustas, M. C. Anderson, T. J. Jackson, R. Bindlish, and
J. Prueger (2006), Comparing the utility of microwave and thermal
remote-sensing constraints in two-source energy balance modeling over
an agricultural landscape, Remote Sens. Environ., 101, 315–328.

Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges (1994), A simple
hydrologically based model of land surface water and energy fluxes for
GSMs, J. Geophys. Res., 99(D7), 14,415–14,428.

Mahfouf, J. F., and J. Noilhan (1991), Comparative study of various
formulations of evaporation from bare soil using in situ data, J. Appl.
Meteorol., 30, 1354–1365.

Mahrt, L., and H.-L. Pan (1984), A two layer model for soil hydrology,
Bound.-Layer Meteor., 29, 1–20.

Mason, P. J. (1988), The formation of areally-averaged roughness lengths,
Q. J. R. Meteorol. Soc., 114, 399–420.

Massman, W. (1997), An analytical one-dimensional model of momentum
transfer by vegetation of arbitrary structure, Bound.-Layer Meteor., 83,
407–421.

McNaughton, K. G., and T. W. Spriggs (1986), A mixed-layer model for
regional evaporation, Boundary-Layer Meteorol., 74, 262–288.

Mecikalski, J. M., G. R. Diak, M. C. Anderson, and J. M. Norman (1999),
Estimating fluxes on continental scales using remotely-sensed data in an
atmosphere-land exchange model, J. Applied Meteorol., 38, 1352–1369.

Menzel, W. P., W. L. Smith, and T. R. Stewart (1983), Improved cloud
motion wind vector and altitude assignment using VAS, J. Climate Appl.
Meteorol., 22, 377–384.

Miller, D. A., and R. A. White (1998), A conterminous United States multi-
layer soil characteristics dataset for regional climate and hydrology
modeling, 42 pp, Earth Interactions.

Myneni, R. B., et al. (2002), Global products of vegetation leaf area and
fraction absorbed PAR from year one of MODIS data, Remote Sens.
Environ., 83, 214–231.

Norman, J. M., J.-L. Chen, and N. S. Goel (1990), Thermal emissivity and
infrared temperature dependence of plant canopy architecture and view
angle, paper presented at Proc. Tenth Annual Int. Geoscience Remote
Sensing Symp. IEEE, Piscataway, N. J.

Norman, J. M., W. P. Kustas, and K. S. Humes (1995), A two-source
approach for estimating soil and vegetation energy fluxes from obser-
vations of directional radiometric surface temperature, Agric. For.
Meteorol., 77, 263–293.

Norman, J.M.,M. C. Anderson,W. P. Kustas, A. N. French, J. R.Mecikalski,
R. D. Torn, G. R. Diak, T. J. Schmugge, and B. C. W. Tanner (2003),
Remote sensing of surface energy fluxes at 101-m pixel resolutions,Water
Resour. Res., 39(8), 1221, doi:10.1029/2002WR001775.

Otkin, J. A., M. C. Anderson, J. R. Mecikalski, and G. R. Diak (2005),
Validation of GOES-based insolation estimates using data from the
United States Climate Reference Network, J. Hydromet., 6, 460–475.
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