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ABSTRACT

Comparison of multiple hydrologic indicators, derived from independent data sources and modeling ap-

proaches, may improve confidence in signals of emerging drought, particularly during periods of rapid onset.

This paper compares the evaporative stress index (ESI)—a diagnostic fast-response indicator describing

evapotranspiration (ET) deficits derived within a thermal remote sensing energy balance framework—with

prognostic estimates of soil moisture (SM), ET, and runoff anomalies generated with theNorthAmerican Land

Data Assimilation System (NLDAS). Widely used empirical indices based on thermal remote sensing [vege-

tation health index (VHI)] and precipitation percentiles [standardized precipitation index (SPI)] were also

included to assess relative performance. Spatial and temporal correlations computed between indices over the

contiguous United States were compared with historical drought classifications recorded in the U.S. Drought

Monitor (USDM). Based on correlation results, improved forms for the ESI were identified, incorporating

a Penman–Monteith reference ET scaling flux and implementing a temporal smoothing algorithm at the pixel

level. Of all indices evaluated, anomalies in the NLDAS ensemble-averaged SM provided the highest corre-

lations with USDM drought classes, while the ESI yielded the best performance of the remote sensing indices.

TheVHI provided reasonable correlations, except under conditions of energy-limited vegetation growth during

the cold season and at high latitudes. Change indices computed fromESI and SM time series agree well, and in

combination offer a good indicator of change in drought severity class in the USDM, often preceding USDM

class deterioration by several weeks. Results suggest that a merged ESI–SM change indicator may provide

valuable early warning of rapidly evolving ‘‘flash drought’’ conditions.

1. Introduction

Drought monitoring is a complex and multifaceted

endeavor, warranting use of multiple tools. Drought

impacts can be manifested in all components of the hy-

drologic budget: in water supply terms (precipitation), in

storage (soil moisture, snowpack, groundwater, and

surface water), and in exchange or flux terms (evapo-

transpiration, snowmelt, drainage/recharge, runoff, and

streamflow). Each of these components has relevance to

specific groups of stakeholders, and each has a unique

natural time scale of evolution. The current strategy in

operational drought monitoring is to assemble a suite of

independent indicators, sampling different types of rele-

vant impacts at different temporal scales, and then to

blend these indicators into a concise, integrated report

using both subjective and objective approaches. This is

the strategy used to construct the U.S. Drought Monitor

(USDM; Svoboda et al. 2002), the primary record of

drought classification for the United States since 1999.

Lacking an absolute standard of ‘‘truth’’ in drought

severity classification at continental scales, the USDM

authors rely on a convergence of evidence between

independent indicators, reported impacts, and expert
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guidance from the field to determine the significance of

emerging drought patterns.

To optimally synthesize signals frommultiple drought

indicators, their relative strengths and weaknesses must

be well understood, as well as the unique information each

one provides. Indices based on surface measurements are

strongly tied to observations, but may have limits in spatial

sampling and portability to other domains that lack

dense in situ monitoring networks. Prognostic land sur-

facemodels (LSMs) can provide quantitative estimates of

a full suite of hydrologic variables, adding value to the

precipitation data used as a primary input. However,

model output may have significant biases because of in-

accurate modeling assumptions, observational errors in

the forcing data, and a reliance on surface parameter fields

(e.g., soil texture and plant rooting depth) that may not be

available with the required accuracy or spatial resolution

(Betts et al. 1997; Schaake et al. 2004; Mo et al. 2012).

Because they are principally constrained by the accuracy

of the precipitation inputs, LSMs are typically limited in

spatial resolution (several kilometers or coarser) and are

only moderately portable to regions with sparse ground-

based rain gauge networks required for accurate cali-

bration. In comparison, diagnostic indicators based on

satellite remote sensing can be generated at higher spatial

resolution and with broad geographic coverage, but may

have temporal sampling constraints, both in frequency and

period of record. Data assimilation strategies have been

developed to integrate in situ and remote sensing data into

LSMs to reduce impacts of input biases and model pa-

rameterization errors (Houborg et al. 2012; Hain et al.

2012; Sheffield et al. 2012). This will likely be the optimal

solution for future global drought monitoring efforts,

providing a time-continuous suite of hydrologic variables

generated from a unified modeling system or ensemble of

systems. In preparation, intercomparisons between prog-

nostic and diagnostic indicators provide insight regarding

relative regional and seasonal performance.

This study focuses on diagnostic remote sensing in-

dicators that are responsive to short-term environmental

changes, since early warning capabilities are limited in

current drought monitoring systems such as the USDM.

Recent ‘‘flash drought’’ events, where surface moisture

conditions declined rapidly because of high tempera-

tures and enhanced evaporative losses, have highlighted

the need for rapid response indicators. Vegetation cover

condition, as sampled by remotely sensed shortwave veg-

etation indices (VIs), is a relatively slow response variable,

typically adjusting only after notable crop damage has

already occurred. Remote sensing indices based primar-

ily on VI data include the vegetation drought response

index (VegDRI; Brown et al. 2008) and the Moderate

Resolution Imaging Spectroradiometer (MODIS)-based

drought severity index (Mu et al. 2013). In contrast, land

surface temperature (LST) is a rapid response variable,

and it can be readily sampled over a range in spatial

resolution—from field to continental scales—using ther-

mal infrared (TIR) satellite imagery. Drought signals in

LST are conveyed by increases in soil and canopy tem-

peratures as soil moisture deficits and vegetation stress

develop and, in some cases, prior to reductions in VIs.

Drought indicators based on LST include the vegetation

health index (VHI; Kogan 1997), generated from em-

pirical combinations of LST and VI data, and the evap-

orative stress index (ESI; Anderson et al. 2011), which

combines LST and vegetation cover amount in an esti-

mate of evapotranspiration (ET) computed within the

context of a surface energy balance model. ET-based

indicators, quantifying anomalous rates of water use or

loss, may be uniquely sensitive to rapidly changing con-

ditions relating to flash drought.

In this paper, ESI performance over the contiguous

United States (CONUS) is compared with soil moisture

(SM), ET, and runoff indices generated with the prog-

nostic LSMs in the North American Land Data Assimi-

lation System (NLDAS; Xia et al. 2012a,b) operated by

the Environmental Modeling Center (EMC) at the Na-

tionalCenters for Environmental Prediction (NCEP) and

used in the North American Drought Briefings (NADB;

www.cpc.ncep.noaa.gov/products/Drought). Also in-

cluded in the intercomparison are standard drought

indicators such as the VHI and the standardized preci-

pitation index (SPI), an index based solely on precipita-

tion observations. The performance of each indicator is

assessed in comparison with retrospective drought classi-

fications in the USDM from 2000 to 2011. These com-

parisons are used in two ways: first to confirm the realism

of experimental drought products, and then to demon-

strate cases where these products can anticipate droughts

that later appear in the USDM. The goals of the study are

to identify an optimal ESI form for real-time delivery and

integration into the NADB and USDM, to better un-

derstand ESI performance in comparison with standard

precipitation-based indicators, and to explore the role of

diagnostic indicators as an independent assessment of

drought signals conveyed by prognosticmodeling systems.

First-order time changes in ESI and NLDAS SM are also

compared with changes in USDM drought classes to in-

vestigate synergistic utility for early identification of areas

with rapidly intensifying agricultural drought conditions.

2. Data

a. Evaporative stress index

The ESI represents standardized anomalies in a nor-

malized clear-sky ET ratio, ET/Fref, where Fref is a scaling
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flux used to minimize impacts of nonmoisture related

drivers on ET (e.g., seasonal variations in radiation load).

In previous studies (Anderson et al. 2007b, 2011), a

modified Priestley–Taylor (Priestley and Taylor 1972)

estimate of potential ET (PET) has been used as the

normalization factor to compute the ESI. Here, the per-

formance of several forms of scaling flux is examined, as

well as a benchmark case using no scaling flux, sampling

anomalies in ET itself.

ET estimates employed in the ESI are obtained from

the TIR-based remote sensing Atmosphere–Land Ex-

change Inverse (ALEXI) model (Anderson et al. 1997;

Mecikalski et al. 1999; Anderson et al. 2007a). ALEXI

uses measurements of the morning LST rise, provided

by geostationary satellites, as the main diagnostic input

to a two-source (soil 1 vegetation) model of surface en-

ergy balance. Anderson et al. (1997) demonstrated that

use of a time-differential LST signal reduces model sen-

sitivity to errors in the absolute temperature retrieval.

Because ALEXI is dependent on LST, direct ET re-

trievals can be achieved only under clear-sky conditions,

although methods for gap-filling cloudy days have been

developed (Anderson et al. 2007a, 2012). The ESI is

formed from time composites of clear-sky ET/Fref re-

trieved near local noon. Time compositing over periods

of 1 week to several months serves to fill cloud-induced

gaps in the model grid and to reduce noise due pri-

marily to incomplete cloud clearing. It is hypothesized

that use of clear-sky ET retrievals (as opposed to all-sky

estimates) results in better separation of soil moisture–

induced controls on ET from drivers related to variable

radiation load such as cloud cover.

ALEXI is executed daily over CONUS on an ap-

proximately 10-km grid (pixel dimension 0.08998). The
model is forced with meteorological inputs from the

NorthAmericanRegional Reanalysis (NARR;Mesinger

et al. 2006), while LST inputs are obtained from the

Geostationary Operational Environmental Satellites

(GOES), and leaf area index (LAI) is interpolated from

the 8-day Terra MODIS product (MOD15A2). Impor-

tantly, ALEXI does not use precipitation data as input:

surface moisture patterns are conveyed to the model in

proxy by the LST signal. The ALEXI period of record is

currently limited to theMODIS era (2000 and following),

but can be extended back to the early 1980s using VI data

from the Advanced Very High Resolution Radiometer

(AVHRR) series flown by the National Oceanic and

Atmospheric Administration (NOAA) and geostationary

data from the International Satellite Cloud Climatology

Project (ISCCP) B1 data rescue project (Knapp 2008).

Snow-covered regions have beenmasked using the 24-km

resolution Daily Northern Hemisphere Snow and Ice

Analysis product distributed through the National Snow

and Ice Data Center (NSIDC; http://nsidc.org/data/docs/

noaa/g02156_ims_snow_ice_analysis/index.html). ESI com-

posites were computed for 1-, 2-, and 3-month time scales

(see section 3a). Standardized anomaly computations for

transforming daily ET/Fref time series into ESI are de-

scribed in section 3b. Real-time ESI maps over CONUS

during the growing season can be viewed at http://hrsl.

arsusda.gov/drought.

b. North American Land Data Assimilation System

ESI drought assessments have been comparedwith SM,

ET, and runoff data from the NorthAmerican LandData

Assimilation System–Phase 2 (NLDAS-2) maintained by

NCEP, including output from three land surfacemodeling

systems: Noah (Ek et al. 2003; Barlage et al. 2010; Livneh

et al. 2010; Wei et al. 2013), Mosaic (Koster and Suarez

1994, 1996; Koster et al. 2000), and the Variable In-

filtration Capacity (VIC) model (Liang et al. 1994, 1996;

Bowling and Lettenmaier 2010). While all three LSMs

model the surface energy andwater balance, LST, and SM

inmultiple layers, their treatment of infiltration, drainage,

rooting depth and canopy uptake, and soil evaporation

differs, yielding regionally differential responses based on

local climate, soils, and vegetation characteristics. Given

this variability, previous studies of NLDAS-derived

drought indicators suggest that ensemble averages of

model output better depict drought conditions compared

to output from individual modeling systems (Dirmeyer

et al. 2006; Mo et al. 2011). Output from the Sacramento

Soil Moisture Accounting (SAC-SMA) model (Burnash

1995), also incorporated in the NCEP NLDAS-2 config-

uration, is not included in this study because SAC-SMA

does not implement a full energy balance and is con-

ceptually less comparable to ALEXI.

The NCEP-NLDAS models are forced with the same

NARR meteorological inputs (e.g., air temperature,

wind, and vapor pressure) used by ALEXI. While this

commonality introduces some interdependence, ALEXI

is much less sensitive to meteorological forcings than

to LST time difference inputs (Anderson et al. 1997).

Precipitation analyses used in NLDAS are described by

Xia et al. (2012b). Here we use output of monthly aver-

aged total soil column SM and all-sky daily ET.

Monthly SM percentiles have been computed with

respect to a 30-yr climatology (1979–2008). SM data

from individual models are referred to as SMNO (Noah),

SMMO (Mosaic), SMVI (VIC), and SMAV (ensemble), and

analogously for ET output. In addition, the standard-

ized runoff index (SRI) computed for 3- and 6-month

intervals from ensemble-averaged runoff values was in-

cluded in the analysis.

Data over CONUS were provided on a 0.1258 grid. For
comparison with ESI, NLDAS SM, ET, and SRI data
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have been renormalized to the ALEXI period of record,

as described in section 3b.

c. Standardized precipitation index

ESI and NLDAS drought indicators were also com-

pared with the SPI (McKee et al. 1993, 1995), considered

to be a standard in drought monitoring (Hayes et al.

2011). The SPI uses observed precipitation as the sole

input. Precipitation data at a given location are fit to

a distribution function and then transformed into a nor-

mal distribution based on a local long-term climatology.

The SPI data are standardized such that a value of 0 in-

dicates the median precipitation amount (in comparison

with the climatology) was measured at that pixel over the

time interval in question. The SPI can be computed over

multiple intervals (typically ranging from 2 to 52 weeks)

to monitor different time scales of drought.

Here, we use SPI computed over 3- and 6-month in-

tervals using the NLDAS-2 precipitation dataset (Xia

et al. 2012b), generated from a temporal disaggregation

of a gauge-only Climate Prediction Center (CPC) anal-

ysis of daily precipitation and including an orographic

adjustment based on the climatology of the Parameter-

Elevation Regressions on Independent Slopes Model

(PRISM; Daly et al. 1994) precipitation dataset. Data

over CONUS were provided at monthly time steps on

a 0.58 grid, referenced to baseline conditions over the

period 1979–2008.

d. Vegetation health index

As a comparison to the TIR-based ESI, the VHI

(Kogan 1995) has been included in the analyses. VHI uses

two of the primary remote sensing inputs toALEXI: LST

and vegetation cover amount (as quantified via a VI), but

combined empirically rather thanwithin a physical surface

energy balance framework. The analyses will evaluate

how well this simple approach performs in comparison

with the more complex ESI and identify areas and times

of major similarity and difference.

The VHI is a composite of normalized LST- and VI-

based indices. The vegetation condition index (VCI)

rescales the normalized difference vegetation index

(NDVI) on a pixel-by-pixel basis, scaling between mini-

mum and maximum values (NDVImin and NDVImax, re-

spectively) observed at each pixel over a long temporal

record since 1981:

VCI5
NDVI02NDVImin

NDVImax2NDVImin

, (1)

where NDVI0 is the average NDVI observed over the

compositing period of interest (e.g., week, month, or

growing season). The temperature condition index (TCI)

is analogous, but it is based on climatologically normal-

ized brightness temperatures (BT):

TCI5
BTmax2BT0

BTmax2BTmin

. (2)

The flip in sign between Eqs. (1) and (2) reflects the

natural anticorrelation that tends to exist between LST

and NDVI under moisture-limiting vegetation growth

conditions, with lower cover regions tending to be hotter

because of reduced transpiration rates and/or soil

moisture.

Assuming an equal contribution of both VCI and TCI

to the combined index, VHI is usually computed as the

average of VCI and TCI:

VHI5 0:5VCI1 0:5VTI. (3)

VHI is a standard global product generated weekly by

NOAA using NDVI and BT data obtained from the

NOAA-AVHRR sensor series. For this study, global

VHI data at 0.14428 resolution were extracted over

CONUS and flagged with the same NSIDC snow cover

product that was applied to ALEXI.

e. U.S. Drought Monitor

Through expert analysis, authors of the weekly USDM

report subjectively integrate information from many

existing drought indicators along with local reports from

state climatologists and observers across the country

(Svoboda et al. 2002). The USDM is unique among the

drought indices studied here because it includes drought

information at multiple time scales, as well as socioeco-

nomic considerations. While the USDM should not be

considered an absolute metric of truth in drought moni-

toring, it is useful as a benchmark for assessing the spa-

tiotemporal response of different drought indices.

The weekly USDM is a ‘‘composite indicator,’’ com-

bining several variables into a single product that at-

tempts to show both short- (S) and long-term (L) drought

on one map. Variables (indices and indicators) utilized in

the process address precipitation, temperature, vegeta-

tion health, soil moisture (modeled and in situ where

available), streamflow, snowpack, snowwater equivalent,

reservoirs, and groundwater. TheUSDM is also unique in

that it incorporates feedback and input into the process

by maintaining and utilizing an expert user group of

around 350 people in the field who serve as a ‘‘ground

truth’’ to the product. A convergence of evidence ap-

proach is used to combine the scientific data with impacts

and feedback from experts in the field via an iterative

process.

The underlying backbone of the USDM is utilization

of a ranking percentile approach, which gives historical
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context to any given value/score by defining the per-

centage of scores in the associated frequency distribution

that are of the same or lower value. The classification

schema/categories run from D0–D4, with D0 equaling

‘‘abnormally dry’’ (D0 5 30th percentile) conditions.

Moderate drought (D1 5 20th percentile) is the first

designated level of drought, and severe (D2 5 10th per-

centile), extreme (D3 5 5th percentile), and exceptional

(D4 5 2nd percentile) round out the rest of the classifi-

cation. This approach also allows for the evaluation and

inclusion of new parameters as they come online.

The USDM process also generates a set of weekly

composite objective blend drought indicator (OBDI)

products that were developed by the USDM authors as

an attempt to objectively show both short- and long-term

drought as separate maps for those who wish to separate

the two. The short-term objective blend drought indi-

cator (stOBDI) currently consists of five inputs weighted

accordingly after experimental trial and error runs over

18 months: Palmer Z index (35%), 1-month SPI (20%),

3-month SPI (25%), CPC Soil Moisture Model (13%),

and the Palmer drought severity index (PDSI) (7%).

The long-term OBDI (ltOBDI) consists of six inputs

weighted accordingly: PDSI (25%), 24-month SPI (20%),

12-month SPI (20%), 6-month SPI (15%), 60-month SPI

(10%), and the CPC Soil Moisture Model (10%). The

CPC soil moisture dataset currently used in the USDM

production is based on a one-layer leaky bucket model

(Fan and van den Dool 2004). In addition, percentiles

derived for NLDAS-2 top 1-m soil moisture, total soil

column soil moisture, and total runoff have been ingested

into the USDM as an overlay data stream since January

2010.

For this study, weekly USDM drought classification

data for 2000–11 were provided in shapefile format by

the National Drought Mitigation Center (NDMC) and

rasterized onto the 10-km ALEXI grid. For computa-

tional purposes, the drought classes were mapped to

numerical values (D0 5 0, D15 1, D2 5 2, D35 3, and

D45 4) with ‘‘no drought’’ assigned a value of21. Note

that all classes of wet conditions are containedwithin the

no drought class; thus, the distribution of USDM classes

in temperate regions that experienced little drought over

the period of record may be strongly skewed toward

values of 21.

3. Methods

a. Temporal compositing

Individual datasets used in the analysis were ob-

tained at different native time steps—daily (clear sky

only) for ALEXI, weekly for USDM and VHI, and

monthly forNLDAS—and at different spatial resolutions.

To standardize spatial and temporal sampling, weekly

and monthly datasets were first regridded to the ALEXI

grid using nearest-neighbor assignment, then distributed

to daily sampling by assuming constant values at each

given pixel over the prior week or month. All datasets

were then composited to simulate average conditions

over various time scales.

In this study, composites were generated at 28-day time

steps (roughly monthly) over 4-, 8-, 12-, and 26-week

(approximately 1-, 2-, 3-, and 6-month) moving windows

(time stamped by the end date). The 26-week composite

is essentially a growing season average for April through

September, while the 4- to 12-week composites sample

different phenological phases in vegetation development

and different time scales of drought persistence. Com-

posites were computed as an unweighted average of all

index values over the interval in question:

hy(w, y, i, j)i5 1

nc
�
nc

n51

y(n, y, i, j) , (4)

where hy(w, y, i, j)i is the composite for week w, year y,

and i, j grid location, y(n, y, i, j) is the value on day n, and

nc is the number of days with good data during the

compositing interval. Cloudy-day values in ALEXI are

flagged and excluded from the composites.

b. Anomaly computations

Each normalized index (USDM, VHI, SPI, SRI, and

SM) used in this study refers to climatological conditions

defined over different periods of record. Use of longer

climatologies tends to decrease the apparent severity of

isolated drought events, placing them within a broader

historical context. These differences can introduce com-

plexity into index intercomparisons, as the definition of

‘‘normal’’ may vary from index to index.

In the analyses presented here, all indices including

USDM drought classes have been rescaled to standard-

ized anomalies computed with respect to the ALEXI

period of record (2000–11). The rescaled indices are ex-

pressed as a pseudo z score, normalized to a mean of zero

and a standard deviation of one. Fields describing normal

(mean) conditions and temporal standard deviations at

each pixel are generated for each compositing interval.

Then standardized anomalies at pixel i, j for week w and

year y are computed as

y(w, y, i, j
�0
5

hy(w, y, i, j)i2 1

ny
�
ny

y51

hy(w, y, i, j)i

s(w, i, j)
, (5)

where the second term in the numerator defines the nor-

mal field, averaged over all years ny, and the denominator
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is the standard deviation. In this notation, ESI-X is defined

as ET/Fref
0 computed for an X-month composite, while

ETI-X is defined as ET0 (anomalies in unscaled ET).

The prime is droppedwhen denoting renormalized indices

in the discussion below, but is implied unless otherwise

noted.

c. ESI refinements

Two refinements to the original ESI construction

scheme (Anderson et al. 2007b, 2011) have been eval-

uated in this study: 1) use of alternate forms of scaling

flux and 2) use of temporal smoothing at the pixel level

to reduce noise, related primarily to incomplete cloud

clearing.

1) CHOICE OF SCALING FLUX

Use of a scaling flux is common in thermal remote

sensing of ET for upscaling from instantaneous retrievals

at the time of satellite overpass to daily total ET and for

gap-filling cloudy days when LST cannot be measured

using TIR data (Ryu et al. 2012; Delogu et al. 2012). This

practice assumes temporal preservation of a dimension-

less ratio that conveys information about the surface

moisture status. Given scaled ET ratios computed at

times of clear-sky satellite overpasses, ET can be re-

constructed for intervening times using interpolated

ratio values and hourly or daily estimates of the scaling

flux (e.g., Allen et al. 2007; Anderson et al. 2012).

Here we test four different scaling fluxes Fref that are

commonly used in ET upscaling, spanning a range in

computational complexity and data demand. These in-

clude two forms of potential or referenceET: the Penman–

Monteith (PM) formulation, as codified in the Food

and Agricultural Organization (FAO-56) standard (Allen

et al. 1998), and the Priestley–Taylor (PT) equation

(Priestley and Taylor 1972), which ignores advective

contributions to the potential evaporative flux. Available

energy (net radiation minus the soil heat flux) is also

evaluated as a scaling flux, resulting in a ratio termed the

evaporative fraction (EF). Finally, the simplest case using

only insolation (SDN) to scale ET is tested. The resulting

ET/Fref ratios will be denoted fPM, fPT, fEF, and fSDN,

respectively. These cases are contrasted with anomalies

computed using no scaling flux (f0).

2) TEMPORAL SMOOTHING

Anderson et al. (2007b, 2011) used time composites of

raw scaled ET values in Eq. (5) to compute ESI. How-

ever, incomplete screening of cloud-impacted LST in-

puts to ALEXI can serve to either increase or decrease

the LST rise signal, depending on whether the clouds

occur in the early morning or near noon, respectively.

This leads to spurious reductions or enhancements of

ET retrievals from the ALEXI algorithm and will add

noise to the ET/Fref composites. While GOES-derived

cloud masks are implemented in the ALEXI processing

infrastructure, thin clouds, particularly in the early

morning, are notoriously difficult to detect (Schreiner

et al. 2007). Here, a smoothingmethodology is tested that

exploits the dense time series of information available

from geostationary satellites to reduce random day-to-

day noise inET/Fref and to identify and screen data points

influenced by clouds prior to compositing.

An example of the smoothing approach is shown in

Fig. 1, as applied to a grid cell located in the state of

Georgia (see Fig. 2). The algorithm first filters time series

of the scaled flux, searching for and eliminating isolated

outliers that do not follow recent trends in ET/Fref. The

assumption is that any abrupt SM-induced change in ET

ratio is likely to persist for several days, while isolated

outliers are likely cloud related. The algorithm itera-

tively identifies and screens points that exceed a 62

standard deviation (s) threshold computed within a

moving window of width67 points around the point in

question. Next, the remaining points are smoothed with

a Savitzsky–Golay (Savitzky and Golay 1964) filter

employing a second-order smoothing polynomial. The

algorithm outputs temporally smoothed map grids, sam-

pled only at pixels that had a valid, unscreened clear-sky

retrieval on any given day. These grids are input to the

compositing and anomaly computation algorithms de-

scribed above.

d. Correlation analyses

Following Anderson et al. (2011), drought indices were

compared via temporal correlation as a function of

FIG. 1. Example of time series smoothing applied to fPM ex-

tracted at a grid point inGA (see Fig. 2) for the year 2010. Red data

points are screened outliers. The remaining filtered points (green)

are processed with a Savitzky–Golay filter to produce the smoothed

time series (blue).
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location across the domain and via spatial correlation

as a function of time over the ALEXI period of record.

Both assessments are limited in their ability to convey

objective information about the performance of a sin-

gle index pair because the correlation coefficient is

impacted not only by index agreement, but also by the

magnitude of variation in moisture conditions across

the domain or through time. However, comparisons of

correlations between multiple index pairs should pro-

vide a measure of relative compatibility.

For these correlation analyses, all indices except

USDMwere convolved to the 0.58 resolution of the SPI

products before computing the standardized anomalies.

Average temporal and spatial correlations were com-

puted usingmonthlymaps fromApril toOctober to focus

on growing season conditions, which tend to be more

robustly captured by drought indicators and less affected

by snow-cover masking. Spatial correlation time series

were also computed for all months to identify seasonal

trends in interindex agreement.

Statistics are reported in terms of the Pearson cor-

relation coefficient, a measure of linear dependence

between two variables. The Spearman nonparametric

coefficient of rank correlation, which does not assume

linear dependence, was also tested and yielded similar

results in terms of ranking correlation strength between

variables. Nonlinearities were particularly notable in

the northeastern U.S. between USDM class anomalies

and other drought indicators because of skewness in

the USDM distribution, which does not sample ‘‘wetter

than normal’’ conditions. While this nonlinearity tends

to degrade temporal correlations in regions where ‘‘no

drought’’ is a common occurrence, relative degree of

correlation (correlation differences) at a given point in

the domain still provides useful information as towhether

index 1 is better at rankingUSDMdrought classes than is

index 2.

e. Change detection

The process of operational drought monitoring, as in

the construction of USDMmaps, depends on accurately

identifying areas with changing drought status. Typically,

a USDM author will start with the classification from the

prior week and determine areas that requiremodification.

To assist this process, we have created an ESI change

product that tracks the significance of index changes over

periods of 1–4 weeks. ESI change (denoted DESI) is

computed by differencing composites of smoothed

ET/Fref, then computing standardized anomalies in the

difference products. This final step is valuable (in com-

parison with delivering simple differences between ESI

products) because it brings maps at all change intervals to

a common magnitude scale and highlights significance of

change in comparison with climatology. Similar change

products have been computed from theNLDASensemble-

averaged SM anomalies. DESI and DSM have been

compared to changes in USDM drought classifications

to explore the utility of these change products in pro-

viding clear early warning in areas where soil moisture

conditions are rapidly deteriorating.

4. Results and discussion

a. Optimizing the ESI formulation

The impact of data smoothing and scaling flux selection

was quantified in terms of average temporal and spatial

correlation coefficient hri computed between different

ESI forms, USDM class anomalies, and NLDAS SM

anomalies from all three LSMs and the ensemble average

(Table 1). For both ESI and SM anomalies, time series of

4-week composites sampled atmonthly intervals between

April andOctober for the years 2000–11 were used in the

correlation computations.

As evidenced in Table 1, the PM scaling flux ESIPM
provided the highest average spatial and temporal cor-

relations with both USDM and SM anomalies, while the

unscaled ET (ETI) from ALEXI provided the lowest

correlations. This suggests that scaling ET by any of the

reference fluxes tested adds value by enhancing the ability

of the index to discriminate moisture status. Of the soil

moisture products, ESI correlates best with anomalies in

SMAV, followed by SMVI. For all scaling fluxes, time se-

ries smoothing [as described in section 3c(2)] improved

average correlations by approximately 0.04. For the sake

of brevity, correlations with unsmoothed time series are

shown in Table 1 only for the PM scaling flux.

Figure 3 provides insight into the relative efficacy of

each scaling flux in removing normal seasonal variability

from the ET/Fref soil moisture proxy signal. These plots

show annual time traces of f0, fPM, fPT, fEF, and fSDN for

FIG. 2. Locations of sampling points used in intercomparisons.

Colors in background indicate midseason vegetation cover frac-

tion, ranging from 0 (brown) to 1 (dark green).
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example grid points in Georgia and Texas and two

points in Iowa: one in northern Iowa in a region of high

corn and soybean cropping density, and another in the

southern part of the state with lower corn/soybean crop

acreage (see Fig. 2). For all regions, fPM results in the

best relative separation between yearly traces, which are

differentiated in part by variable SM conditions. The

value of including the advective term in the Penman–

Monteith equation, neglected in the Priestley–Taylor

form for PET, can be noted by comparing ESIPM and

ESIPT correlations in Table 1. Improvement in temporal

correlation using the PM scaling flux is most pronounced

over the easternUnited States. All scaling fluxes serve to

reduce seasonal variability in comparison with the un-

scaled case (f0).

Note in Fig. 3 that the ability of the scaling fluxes to

remove seasonal variations differs between regions. The

scaled flux curves are notably flattened in Georgia and

Texas, but considerable seasonal variation remains at

the Iowa sites, particularly for the dense corn/soybean

cropping region in northern Iowa. In these areas, the

ESI signal will partially reflect interannual changes in

crop phenology, such as delayed planting and emergence

because of cooler spring temperatures, which may not be

related to anomalous SM conditions. The steep slopes of

the curves at the northern Iowa site indicate that condi-

tions are changing rapidly during the compositing in-

terval, further obfuscating interpretation of composited

values at various time scales.

Based on the results presented in this section, ESI

computed from smoothed fPM time series will be used in

the following correlation analyses.

b. Index intercomparison

1) CLIMATOLOGICAL PATTERNS IN ET

Maps of seasonal means and standard deviations in

several diagnostic and prognostic ET-based indicators

included in this study are shown in Fig. 4, computed from

26-week composites over a nominal growing season

period of April–September. Comparing mean values of

scaled ET indices (fPM, fPT, and fEF) and f0 (unscaled

ET) from ALEXI, it is evident that the scaling flux has

reduced latitudinal gradients due to variations in solar

radiation load, particularly in the eastern United States.

Of these, the PM scaling flux fPM generates the most

uniform north–south distribution of mean index values.

Seasonal mean ET from ALEXI (f0) and NLDAS

(ETNO, ETMO, ETVI, and ETAV) in general show similar

patterns, although it should be remembered that f0
is based on clear-sky midday ET, while the NLDAS

monthly ET includes impacts of cloud climatology. Of

these, Mosaic generates the highest ET estimates, while

the Noah LSMpredicts lower ET in the northernUnited

States along the Great Lakes, similar to findings by Xia

et al. (2012b) for 28-yr mean annual evaporation esti-

mates. They note that recalibration of VIC has removed

overestimation of annual ET in the southeastern United

States observed with NLDAS-1 (Mitchell et al. 2004);

however, VIC now yields lower ET over the southeast

with respect to other NLDAS-2 models during the

growing season.

While normal mean conditions show similarity be-

tween ET indicators, maps of standard deviation in sea-

sonal composites show that the various indices are

characterized by significantly different patterns of vari-

ability. All indicate Texas as highly variable because of

the strong drought events (in 2006 and 2011) and wetter

conditions (2007) that occurred over the 2000–11 time-

frame. AmongNLDASEToutput, ETMO stands apart as

having very different variability patterns, particularly

along the lower Mississippi River basin where the stan-

dard deviation is high. In contrast ALEXI indices fPM,

fPT, fEF, and f0 show relatively low variability in this

region, particularly in the evaporative fraction dataset.

This is reasonable given the pervasiveness of irrigated

agriculture and flooded rice paddies in combination

with shallow water tables in the basin. More stable

moisture conditions, because of local enhancements of

nonprecipitation relatedmoisture inputs like irrigation or

extraction from shallow water tables, are implicitly cap-

tured by the diagnostic LST inputs toALEXI butmust be

TABLE 1. Average temporal and spatial correlation coefficients, hri, computed betweenESI forms, soil moisture anomalies, andUSDM

class anomaly time series at sampled at 4-week intervals for April–October of 2000–11. Boldface indicates highest temporal and spatial

correlation.

Temporal correlations Spatial correlations

ESIPM ESIPM (unsmoothed) ESIPT ESIEF ESISDN ETI ESIPM ESIPM (unsmoothed) ESIPT ESIEF ESISDN ETI

USDM 0.517 0.483 0.493 0.464 0.453 0.445 0.500 0.462 0.474 0.441 0.438 0.431

SMNO 0.640 0.604 0.609 0.573 0.561 0.552 0.608 0.572 0.573 0.534 0.526 0.519

SMVI 0.657 0.618 0.622 0.580 0.568 0.559 0.625 0.586 0.585 0.543 0.533 0.526

SMMO 0.617 0.579 0.577 0.545 0.532 0.522 0.577 0.539 0.529 0.493 0.481 0.474

SMAV 0.669 0.630 0.632 0.593 0.580 0.570 0.636 0.596 0.592 0.551 0.540 0.532
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modeled explicitly in prognostic land surface modeling

systems and are not currently represented in NCEP

NLDAS-2 simulations. Drought resilience may also be

impacted by plant rooting depth, which is difficult to

accurately map a priori.

2) ANNUAL DROUGHT PATTERNS

Figure 5 compares drought maps composited over a

nominal growing season (April–September) from select

remote sensing and precipitation-based indicators with

drought severity classes recorded in the USDM for

2000–11. In general, the major annual drought patterns

are captured by each index at this coarse time scale. The

similarity between ESI and SMAV is notable, given that

these indices are constructed from completely indepen-

dent signals—LST for ESI, and precipitation for SM—

and suggests that in combination they will provide strong

evidence of emerging drought signals. While in most

cases VHI is in agreement with other indicators, major

differences are noted in 2000 and regional drought events

are missed in 2001 (northeast) and 2008 (southeast).

3) MONTHLY TEMPORAL CORRELATIONS

While interindex correlations in drought patterns are

strong at the annual scale, we start to note larger dif-

ferences in response at shorter time scales. Average

FIG. 3. Smoothed ET/Fref time series for 2000–11, comparing several scaling fluxes (fPM, fPT, fEF, and fSDN) and a benchmark case using no

scaling (f0) (Wm22).
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temporal correlations between monthly values of ESI

and other drought indicators are plotted graphically in

Fig. 6. Average monthly spatial correlations give al-

most identical rankings, but tend to be lower by 0.03 on

average.

The statistical metrics in Fig. 6 give general infor-

mation regarding relative index congruence. Among all

indices included in the intercomparison, USDM anom-

alies weremost highly correlated in both space and time,

with SM anomalies at 1-month time scales from the

NLDAS ensemble average (SMAV-1), with hri 5 0.66.

Of the individual NLDAS models, VIC SM anomalies

provided best agreement with temporal and spatial

patterns in USDM, followed by Noah, although differ-

ences were small. In comparison with the remote sensing

indices (ESI, ETI, and VHI), the USDM was best cor-

related with ESI-3, with temporal hri 5 0.55. USDM

correlations with ETI and VHI are similar, with hri 5
0.45–0.48. Both outperformET anomalies fromNLDAS

according to this metric, varying between hri 5 0.33–

0.47. For most indices, with the exception of NLDAS

SM anomalies, agreement with USDM classification

improves with increasing index compositing time scale,

reflecting the conservative nature of USDM classifica-

tions over time.

The strongest correlations between ALEXI and

NLDAS indicators listed in Fig. 6 are with NLDAS SM

rather than ET, with maximum temporal hri 5 0.69 for

ESI-3 and SMAV-2. Normalization of ALEXI ET by

reference ET and restriction to clear-sky conditions

both serve to minimize impacts of radiation forcing that

dominates variability in NLDAS daily (all sky) ET in

many parts of the CONUS domain. In comparison with

ESI, NLDAS SM correlations are lower with ETI, with

hri 5 0.58 for ETI-3 and SMAV-2, again indicating the

value of the scaling flux in ESI for isolating surface

moisture effects from radiation effects. Of the remote

sensing indices, VHI consistently has the lowest corre-

lations with precipitation-related indices. In comparison

with ESI correlations, VHI correlations are lower on

average by 0.05 with USDM, by 0.08 with NLDAS ET,

and by 0.17 with NLDAS SM anomalies.

FIG. 4. (left two columns) Climatological mean and standard deviation maps for several ALEXI [ f0 (Wm22) and fPM, fPT, and fEF
(unitless)] and (right two columns) NLDAS ET-related indicators (mmd21) included in the intercomparison, computed from 26-week

(April–September) composites over the period 2000–11.
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Further investigation reveals how interindex correla-

tions vary spatially across CONUS. Figure 7 showsmaps

of temporal correlation coefficients computed between

select remote sensing– and precipitation-based indices

(3-month composites) and with anomalies in USDM

drought classifications. Plots of correlations with output

from individual NLDAS LSMs appear similar to those

with the ensemble averages, but with somewhat lower

mean values (not shown).

In general, time series from index pairs are best cor-

related along a north–south band through the central

United States. This region lies along a sharp east–west

gradient in precipitation and vegetation cover, where

the seasonal cycling and interannual variability in soil

FIG. 5. Seasonal anomalies in 26-week composites of USDM, ESI, SMAV, VHI, and SPI for 2000–11, along with average USDM class

recorded for each year during the period April–September.
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moisture availability is strongest and ET is largely soil-

moisture limited, enhancing correlations between SM

and ET. This band across the Great Plains has been

identified in global simulations as a region of excep-

tionally strong land–atmosphere coupling during the

boreal summer, along with the Sahel in North Africa

and the Indus Valley (Koster et al. 2004, 2006; Dirmeyer

2011). The VHI shows a tendency for lower or negative

correlation with all precipitation indices at higher lati-

tudes, particularly in the northeast. This is in agreement

with findings by Karnieli et al. (2010), who demonstrated

that under conditions of energy-limited vegetation growth

(high latitudes and elevations and during the winter/early

spring), temperature and vegetation cover can be pos-

itively correlated, yielding a false signal in VHI that

assumes a negative correlation. NLDAS ETAV is also

anticorrelated with USDM in parts of the northern

United States, including northeastern Minnesota, the

upper peninsula of Michigan, and Washington. This may

be due in part to cloud cover contributions, which reduce

all-sky ET during rainier/wetter periods. ETI, based on

clear-sky flux, does not show these strong anticorrelation

features and yields higher average correlation than either

VHI or ETAV. Normalization with the PM scaling flux

(i.e., ESI) further improves correlation with USDM and

SM over all parts of the geographic domain. Spatial pat-

terns in temporal correlation between ESI and NLDAS

SManomalies across CONUS evident in Fig. 7 are similar

to those identified by Hain et al. (2011), who investigated

joint assimilation of TIR (ALEXI ET/Fref) and micro-

wave soil moisture information into the Noah model.

Figure 8 shows differences in index temporal correla-

tion with USDM and SMAV-3, identifying regions where

differences were statistically significant at p , 0.05 ac-

cording to Fisher’s z transformation test with degrees of

freedom adjusted for temporal autocorrelation. Corre-

lation differences were computed as r(ESI-3) 2 r(x),

where r(ESI-3) is the temporal correlation betweenESI-3

and USDM or SMAV-3, and r(x) is the correlation be-

tween index x and USDM or SMAV-3. Green tones in-

dicate areas where r(ESI-3) . r(x). Over most of the

domain, SMAV was a better indicator of USDM drought

class during this time period than was ESI, particularly in

the western United States, where ET is climatologically

low and the ET/Fref signal is small (upper left panel).

This is not unexpected. Both NLDAS SM anomalies and

USDM drought classifications primarily reflect deficits in

precipitation observations, and thus, there is some level

of inherent interdependence between these indicators.

Furthermore, NCEP-NLDAS indices have been used to

some extent in the construction of the USDM since 2010.

In contrast, the ESI is developed without precipitation

data and was not used in theUSDM classification process

during the time period covered by this study and can be

considered an independent index.

The ETI-3 panels in Fig. 8 (second row) demonstrate

that the value of including the PM scaling flux is most

notable (in terms of increased correlation with USDM

and NLDAS SM) in the lower Mississippi River basin.

In comparison with ESI-3, ET from NLDAS (ETAV-3)

is the most decoupled from NLDAS SM in the north-

eastern United States, where evaporative fluxes are typ-

ically radiation limited rather thanmoisture limited (third

row). This same region is highlighted in the correlation

differences with VHI-3, indicating decreased skill in VHI

at reflecting SM conditions in the northeast (fourth row).

In contrast, in comparison with SPI-3, ESI-3 adds value in

the western United States, where evaporative losses (not

captured in the SPI) are a major driver of SM dynamics

(bottom row).

4) MONTHLY SPATIAL CORRELATIONS

Figure 9 demonstrates the time variability in spatial

correlations computed between select index pairs sam-

pled at monthly intervals. All plots exhibit annual sea-

sonality, with lower spatial correlations typically observed

during the winter months. Certain years with strong

FIG. 6. Average temporal correlation coefficient, hri, computed

between remote sensing drought indicators (columns) and pre-

cipitation-based indices (rows) for April–October of 2000–11.

1046 JOURNAL OF HYDROMETEOROLOGY VOLUME 14



spatial drought patterns have consistently higher corre-

lations among indices, in particular, 2002/03, 2007, and

2011 (see Fig. 5).

In this comparison, USDM (top row) shows the

strongest spatial and most temporally consistent cor-

relations with SMAV anomalies, followed by the runoff

index computed from the NLDAS ensemble. Of the

remote sensing indices, ESI is most strongly correlated

with USDM over this time period, outperforming both

ETI and VHI. ETAV, VHI, and SPI show the largest

degradation in spatial consistency with other indicators

during the winter months.

SM anomalies (middle row) are highly correlated with

SRI, which may be expected because both are generated

by NLDAS LSMs based on physical relationships as-

sumed between soil moisture and runoff. This ranking

holds for other time scales as well. Of the remote sensing

indices, SM is spatially best correlated with ESI. During

the growing season, SM anomaly patterns are more sim-

ilar to ESI than toUSDMclasses, but the correlation with

ESI weakens during the winter seasons when the ET

signal is low. Correlations between SM anomalies and

VHI are consistently lower than with ESI.

In comparison with the precipitation indices, ESI

(bottom row) shows stronger correlations with SM

anomalies and SRI than with SPI, indicating a closer

relationship of ET/Fref with storage and runoff compo-

nents of the hydrologic budget than with water supply

(precipitation). Seasonal cycles in spatial consistency

between ESI and ETI reflect the impact of the scaling

flux, with highest correlations midseason when the slope

of ET time curve is close to zero (Fig. 3), and both ESI

and ETI sample similar anomalies.

In summary, NLDAS SM anomalies appear to be the

best predictor of patterns in USDM drought class, while

ESI shows best performance of the remote sensing in-

dices tested. Despite the simplicity of its formulation

and data demands, the VHI also performed reasonably

well during much of the growing season, except under

conditions of energy-limited vegetation growth.

c. Analyses of drought events

Time series ofESI andSManomalies extracted at several

sites across CONUS (Fig. 2) are displayed in Fig. 10 to

demonstrate response tomajor regional drought events

over the past 12 years. Also indicated are the associated

USDManomalies and drought classes at these sites. All

data have been averaged over 50km 3 50km boxes,

sampling paired sites covering a range of climatic condi-

tions and land use. SM anomalies from each of the three

FIG. 7. Maps of temporal correlation coefficient computed between time series of select remote sensing (ESI, ETI, and VHI on

horizontal axis) and precipitation-based indices (SPI, SRI, SMAV, and ETAV on vertical axis) at 3-month time scales, and with anomalies

in USDM drought classifications.
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FIG. 8. Difference in interindex temporal correlation computed as r(ESI-3)2 r(x), where r(ESI-3) is the temporal

correlation between ESI-3 and (left) USDM or (right) SMAV-3 and r(x) is the correlation between index x and

USDM or SMAV-3. Comparison indices x include (second row) ETI-3, (third row) ETAV-3, (fourth row) VHI-3, and

(bottom row) SPI-3 Green shading indicates r(ESI-3) . r(x). Only pixels with significant (p , 0.05) correlation

differences are displayed.
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NLDAS models are shown to indicate variability within

the ensemble.

Two points along the East Coast, in Georgia (GA)

and North Carolina (NC), show reasonable temporal

correspondence between indices, capturing the eastern

droughts of 2002 and 2007 evident in Fig. 5. All indices

track well, with relatively small spread among SM

anomalies from the NLDAS models. The ensemble-

averaged SM (not shown) provides best agreement

with both ESI and USDM anomalies at most sites.

Even tighter agreement between SM anomalies, and

with ESI, is observed at two points in south Texas (TX)

and western Oklahoma (OK). Correlations with the

USDMare strong in this part of theUnited States, which

was characterized by low vegetation cover and strong

moisture variability over the past decade. Both points

exhibit drought impacts in 2006 and 2011, while the

Texas drought of 2009 did not extend into the central

plains. In 2000, theESI captures impacts of a flash drought

that occurred over Oklahoma and is missed by the SM

indices in the sampled area. This event is further ex-

plored in section 4d.

Time traces from two points in Iowa (IA-N and IA-S,

also sampled in Fig. 3) demonstrate variable ESI per-

formance over theCornBelt.At both sites, theESI shows

strongermonth-to-month variability than do theNLDAS

SM anomalies. Still, the correlation with SM and USDM

is reasonable at longer time scales at the southern Iowa

site, which has lower density of planted corn and soybean

acreage. At this site, the Mosaic SM anomalies deviate

significantly from the other LSMs, showing much lower

temporal variability. At the northern Iowa site, in the

FIG. 9. Time series of spatial correlation coefficients computed between drought index pairs sampled at monthly

intervals.
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heart of the Corn Belt, ESI is very noisy, although it

still detects broad features in the interannual moisture

signal. Because of the peaked nature of the annual

curve (Fig. 3) in this part of the landscape, where the

vegetation cycle is intensively managed, fPM anomalies

are likely dominated by effects of variable planting

date, emergence, and crop growth rate, which may or

may not be related to soil moisture conditions. In-

formation content in this core part of the Corn Belt

might be improved with phenology-based timing ad-

justments to the normal curves used in the anomaly

computations. The SM variables from the various

NLDAS models also show considerable spread in this

region.

Finally, two areas supporting irrigated agriculture in

the western United States are also plotted in Fig. 10: in

the Snake River Plain in Idaho (ID) and the Central

Valley of California (CA). Both regions exhibit effects

of the long-term western drought of 2000–04, which is

more pronounced in Idaho. In this region, divergence of

SM and ESI time traces from USDM anomalies starting

in 2003 show SM conditions improving while hydrologic

drought classifications persisted in the USDM. This is

not an error in the drought indicators, but a factor of

temporal scale mismatch. In addition, USDM classifi-

cations also include impacts reported via the Drought

Impact Reporter and through field input. This is an ex-

ample of when simple correlations between indicators

FIG. 10. Time series of ESI-3; anomalies in SMNO-3, SMMO-3, and SMVI-3; and USDM drought classes and anomaly values for several

sites across CONUS (Fig. 2), averaged over 50 km 3 50 km boxes. In each panel, standardized anomalies are associated with the left

vertical axis (in units of s), and UDSM class with the right vertical axis.
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do not tell the full story. Comparing fPM curves at these

sites (Fig. 11) to those at the Iowa sites (Fig. 3) dem-

onstrates why ESI is better behaved in the Central

Valley than in core of the Corn Belt. The longer growing

season in California leads to less peaked seasonal water

consumption. Higher variability in fPM is noted during

the winter growing season (day of year 0–130) than dur-

ing the summer at the Central Valley site, but still there is

good separation between fPM curves because of variable

moisture conditions, resulting in a strong wintertime ESI

signal.

d. Monthly patterns and change detection

The efficacy of the ESI change product (DESI) in

identifying changes in historical USDM drought classifi-

cations is examined in Fig. 12. Monthly analyses are

presented for 4 years with rapidly evolving drought con-

ditions, including seasons showing signals of flash drought

occurrence in 2000, 2001, 2003, and 2011. These figures

also showmonthly anomalies and first-order changes in

the ensemble-averaged NLDAS SM products for com-

parison. ESI and SM change products are both displayed

as standardized anomalies, representing changes occur-

ring over a 4-week interval. USDM changes (DUSDM)

are simple differences in drought class over the same

4-week period. Overlaid on DUSDM are contours high-

lighting generalized areas where both ESI and SM

changes are strong (.1.5s), signaling areas of potential

interest to drought monitors.

1) 2000

Monthly patterns in ESI and SMAV show strong sim-

ilarity over the 2000 growing season (Fig. 12a). Both ESI

and SMAV indicated lower SM conditions in the western

United States in April–June, well before a D0–D1 clas-

sification appears in the USDM in August. Signals of the

western drought appeared in SPI-3 inMay, but VHI does

not significantly capture this event at any time during

2000 (not shown).

InMay–July, bothDESI andDSM capture the primary

hotspots of USDM class change. Use of the term ‘‘flash

drought’’ was first applied to events in August and

September of 2000, when an intense heat wave, windy

conditions, and resulting high ET rates rapidly depleted

FIG. 11. Time series of fPM for sites in Fig. 10 that are not shown in Fig. 3.
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FIG. 12. (a)–(d) Monthly standardized anomalies in the USDM drought classes (USDM), 1-month ESI composites (ESI-1), 1-month

ensemble-averaged SM anomalies (SMAV-1), as well as (first column) USDM drought classes for the week closest to the end of each

month. Also shown are change indices DESI-1, DSMAV-1, and DUSDM reflecting changes observed over 4-week intervals. Overlaid on

DUSDM are contours indicating generalized areas where both DESI-1 and DSMAV-1 indicate large decreases (red shades) and increases

(green shades) in surface moisture. Maps are shown for (a) 2000, (b) 2001, (c) 2003, and (d) 2011.
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FIG. 12. (Continued)
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available soil moisture in Oklahoma and Texas

(M. Svoboda 2000, unpublished manuscript). This led to

an abrupt transition betweenD0 andD2 drought severity

class occurring in early September, associated with ob-

served impacts on range and crop conditions, and an in-

crease in wildfire activity. In July, the ESI indicated

above-normal ET over the affected area as soil mois-

ture reserves were being depleted. Signals of stress and

moisture deficiency over this regionwere apparent first in

DESI in the July-to-August change product, and some-

what later in DSM. Note that early detection of moisture

status changes may serve to decorrelate ESI and USDM

signals; thus, future analyses will include variable lag

times.

2) 2001

USDM, ESI, and SMAV show similar patterns of

drought evolution in 2001, with persistent dry conditions

in the northwest and northeast (Fig. 12b). The most

significant change event occurred between June and

July, when D1 and D2 conditions rapidly spread from

west Texas into Oklahoma. This was driven by intense

heat coupled with below-average rainfall set up by a

stationary ridge of high pressure, which caused crop and

pasture conditions to significantly deteriorate by mid-

July. Rainfall and cooler temperatures reduced the se-

verity of drought in this region from late August to early

September. Thesemajor changes, into and out of drought

over Texas and Oklahoma, are clearly highlighted in

the change products for July and September. During

October, DESI and DSMAV patterns agree well, but are

less related toUSDMchanges, suggesting the normalized

change signal may be less helpful near the very end of the

growing season.

3) 2003

In April–August 2003, DESI was effective in isolating

regions of strong drought class change (Fig. 12c). The

D1 drought over the northwest in July was signaled

a month earlier by DESI and DSMAV. Rapid expansion

of drought conditions over the central United States in

July due to a prolonged heat wave left vegetation stressed

and moisture deprived. D1 drought conditions pushed

into Minnesota and Wisconsin in August. These rapid

changes are quite evident in all change indicators, but are

better localized in DESI than DSMAV. While these

changes can also be seen in the ESI itself, the change

product shows added utility in focusing attention on re-

gions of particular timely interest.

4) 2011

The severe Texas drought of 2011 is captured with

good spatial detail by both ESI and SMAV (Fig. 12d).

Besides this area of persistent drought, which does not

factor strongly into the change products, another rapid

onset or flash drought event occurred in 2011, beginning

in June over Arkansas and spreading to Missouri and

states to the north in July. While precipitation deficits

were observed, they were not extreme. Rather, the

spread of drought was fueled by strong winds and high

temperatures that lead to higher ET demands and rapid

depletion of soil moisture conditions. Advance warning

of this expansion was indicated in DESI and DSMAV

from May to June and may have allowed for an earlier

response. Routine generation of drought index change

products, such as those shown in Fig. 12, could benefit

state-of-the-art USDM classifications by allowing ear-

lier identification of emerging areas of interest.

5. Conclusions

In this study, a suite of TIR-based remote sensing

drought indicators were compared with SM, ET, and

runoff anomalies generated using the NCEP NLDAS

modeling system and historic USDM drought severity

classifications converted into anomaly form. The purpose

of the study was to 1) optimize the ESI format with re-

spect to SM and USDM anomalies, 2) establish the per-

formance of this new remote sensing index relative to

existing NLDAS indices, 3) investigate similarity be-

tween indices in terms of spatiotemporal patterns and

first-order changes; and 4)motivate the value of a derived

change product as a potential drought early warning tool.

Results demonstrate that a scaling flux adds value to

ET anomalies, serving to reduce impact of seasonality

and nonprecipitation-related ET drivers and better

reflect moisture variability. A scaling flux based on the

Penman–Monteith equation for potential ET provided

the best agreement with other drought indicators. Tem-

poral smoothing of scaled flux time series further im-

proved agreement, reducing noise due to incomplete

cloud clearing in the ET remote sensing retrievals.

In comparison with prior USDM classifications for

2000–11, anomalies in NLDAS ensemble-averaged SM

agreed best of the drought indicators evaluated here.

SM anomalies were more closely related to USDM

classes than was SPI, suggesting that interpretive value is

added by processing precipitation data through an LSM.

Of the remote sensing indices evaluated, ESI was best

correlated with NLDAS indices and with USDM classes.

Both ESI and related remote sensing ET index ETI (ESI

with no scaling flux) outperformed anomalies in NLDAS

daily ET (all sky). This may be in part because of the

focus on clear-sky fluxes inETI andESI, isolating impacts

of clouds on ET from those of surfacemoisture. The VHI

showed anticorrelation with USDM and NLDAS SM in
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spring/winter at high latitudes, but functioned reason-

ably well in many cases given the simplicity of the index

formulation.

Further comparison of spatial and temporal patterns

in ESI, NLDAS SM, and USDM revealed good agree-

ment over much of CONUS, particularly in the central

United States, where there was strong year-to-year

variability in moisture conditions. Parts of the central

Corn Belt, in northern Iowa and southern Minnesota,

show strongly peaked seasonal variability in ET/Fref for

all ESI scaling fluxes tested. This results in reduced

correlations with ESI, because anomalies with respect

to fixed normal conditions reflect both moisture and

crop phenology differences between years (e.g., delays

in planting and emergence mimic moisture reductions in

ET). Future work will focus on implementing normals

indexed by phenological stage (e.g., days since emer-

gence) rather than calendar year over highly managed

parts of the monitoring domain.

Both ESI and NLDAS SM change products indicated

value in providing early warning of changing drought

conditions recorded in the USDM. A convergence of

evidence approach applied to independently derived

change indicators may prove useful in assessing the

validity of rapidly evolving drought conditions. Further

research is in progress to address optimal methods for

merging prognostic and diagnostic drought and change

signals and to develop thresholds and visualization

methods that clearly and reliably identify rapid-onset

drought occurrence.
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