
1. Introduction
Assimilation of both space-borne remote sensing observations such as infrared radiances and ground-based 
remote sensing observations like radar reflectivity into Numerical Weather Prediction (NWP) models have 
attracted interest in recent years. The high spatial and temporal resolution of radar reflectivity observations and 
their capability to resolve internal precipitating cloud structures, have proven to improve the forecast of different 
types of mid-latitude convective scale weather systems (e.g., Dowell et al., 2004; Gao & Stensrud, 2012; John-
son et al., 2015; Wang & Wang, 2017). Complementary to radar reflectivity, measurements from space-borne 
platforms such as infrared radiances from the GOES-R Advanced Baseline Imager (ABI; Schmit et al., 2017) can 
provide high resolution non-precipitating cloud hydrometeor information in the troposphere. Several Observing 
System Simulation Experiments (OSSE; Otkin, 2010, 2012; Zhang, Howard, et al., 2016; Zupanski et al., 2011) 
have shown the potential positive impact on the analysis and forecast of high impact weather by assimilating 
both clear and cloudy infrared brightness temperature (BT) observations. In all of these studies, BT is the main 
observation type assimilated and there is a clear emphasis on proper handling of hydrometeors, especially the 
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ones which are radiatively active, in addition to the capability of BT to provide information on water vapor in 
clear air regions.

The combined assimilation of radar and geostationary infrared observations were first performed by several 
OSSE studies (Cintineo et al., 2016; Jones et al., 2013, 2014). Their results confirmed that the radar reflectiv-
ity observations combined with the water vapor or cloud sensitive BT observation results in a better analysis 
and forecast for humidity, cloud and precipitation hydrometeors than assimilating radar reflectivity alone. Most 
of the above OSSEs focus on extra-tropical cyclone systems. Most recently, several studies were conducted to 
assimilate real ABI radiance with radar observations for rapidly developing thunderstorm and supercell events 
(e.g., Johnson et al., 2021; Zhang et al., 2019, 2018) at convection permitting resolution. These studies found 
that for convective scale data assimilation (DA) systems, the frequent assimilation of all-sky BT along with radar 
observations results in better representation of storms in the analysis and improved forecast lead time than radar 
only experiments.

Satellite radiance (Radiance and BT are interchangeably used in the paper) observations may contain systematic 
biases. Past studies suggested identification and removal of such biases during DA can be critical or beneficial 
for the analysis and subsequent forecasts (Aravéquia et al., 2011; Dee & Uppala, 2009; Kazumori, 2014; Zhu 
et al., 2019). Initial efforts were steered toward identification and removal of this bias only in clear-sky regions 
(Kelly & Flobert, 1988). The air-mass and scan angle dependent nature of the clear-sky biases motivated studies 
to account for the spatial variation in the bias as a function of various bias predictors (e.g., Eyre, 1992). With the 
emergence of cloudy radiance observation assimilation, in addition to examining the use of various predictors, 
studies have also begun to explore the use of various linear or nonlinear bias correction functions for bias correc-
tion (Otkin et al., 2018; Otkin & Pothast, 2019).

Satellite radiance bias correction can also be broadly classified into offline and online methods. The general idea 
behind an offline bias correction method is to fit the bias correction function with the accumulated innovation 
(observation minus background) statistics (e.g., Harris & Kelly,  2001). This approach has been shown to be 
effective in improving the data quality and reducing the air-mass dependent bias. In the presence of model bias, 
however, an offline approach may have difficulty distinguishing between the model bias and observation bias 
(Auligne et al., 2007; Eyre, 2016). An online radiance bias correction method was proposed and implemented 
first in variational DA (Dee, 2004; Derber & Wu, 1998; Zhu et al., 2014) and then in ensemble Kalman filter 
(EnKF; Fertig et al., 2009; Miyoshi et al., 2010). In such an online bias correction approach, the bias correction 
coefficients and the model states are updated simultaneously during the DA cycling. The simultaneous assim-
ilation of bias-free anchoring observations and bias-bearing satellite radiances in the online approach allows 
the bias of the radiance observation to be separately estimated from the bias of the model (Auligne et al., 2007; 
Eyre, 2016). In addition, compared to the offline approach, the online approach has been proven to be more adap-
tive to the changes in the model and observation characteristics (Auligne et al., 2007).

Although early studies have suggested the importance of correcting the bias of the radiance during DA, limited 
efforts were made to explore the radiance bias correction for convective scale all-sky infrared radiance DA. Most 
studies assimilating real all-sky infrared radiance for convective scales either perform no bias correction (e.g., 
Zhang et al., 2018, 2019) or use a simple offline approach where domain-wide averaged innovation was used 
to approximate the bias (e.g., Johnson et al., 2021). Otkin and Pothast (2019) implemented an offline approach 
where a nonlinear function was used to fit innovations. This study showed the positive impact of nonlinear bias 
correction on upper-level cloud systems associated with widespread precipitation.

Although early studies using a simple model (e.g., Eyre, 2016) or in a clear air radiance assimilation context 
(Auligne et al., 2007) both portrayed the superior behaviors of online bias correction approach relative to an 
offline approach in the presence of anchoring observations, there has not yet been an attempt to use online bias 
correction methods for all-sky radiance assimilation in convective scale DA. In the present study, we implement 
online nonlinear bias correction for all-sky ABI radiance DA for a case of rapidly developing supercells. Such 
an online bias correction approach is implemented with radar reflectivity as the anchoring observations and with 
a rapidly updated EnKF. Radar reflectivity is explored as the anchoring observation given its matching high 
temporal resolution as the ABI BTs. In addition, different from early online bias correction studies, the nonlinear 
polynomial form of bias correction function was adopted (Otkin et al., 2018). We term this approach as “online 
nonlinear bias correction.” As a first study, we assimilate the water vapor and cloud sensitive ABI channel 9 
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radiances sensitive primarily to clouds and water vapor in the middle and upper troposphere. The online nonlinear 
bias correction is then comprehensively compared with the corresponding offline approach. Furthermore, the 
optimal choice of predictor for nonlinear bias correction is examined for the rapidly developing supercell case. 
The proposed online nonlinear bias correction method for the all-sky radiance DA for convective scale prediction 
has not been published in earlier studies. To demonstrate this new approach in depth, we first use a single high 
impact weather event and its associated detailed diagnostics to facilitate the understanding of and to reveal the 
impact of the approach. Such a single case study approach has been used in early studies when a new approach 
is introduced (e.g., Honda et al., 2018; Minamide & Zhang, 2018; Wu et al., 2019; Zhang et al., 2018). The limit 
of a single case study and the need to perform experiments with more cases for future studies are discussed in 
Section 5.

The paper is organized as follows: Section 2 discusses the theory behind offline and online bias correction meth-
ods used in this study followed by a brief description of the rapidly developing supercell event and experiment 
design in Section 3. Section 4 discusses the effect of using different bias predictor variables on the convective 
scale DA system. In addition, the performance of offline and online bias correction methods for the analysis and 
forecast of the rapidly developing supercell are evaluated and diagnosed. Conclusions and scope for future work 
are presented in Section 5.

2. Offline and Online Bias Correction Methods
In this study, a nonlinear online bias correction method is proposed and examined for GOES-R ABI all-sky radi-
ance DA. In this section, we first review a theory derived from a simplified framework to understand online and 
offline bias corrections (Eyre, 2016). We then discuss practical considerations examining the theory in a realistic 
convective scale DA system. Finally, we describe the nonlinear form of offline and online bias correction meth-
ods adopted for all-sky radiances in this study.

2.1. Theoretical Differences Between Offline and Online Bias Correction Methods and Their Practical 
Application

The bias correction methods in this study aim to correct the observation biases rather than the biases that exist in 
the model. Distinguishing the observation and model biases requires unbiased reference observations to be assim-
ilated along-side the bias-bearing observation. These unbiased observations help differentiate the model and 
observation component of the biases thereby preventing the drifting of the analysis toward the model climatology. 
These unbiased reference observations are termed as “anchor observations” (Cucurull et al., 2014). The simpli-
fied framework presented in Eyre (2016) establishes a theory for understanding the differences between offline 
and online bias correction methods. The framework considers two observations “y1” and “y2” which observe the 
model state “x”. “y1” is an anchor observation and “y2” is the bias corrected observation. Anchor observations are 
expected to be unbiased and therefore can help distinguish the model and observation component of the biases. 
The analysis at any DA cycle is written as a weighted sum of model background and the observations. One major 
assumption regarding the bias in the simplified framework is that they do not vary with time. The difference of 
the analysis and background biases between the offline and online approach derived by Eyre (2016) are summa-
rized in Table 1. It can be seen that, in the absence of any anchoring observation (when w1 = 0 in Table 1), both 
offline and online bias correction behaves the same way where the bias in background and analysis is equal to 
model bias. For both the offline and online bias correction approaches, the background and analysis biases are 
reduced when anchoring observations are assimilated. For a given weight to the anchoring and bias corrected 
observation, the online bias correction method results in less biases in the analysis and background compared to 
the offline method.

This simplified framework reveals the need of the co-existence of an unbiased anchor observation along with 
the bias corrected observation and the potential advantage of an online bias correction approach relative to an 
offline approach. In the past studies, radiosonde observations and GPS Radio Occultation observations have been 
used as anchor observations (Cucurull et al., 2014). The utility of such observations as anchoring observations 
in convective scale DA with frequent cycling (e.g., 10 min in this study), however, is limited, given their rela-
tively low time resolution. Although, the radar reflectivity observations can have biases as a result of antenna 
side lobes, atmospheric absorption and attenuation (Vivekanandan et al., 2003), past studies suggest the quality 
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controlled MRMS reflectivity observations can serve as the anchoring observations for the ABI radiance assim-
ilation. First, the US NEXRAD WSR-88D system requirement (Zrnic, 2012) specifies a precision in reflectivity 
as less than 1 dBz, The NEXRAD observations are then processed through several quality control procedures 
(Tang et al., 2020) to form 3D MRMS reflectivity mosaic, which are assimilated in this study. During the qual-
ity control, errors are further reduced. Past studies have used these MRMS reflectivity observation (Biswas 
& Chandrasekar,  2018; Gourley et  al.,  2003; Ice et  al.,  2005) or precipitation (Carr et  al.,  2015; Upadhyaya 
et al., 2020) as ground truth in order to quantify biases in the satellite reflectivity or precipitation observations. 
We therefore explore the use of radar reflectivity as anchor observations for the assimilation of GOES-R ABI 
radiances. There are a few aspects that need to be considered. The simplified framework assumes that both the 
anchor and bias corrected observations are directly observing the same model state. In the realistic convective 
scale DA system, radar reflectivity and ABI radiances are remote sensing observations that indirectly measure 
atmospheric or model states. Different observation operators are used to relate what radar reflectivity and ABI 
“see” with the model states. Additionally they are sensitive to different variables and contribute to the analysis 
increment in different regions of the cloud. However, radar reflectivity and ABI cloud sensitive radiances are 
physically connected. For example, the increments created by radar reflectivity on precipitating hydrometeors 
and updrafts at low- and mid-levels are physically linked to the formation of high-level clouds which are seen 
by ABI radiances. Therefore, we expect radar reflectivity observations can still serve as an anchor over cloudy 
regions where there are positive reflectivity. The time scale for the formation of a rapidly evolving cumulus cloud 
system is approximately 10 min or less (Bluestein, 1992). With a 10 min DA cycling period used in this study, 
the lag between radar reflectivity and radiance observations is included and the two observations are dynami-
cally linked over the precipitating regions. We also expect zero reflectivity can serve as an anchor over spurious 
precipitating regions because the increments created by radar reflectivity on spurious precipitation also affects 
the suppression of high-level spurious clouds which are seen by ABI radiances. Radar reflectivity observations 
cannot act as anchor observation in the following regions. In the regions where both the model and the observa-
tion are clear air, the humidity increments created by ABI radiances are not constrained by the radar reflectivity 
observations as radar reflectivity is sensitive only to precipitating hydrometeors. In the regions where both the 
model and observations have non-precipitating clouds, radar reflectivity cannot serve as an anchor because the 
innovation for radar reflectivity observation is zero.

2.2. Non-linear Offline Bias Correction

The non-linear bias correction method introduced in Otkin et al. (2018) is an offline method wherein the statistics 
of observation departure from the background (dY) is used to estimate the coefficients of a polynomial. In this 
study, the coefficients of the polynomial are calculated using the first-guess radiance departure values collected 
from the current DA cycle. Following Otkin et al. (2018), the observation departure from the model first-guess is 
expressed as a cubic polynomial function of a predictor as,

𝑑𝑑𝒀𝒀 = [𝑏𝑏0 + 𝑏𝑏1 (𝑧𝑧𝑖𝑖 − 𝑐𝑐) + 𝑏𝑏2(𝑧𝑧𝑖𝑖 − 𝑐𝑐)
2
+ 𝑏𝑏3(𝑧𝑧𝑖𝑖 − 𝑐𝑐)

3
] , 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑡𝑡 (1)

Offline bias correction Online bias correction

Statistics of firstguess departures (O–B) are used to estimate the bias. Bias is estimated at each analysis step along with the estimated state

The bias correction to “y2” is given by, 𝐴𝐴 𝐴𝐴2 = 𝑏𝑏2 − 𝑏𝑏𝑏𝑏 The bias correction to “y2” is given by, 𝐴𝐴 𝐴𝐴2 = 𝑏𝑏2 − 𝑏𝑏𝑎𝑎

Assuming the anchor observations are unbiased that is, b1 = 0, then the ratio background/analysis to model bias is given by
��
��

= �
�+�1

��
��

= �(1−�2)
�(1−�2)+�1

��
��

= �(1−�1)
�+�1

��
��

= �(1−�1−�2)
�(1−�2)+�1

Note. The bias in model, background and analysis are represented as “bm”, “bb” and “ba” respectively. Similarly, “b1” and “b2” refers to the bias in anchor and bias 
corrected observation. “wb”, “w1” and “w2” refers to the weights given to the background, anchor observation and bias corrected observation respectively. The 
relaxation rate of the model is represented by “𝐴𝐴 𝐴𝐴 ′ .”

Table 1 
Summary of Major Differences Between Offline and Online Bias Correction Based on Eyre (2016)
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In the above equation, i denotes each observation. “m” represents the total number of observations, “dY” repre-
sents the observation departure vector, “z” is the bias predictor, “c” is a constant which is set to the average value 
of the bias predictor and “b” represents the coefficients of the polynomial. The above equation can be represented 
in the matrix form as,

𝑑𝑑𝒀𝒀 = 𝑨𝑨𝑨𝑨 (2)

Here, “A” represents the matrix containing “zi-c” terms for each of the observations, “b” represents coefficients 
of the polynomial and 𝐴𝐴 𝐴𝐴𝒀𝒀  is the vector containing “dyi” elements. The solution to the above system is given by 
Otkin et al. (2018),

𝒃𝒃 = [∝ 𝑰𝑰 +𝑨𝑨
𝑇𝑇
𝑨𝑨]

−1
𝑨𝑨

𝑇𝑇
𝑑𝑑𝒀𝒀 (3)

Here, “α” is a constant regularization parameter which is set to a small value (10 −9).

The above method represents fitting a cubic polynomial function of bias predictors to the model first-guess 
departure. For all the experiments performed in the paper, the order of polynomial is set to three following Otkin 
and Pothast (2019).

2.3. Non-Linear Online Bias Correction

In an online bias correction approach, the estimation of bias correction coefficients is performed along with the 
state update step in the DA system. This was achieved in the variational DA system by augmenting the control 
vector with the bias coefficients (Derber & Wu, 1998). The EnKF version of the online bias correction was 
implemented by Miyoshi et al. (2010) in Japan Meteorological Agency operational global analysis and prediction 
system. An equivalent online bias correction approach for clear-sky radiances was previously implemented in 
Gridpoint Statistical Interpolation based serial Ensemble Square Root Filter (EnSRF; Hamill et al., 2011) where 
the bias 𝐴𝐴 𝒃𝒃(𝒑𝒑, 𝛽𝛽) is expressed as a linear function of predictors p and bias correction coefficients β. Different from 
Hamill et al., 2011, this study assimilates all sky radiances. Therefore the linear function is replaced with the cubic 
polynomial form similar to the non-linear offline method in Equation 4 The state and bias coefficient updates are 
coupled through the inner loop iterations. The following steps are followed in the actual implementation:

 1.  With the latest available estimate of the bias coefficients, the bias is removed from the ensemble mean inno-
vations prior to assimilation (see innovation term in Equation 4).

 2.  Observation prior and perturbations are updated using the serial EnSRF Equations 4 and 5 (Liu et al., 2018; 
Whitaker & Hamill, 2002),

𝑯𝑯�̄�𝒙
𝑎𝑎 = 𝑯𝑯�̄�𝒙

𝑏𝑏 +𝑲𝑲(𝒚𝒚𝑜𝑜 −𝑯𝑯�̄�𝒙
𝑏𝑏 + 𝒃𝒃(𝒑𝒑, 𝜷𝜷)) (4)

𝑯𝑯𝑯𝑯
𝑎𝑎′ = 𝑯𝑯𝑯𝑯

𝑏𝑏′ − �̃�𝑲𝑯𝑯𝑯𝑯
𝑏𝑏′ (5)

where K and 𝐴𝐴 �̃�𝑲 represent the Kalman gain and reduced Kalman gain. H and 𝐴𝐴 𝒚𝒚
𝒐𝒐
 represent the observation operator 

and observation respectively. 𝐴𝐴 �̄�𝒙
𝑎𝑎 , 𝐴𝐴 �̄�𝒙

𝑏𝑏 , 𝐴𝐴 𝒙𝒙
𝑎𝑎′ and 𝐴𝐴 𝒙𝒙

𝑏𝑏′ represent the ensemble mean analysis, ensemble mean back-
ground, analysis perturbation and background perturbation respectively.

 3.  Once all the observations are assimilated, using all the updated observation prior values, the bias coefficient 
update is performed using Equation 6:

𝛿𝛿𝜷𝜷 =

(

𝑷𝑷
𝑏𝑏

𝛽𝛽

−1
+ 𝒑𝒑𝒑𝒑

−1
𝒑𝒑
𝑇𝑇

)−1

𝒑𝒑𝒑𝒑
−1
(𝒚𝒚𝑜𝑜 −𝐇𝐇�̄�𝒙

𝑏𝑏 −𝑯𝑯𝛿𝛿𝒙𝒙) (6)

where 𝐴𝐴 𝑷𝑷
𝑏𝑏

𝛽𝛽
 denotes the covariance of the bias coefficients and it is assumed diagonal, p denotes the matrix of bias 

predictors at each observation location, and 𝐴𝐴 𝑯𝑯𝛿𝛿𝒙𝒙 represents the increment to the observation prior, which is 
obtained from step 2

 4.  The process from step 1 to 3 is repeated for specified “n” inner loop iterations to obtain the final 𝐴𝐴 𝜷𝜷 and there-
fore b
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 5.  The ensemble mean state (𝐴𝐴 �̄�𝒙
𝑎𝑎 ) and perturbations (𝐴𝐴 𝒙𝒙

𝑎𝑎′ ) are update in the last inner loop iteration using the 
following serial EnSRF Equations 7 and 8.

�� = �� + �(�� −��� + �(�, �)) (7)

��′ = ��′ − �̃���′ (8)

It should be noted that in the EnSRF formulation, the bias correction is applied to the ensemble mean innovation 
as shown in Equations 4 and 8. It is also possible to apply the bias correction approach on a member by member 
basis using the stochastic EnKF, that is, EnKF with perturbed observations (Houtekamer & Mitchell, 1998).

3. Overview of Case Study, Model and DA Configuration
In order to test the online non-linear bias correction and compare it with an equivalent offline approach, a rapidly 
developing supercell event of 18 May 2017 was selected. The case is characterized by a convective dry line 
along with the high-level trough which lead to the formation of multiple supercells across Texas and Oklahoma. 
Figure 1 shows the observed channel 9 ABI BTs and composite radar reflectivity observations from 1750 to 
1900  UTC. Both ABI and radar reflectivity observations show the initiation and rapid intensification of the 
storms. The ABI observations sense the formation of towering cumulus clouds well before the strong reflectivity 
signatures (≧35 dBz, Mecikalski & Bedka, 2006) are seen by the radar observations. The two storms initiated 
around 1800 UTC (labeled as A and B in Figure 1) developed into long-lived supercells. At around 1900 UTC, 
elevated convection further north initiated another thunderstorm. This study focuses on the analysis and short-
term prediction of the two long-lived supercells. This event was also used by Johnson et al. (2021) in the context 
of studying the impact of channel 9 and 10 ABI radiance assimilation with adaptive observation error and addi-
tive inflation. Studies have shown (e.g., Burghardt et al., 2014; Cintineo & Stensrud, 2013; Kain et al., 2013; 
Zhang, Minamide, & Clothiaux, 2016) the challenges for an accurate prediction of the convection initiation and 
early development of the storm. Such challenges are partially attributed to the limited availability of observations 
associated with this stage of the storm. The present work therefore focuses on the initiation and rapid intensifi-
cation stage of the supercell.

The analysis of the rapidly developing supercells is facilitated by a convective scale DA system whose configura-
tion includes 40-member ensemble whose initial and boundary conditions are from the NCEP Global Ensemble 
Forecast System (GEFS Zhou et  al.,  2017) with hourly assimilation of conventional observations from 0000 
to 1700  UTC. The details of the GSI-EnKF system extended for convective scales can be found in Johnson 
et al.  (2015) and Wang and Wang (2017). As discussed in Section 4.1, the first step is to determine the bias 
predictor variables which will be used to perform comparison of the online and offline bias correction meth-
ods. The conventional DA is followed by 10-min assimilation of radar and ABI from 1710 to 1900 UTC to 
achieve the first step. Experiments using the CONUS domain and the limited domain covering the supercells 
are conducted for this step. The former was employed because it includes a variety of weather features and more 
ABI statistics can be obtained. As discussed in Section  4.1, the results of the optimal predictors remain the 
same for both domains. Further, the experiments are run up to 1900 UTC in order to ensure that the statistical 
result stabilizes during the DA cycling period. For the evaluation of non-linear offline and online bias correc-
tion methods, assimilation experiments are performed over a limited domain covering Oklahoma from 1750 to 
1900 UTC in order to focus specifically on the impact of assimilation on the supercells. A cycling starting time 
of 1750 is selected because such a time is the first that the radar reflectivity observations are able to anchor the 
satellite observations (Section 2.1). Advanced Research WRF model version 3.9.1 (Skamarock et al., 2008) is 
used in this study with physics configuration consisting of Thompson et  al.  (2008) scheme for microphysics 
parametrization, Mellor-Yamada-Nakanishi-Niino (Nakanishi & Niino, 2004, 2006) for planetary boundary layer, 
RUC land surface model (Benjamin et al., 2004), and rapid radiative transfer model (RRTMG; Mlawer et al., 
1997) for shortwave and long wave radiation parameterizations. In addition to evaluating the analyses of the 
rapid initiation and strengthening of the storms, the skill of deterministic forecasts initialized from the ensem-
ble mean analyses every 10 min from 1820 UTC to 1900 UTC is evaluated. The length of the DA cycling and 
forecast used here is consistent with the earlier published supercell DA and prediction studies (e.g., Wang & 
Wang, 2017, 2020, 2021; Dowell et al., 2011; Putnam et al., 2019). The horizontal covariance localization adopts 
the Gaspari and Cohn (1999) function with a cut-off radius of 300 km for conventional observations. The ABI 
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observations were thinned down to have similar spatial resolution (∼4 km) of the radar data over the domain of 
interest. The same horizontal localization radius of 15 km was used for both radar and ABI observations. The 
vertical localization scale of 1.1 was used for both observations, based on the sensitivity tests. For the purpose 
of vertical localization, the height of ABI radiance observation is determined based on the location of the peak 
of weighting function (e.g., Campbell et al., 2010; Johnson et al., 2021). Covariance inflation is performed using 
Relaxation To Prior Spread (RTPS, Whitaker & Hamill, 2012) approach with a factor of 0.95.

Community Radiative Transfer Model (CRTM; Han, 2006) is employed as a forward operator to create model 
first-guess radiances. In order to simulate the cloudy radiances, apart from temperature and humidity, vertical 

Figure 1. (a–h) Advanced Baseline Imager Channel 9 Observed BT (in K) and (i–p) composite RADAR reflectivity 
observations (in dBz) from 1750 to 1900 UTC over the Oklahoma region where the two long supercells are rapidly 
developing. The two rapidly developing supercells that initiate around 1800 UTC are labeled as A and B.
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profiles of snow (Qs), rain (Qr), ice (Qi), hail (Qh) and graupel (Qg) mixing ratios are given as input to CRTM. 
The scattering properties which are functions of the hydrometeor species, wavelength and effective radii are read 
from the CRTM look-up tables (LUTs). The LUTs for thermal infrared wavelengths are constructed based on Mie 
scattering assuming spherical shape for liquid cloud hydrometeors and a modified gamma size distribution (Chen 
et al., 2008; Simmer, 1994). The ice phase hydrometeors are assumed to be non-spherical hexagonal column with 
a gamma size distribution (Yang et al., 2005). The primary source of bias in the simulation of cloudy radiance is 
the assumption of Mie scattering. Apart from this, more bias is introduced in forward operator with the assumed 
shape and size distribution of ice phase hydrometeors (Yi et al., 2016). In the present study, these biases in the 
forward operator along with the instrument bias are together considered as observation bias.

Simulated radar reflectivity in WRF are calculated using the Rayleigh scattering approximation (Han et al., 2013; 
Smith, 1984). The particle shape and size distribution used in the calculation of simulated reflectivity are selected 
based on the underlying microphysics scheme. For Thompson microphysics scheme used in this study, the graupel 
and rain hydrometeors are assumed to be spherical and snow is assumed to be fractal-like aggregates. The parti-
cle size distribution for all the species is assumed to be exponential. Several studies like Lang et al. (2011), Tao 
et al. (2016) and Stanford et al. (2017) have highlighted the contribution from approximations used in the micro-
physics scheme to the bias in simulated reflectivity. The bias arising out of microphysics scheme are the projec-
tion of model bias on to the reflectivity space. The main assumption used in the forward operator calculation is 
the Rayleigh scattering approximation, which is considered a good assumption for S band radars (Doviak, 2006) 
and therefore the radar forward operator is expected to introduce negligible bias to the simulated reflectivity.

4. Specific Experiments and Results
4.1. Bias Predictor Selection

Past studies have found that the effectiveness of bias correction for all-sky radiance assimilation can be sensitive 
to the choice of bias predictors (e.g., Otkin & Pothast, 2019; Otkin et al., 2018). Therefore, a set of experiments 
are conducted to first determine the best predictors for the nonlinear bias correction. Given the offline approach 
serves as a baseline, three predictors, namely Observed BT, Simulated BT and Symmetric BT are examined in the 
offline bias correction mode. The predictors are then used in the online approach. Symmetric BT is defined as an 
average of observed and simulated BT (Geer & Bauer, 2011; Otkin & Pothast, 2019). Details of the experiments 
can be found in Table 2.

The non-linear offline bias correction is applied over observed and spuriously simulated cloud region. These 
regions were identified using the ABI channel 9 BT threshold of 239 K, which was applied to both observed 
and simulated BT. This threshold was determined using the methodology described in Harnisch et al.  (2016) 
and Johnson et al. (2021). The pixels are then categorized as (a) Cloud_Cloud where both observed and model 
simulated BT are identified as cloudy; (b) Cloud_Clear where cloudy ABI observation and clear-sky model 
simulated BT are identified; (c) Clear_cloud which has clear-sky observation over cloudy model simulated BT 
and (d) Clear_clear which refers to clear-sky observations over clear-sky model simulated BT. The Clear_Clear 

#
Experiment 

name

Observations

Type of bias correction 
for ABI radiances

Regions included in bias 
correction

Additive 
noise 

Inflation

Adaptive 
observation 

error Localization
0000 UTC to 

1700 UTC
1710 UTC to 

1830 UTC

1 Obs_Pred Conventional 
observations 
every hourly

ABI - ch9 + RADAR Offline: Observed BT 
predictor

Cloud_Cloud Cloud_clear 
Clear_cloud

Yes Yes Horizontal: 
15 km 

Vertical: 
1.1 lnP2 Sim_Pred Conventional 

observations 
every hourly

ABI - ch9 + RADAR Offline: Simulated BT 
predictor

Clear_clear:- Assimilate 
w/constant offset bias 

correction

Yes Yes

3 Sym_Pred Conventional 
observations 
every hourly

ABI - ch9 + RADAR Offline: Symmetric BT 
predictor

Yes Yes

Table 2 
Description of Experiment Configuration Used for Different Bias Predictors
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regions were bias corrected with a constant offset value, which was calculated using the diagnostics from a no 
bias correction DA cycled experiment, while other regions use the non-linear bias correction to account for the 
non-linear impacts of clouds.

The large negative bias in ABI observation at 1710 UTC (Figure 2) is due to the presence of a large spurious 
cloud region over Oklahoma. This spurious cloud which appears as cold BT region (as shown in Figures 3e, 3i 
and 3m) is characterized by deep cumulus surrounded by anvil like cloud structure. When observed BT is used as 
predictor, analysis fits the observation less compared to the background (Figure 2 solid blue curves). Diagnostics 
show that over parts of spurious cloud region bias is overestimated (not shown). Therefore the sign of innova-
tion changes from positive to negative, leading to spurious humidity and hydrometeor increments. As a result, 

the domain average RMSI (Root Mean Square Innovation, which is calculated as 𝐴𝐴

√

1

𝑁𝑁

∑𝑁𝑁

𝑖𝑖=1
(𝐵𝐵𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐵𝐵𝐵𝐵𝑜𝑜𝑖𝑖𝑠𝑠)

2 , 

where N refers to the number of samples, BTobs and BTsim refers to the observed and simulated BTs respectively) 
of analysis remains higher than the first guess for most of the early DA cycles. Whereas by using simulated 
or symmetric BT predictor, such spurious increments do not occur. From the seventh DA cycle (1810 UTC) 
onwards, both bias and RMSI stabilizes in all the three bias predictor experiments. From the stabilized cycles, it 
can be seen that using simulated BT as a predictor for the non-linear offline bias correction results in the least bias 
and RMSI compared to other predictors (red line in Figure 2). Before the storm signature appears in the obser-
vations, the simulated BT predictor experiment reduces the spurious clouds the most effectively (1730 UTC and 
1800 UTC panels in Figure 3). Once the storm signature appears in the observations, the simulated BT predictor 
experiment better captures the cold BT region seen in reality and therefore better analyzes the storm compared to 
other predictors (e.g., 1830 UTC and 1900 UTC panels in Figure 3). Additionally, at or near the mature stage of 
the storm, the analysis from simulated BT predictor experiment is able to create more high level cloud over the 
anvil region compared to other predictors (Figures 3h, 3l and 3p). Based on these experiments, the simulated BT 
predictor is chosen for further study. It is noted that the superior performance of the simulated BT predictor is not 
dependent on the size of the domain as discussed in Section 3. As discussed earlier, the offline approach serves 
as a baseline to be compared with the online approach. Therefore, the optimal bias predictor from the offline 
approach is also used for online bias correction experiments. The range of predictors experimented is based on 

Figure 2. Sawtooth plot of average RMSI in K (solid) and Bias in K (dotted) calculated over the CONUS domain for 
different bias predictor experiments assimilating RADAR and ABI observations every 10 min starting from 1710 UTC to 
1900 UTC.
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early studies of Otkin et al. (2018) and Otkin and Pothast (2019). Attempts to use other variables as bias predictor 
for all-sky radiance bias correction should be planned in a future study.

4.2. Online and Offline Bias Correction Experiment Results

Experiments were conducted over a limited domain covering Oklahoma in order to evaluate the difference 
between the online and offline methods of bias correction specifically on the case of rapidly developing super-
cells. The DA cycling starts at 1750 UTC and ends at 1900 UTC. 1750 UTC is selected as the start of the DA 
cycling for the following reasons. Before 1750 UTC, over the DA domain, the model contains non-precipitating 
spurious clouds and the radar reflectivity observations show no precipitation. As discussed in Section 2.1, radar 
reflectivity observations are unable to anchor the ABI radiance. From 1750 UTC onwards, the model began 
to show a narrow spurious precipitation region in region of no observed precipitation. Then non-zero positive 
radar reflectivity observations start to appear as the storm starts to initiate. As discussed in Section 2.1, radar 
reflectivity is expected to serve as the anchor beginning at 1750 UTC. Moreover, in order for radar reflectivity 
to provide constraint on calculation of bias correction coefficients, it is necessary to consider grid points where 

Figure 3. Spatial plot of observed (a–d) and analysis BT (in K) over the Oklahoma region at different DA times from (e–h) 
Observed BT predictor (i–l) Simulated BT predictor and (m–p) Symmetric BT predictor experiments.
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both radar reflectivity and ABI BT are contributing to the analysis increments. This is conceptually similar to 
the previous work on bias correction by Auligne et al. (2007) which uses radiance observations in the vicinity of 
radiosonde observations to calculate the bias correction coefficients. Therefore, the bias correction coefficients 
for both non-linear offline and online bias correction are calculated and applied over ABI radiances in the vicinity 
of radar anchored regions.

In addition to the experiments with bias correction, a cycled DA experiment was performed from 1750 to 
1900 UTC assimilating radar reflectivity and ABI ch9 radiances without any bias correction. Comparison of the 
analysis BT from the no bias correction experiment with the online and offline bias correction experiments shows 
that bias correction more effectively suppresses spurious clouds and spinups the real storm (Figure 6). This result 
is consistent with the early studies such as Otkin and Pothast (2019). Forecasts corresponding to the experiments 
with bias correction are also more skillful than those without bias correction (Figures 7 and 8). Given the objec-
tive of the study is the comparison of two bias correction approaches rather than the comparison with and without 
the bias correction, detailed observation and physical space diagnostics as shown in Section 4 are performed only 
for the offline and online bias correction experiments.

4.2.1. Impact on the Analysis and First Guess

Sawtooth plots of domain averaged innovation bias and RMSI can quantitatively compare the online and offline 
bias correction approaches during DA cycling. Figure 4 demonstrates such results from 1750 UTC to 1900 UTC. 
Since radar and ABI observes different regions of cloud, bias and RMSI with respect to both radar reflectivity and 
ABI radiances are presented. To separately diagnose the radar reflectivity anchoring effects on different regions 
of the clouds, the innovation bias and RMSI over radar anchored region (observed and spurious precipitation 
regions), non-precipitating cloud region, observed cloud region and spurious cloud region are presented.

The 8 cycles shown in Figure 4 can be broadly divided into the suppression of spurious cloud stage (cycles 1–4, 
1750–1820 UTC) and establishment of the storms (cycle 3–8, 1810–1900 UTC). At the start of DA cycling, due 
to the presence of spurious cloud cover, the difference between the observations and the model shows a posi-
tive bias in radar reflectivity observation space and a negative bias in ABI cloudy radiance observation space 
(Figures 4a and 4c). As the spurious clouds are suppressed in the follow on DA cycles (cycles 2–4), the biases 
are reduced. In the subsequent DA cycling, when the storm is developing rapidly, the model spins up the storm 
slower compared to observations, as a result the innovation bias in ABI radiance becomes positive and similarly 
the innovation bias in radar reflectivity observation becomes negative due to less cloud cover (Figures 4a and 4c). 
Starting from cycle 4, the DA tries to add the observed storms in the analysis but due to the rapid intensification, 
there is a lag between the observed and analyzed storms. This lag between the analysis and observation is evident 
in the reflectivity sawtooth plot as a negative bias. Further, the apparent bias of reflectivity even at the end of 
the DA cycling period is contributed to by the continued initiation of new storms that the DA then needs to add, 
despite the two primary storms of interest being well analyzed by this time. The initial absence of these storms in 
the analysis as they first appear in observations contributes to a continued negative “bias” in the DA diagnostics.

Starting at 1810 UTC, the experiment using the online bias correction approach results in smaller bias and RMSI 
in the first guess verified against the anchored radar observations than that using the offline approach (Figures 4a 
and 4b). It should be noted that the bias plotted in Figure 4a is the bias of first guess minus the observed reflectiv-
ity. This result suggests that the online approach directly improves the radar anchored regions. Similar improve-
ments from online bias correction against offline method was observed when the relative bias in reflectivity was 
used (not shown). Diagnostics in ABI identified spurious cloud regions are presented in Figures 4c and 4d. Major 
improvement from online approach in the suppression of spurious clouds occur from the second to the fourth DA 
cycles (from 1800 UTC to 1820 UTC). In the first few cycles, more high level spurious solid hydrometeors along 
with a narrow spurious precipitating region are present in the background. The no-precipitation radar reflectivity 
observations over the narrow spurious precipitation region can provide an anchoring. As a result, the online bias 
correction suppresses the spurious clouds more effectively than the offline approach.

The bias and RMSI in the observed cloudy region is separately evaluated in Figures 4e and 4f. This result primar-
ily evaluates the region associated with the observed, rapidly developing supercells. As shown later (Figure 6), 
the model delays capturing the supercells in general. As more positive radar observations become available to 
serve as an anchor, the innovation bias starts to stabilize from 1820 UTC (cycle 4). In contrast, the bias in offline 
approach stabilizes only from 1840 UTC. Moreover, the stabilized bias and RMSI in the online bias correction 
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is smaller compared to the offline approach. This result suggests that as the storm intensifies the observed cloud 
region is better analyzed using the online approach than the offline approach.

To understand the effect of the online and offline bias correction over the un-anchored region, the statistics over 
the non-precipitating cloud region is evaluated in Figures 4g and 4h. Although radar only anchors the precip-
itation region, the first guess of the online bias correction fits the non-precipitating cloud observations more 
closely than the offline approach. For example, from the second DA cycle (1800 UTC) up to the fourth or fifth 
cycles (1820–1830 UTC), the spurious non-precipitating clouds are suppressed more effectively in the online 
bias correction, consistent with a smaller RMSI and a slightly reduced bias compared to offline approach. From 
1840 UTC (cycle 6), although the offline approach fails to spin up the observed non-precipitating cloud seen as a 
positive innovation bias and a large RMSI, the online bias correction is able to capture the observed non-precip-
itating clouds faster seen as a near-zero bias and reduced RMSI in Figures 4g and 4h.

Figure 4. Sawtooth plot of domain average bias and RMSI in (a), (b) RADAR observations (in dBz) over the anchored 
region, (c), (d) ABI spurious cloud region (in K) (e), (f) Advanced Baseline Imager observed cloud region (in K) and (g), (h) 
ABI non-precipitating region (in K) from offline (black) and online (red) bias correction experiment over the limited domain 
assimilating RADAR and ABI observations every 10 min from 1750 to 1900 UTC.
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Probabilistic distribution of first guess deviation from the ABI radiance observations as a function of observed 
channel 9 BT is analyzed to further understand the effect of online and offline bias correction approaches follow-
ing Otkin et al. (2018). Data accumulated from the 1750 to 1900 UTC DA cycles during the rapid development 
of the supercells were used to calculate the probability distribution shown in Figure 5. As there are more clear 

Figure 5. Probability distribution of channel 9 ABI first-guess departures (B–O) as a function of observed BT for (a), (b) 
all pixels, (c), (d)_non-precipitating cloud pixles from offline and online bias correction experiments. The color shading 
represents the percentage probability at each bin along with the dotted line represents the conditional bias (in K) at each 
observed BT bin. (e), (f) shows the probability distribution of radar reflectivity as a function of observed reflectivity (in dBz) 
and the dotted line represents the conditional bias in each observed reflectivity bin.
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Figure 6. Spatial plot of Advanced Baseline Imager channel 9 analysis BT (in K) from (a–h) no bias (i–p) offline and (q–x) 
online bias correction experiments at different DA times from 1750 to 1900 UTC. The developing storm is seen as a cold BT 
region in the analysis. Observed 240 K BT is represented as a blue contour lines.
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sky than cloudy pixels, there is high percentage of probability of higher BTs. Furthermore, due to the presence 
of spurious cloud pixels, there is a spike in the probability at clear-sky BTs (Figures 5a and 5b). As expected, 
for the offline experiments, the systematic deviation in cloudy radiance are larger compared to that of clear-sky 
radiances (Otkin & Pothast, 2019). The online approach exhibits less systematic deviation over the cloudy region 
(observed BT≤239  K) than the offline approach (Figures  5a and  5b). This result suggests the effectiveness 
of using the radar reflectivity anchoring observations to analyze the observed cloudy regions. As discussed 
in Figure 4, although radar only anchors the precipitation regions, the non-precipitation cloud regions can be 

Figure 7. Time maximum composite reflectivity swath (in dBz) observation (a–e) and one hour forecast from no bias correction (f–j), offline (k–o) and online (p–t) 
bias correction experiment initialized every 10 min from 1820 to 1900 UTC analyses.
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indirectly affected. Probabilistic distribution of the first guess deviation for the non-precipitation ABI radiance 
observations is shown in Figures 5c and 5d. The region with observed BT > 239 K represents the spurious 
non-precipitating cloud pixels whereas the region below 239  K denotes the ABI observed non-precipitating 
clouds. For both regions, the online bias correction exhibits less systematic deviation compared to the offline 
approach (dashed curves in Figures 5c and 5d). Similar to the ABI plots, the probability distribution of first-
guess deviation from radar reflectivity observation is shown in Figures 5e and 5f. The probability plot of radar 
reflectivity shows that in an online bias correction experiment more percentage of observations have bias close to 
zero compared to the offline method. In an offline bias correction experiment, more percentage of observations 
are negatively biased. The systematic deviation (shown as dotted line) is seen to be larger for strong reflectiv-
ity observations. The online approach results in less systematic deviation compared to the offline method. In 
summary, results in Figure 5 are consistent with those in Figure 4.

The analysis BT plots from 1750 to 1900 UTC reveals visual improvements of the online bias correction approach 
in comparison to the offline bias correction approach. Figure  1 is used as a qualitative verifying reference. 
Consistent with Figures 4c and 4d, the analyzed ABI radiances by the online approach over the spurious cloud 
regions show major improvement compared to the offline approach from 1800 to 1820 UTC. In addition, the 
rapid development of the supercell storms is better captured by the analysis of the online bias correction approach 
(Figures 6l–6p vs. Figures 6t–6x vs. Figures 1d–1h). Specifically, in comparison to the offline approach, the 
online bias correction reduces the delay in capturing the deepening phases of the storms. At 1900 UTC when the 
development of supercells reaches the mature stage and the sawtooth plots reach their stability (Figures 1 and 4), 
the offline approach is not able to develop higher level clouds which are responsible for the cold BT observa-
tions. The visual evaluation in Figure 6 is consistent with the statistical results in Figures 4 and 5. In summary, 
the results in Figures 4–6 suggest that the online bias approach improves the analysis and first guess of clouds 
during the suppression of spurious cloud and the development of the supercell storms. The online bias correction 
approach not only directly improves the radar anchored region but also indirectly improves the spurious and 
observed non-precipitating cloud regions.

Figure 8. Fractions skill score of forecasts based on 35dBz threshold, from no bias correction, online and offline bias 
correction experiment with different initialization times from 1820 to 1900 UTC. The skill scores were calculated against 
gridded Multi Radar Multi Sensor composite reflectivity observation.
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4.2.2. Impact on the Forecast

Apart from the analysis differences, performance of deterministic forecasts from offline and online bias correc-
tion experiments are evaluated. For quantitative comparison of the forecasts, fraction skill score is calculated with 
30 km neighborhood radius and 35 dBz composite reflectivity threshold (Mecikalski & Bedka, 2006) over the 
limited domain. It has been shown by Johnson et al., 2021 that useful skill can be realised starting from the small-
est radius of 15 km. For this study, FSS values were calculated with both the 15 (not shown) and 30 km neighbor-
hood radii. The relative qualitative performance of the offline and online bias correction experiments were found 
to be the same for both radii. One hour forecasts initialized every 10 min from the ensemble mean EnKF analyses 
valid at 1820 UTC to 1900 UTC are verified against the gridded Multi Radar Multi Sensor composite reflectivity 
observations (Zhang, Howard, et al., 2016).

The qualitative and quantitative verification shows that the forecast from the two bias correction experiments 
show more skillful forecasts compared to the experiments without bias correction (Figures 7 and 8). For example, 
for the forecasts initialized from 1820 UTC, the experiments with no bias correction show no development of 
the two storms (Figure 7f), leading to zero FSS (Figure 8). In constrast, both bias correction experiments show 
improved spin up of the storms, although the improvement of the offline bias correction experiment is brief and 
concentrated on the southern storm (Figures 7k and 8). For forecasts initialized from 1830 UTC and 1840 UTC, 
both bias correction experiments show apparently improved development of the southern storm (Figures  7l 
and 7q). For forecasts initialized later like 1900 UTC, the rapid development of the thunderstorm immediately 
north of the northern supercell is seen in both the online and offline bias correction experiments, but missed in 
the no bias correction experiment (Figures 7j, 7o and 7t). For forecasts initialized from all times considered, the 
no bias correction experiment shows generally inferior FSS compared to the experiments with bias correction 
(Figure 8).

Online bias correction experiment is consistently better than the offline bias correction at all initialization times 
(Figures 7 and 8). For example, for the forecasts initialized from 1820 UTC (Figures 7k and 7p and red lines 
in Figure 8), compared to the offline bias correction, the online bias correction is able to show the first hints of 
the northern storm although the simulated storm is short lived compared to reality (Figure 7a). The southern 
storm in the online approach is seen strengthening and much longer lived compared to the offline approach 
(Figures 7k and 7p). Consistently, the FSS of the offline approach has a low value around and below 0.2 for less 
than 10–20 min and drops to zero afterward (red lines in Figure 8). In comparison, the FSS of the online approach 
starts with a skill of ∼0.5, increases to a value of ∼0.6 before dropping to a value of 0.2 around 1900 UTC. For 
1830 UTC initialized forecasts (Figures 7l and 7q), the online approach shows strengthening swaths of reflectiv-
ity corresponding to both the northern and southern storms in the first 30 min before the simulated storms start 
to dissipate. On the other hand, offline approach only shows the rapid strengthening of the southern storm for 
about 30 min with the northern simulated storm short-lived (Figures 7l and 7q). This subjective evaluation is 
consistent with the FSS (black lines in Figure 8). Although the skills from both experiments decay rapidly in the 
first ∼30 min, the online approach still results in superior skill. The forecast from the online approach is able to 
provide skillful forecasts (FSS > 0.5) in the first 20 min compared to the offline approach which can provide FSS 
> 0.5 for only 10 min. For the 1840 UTC and 1850 UTC initialized forecasts, both storms are seen strengthen-
ing very rapidly and sustained longer than the earlier initialization times. The online approach is able to sustain 
stronger reflectivity swaths over longer forecast lead times compared to the offline approach especially for the 
northern storm. The resultant FSS (green and brown lines in Figure 8) shows consistently higher skill from the 
online approach than the offline approach. For the 1850 UTC forecasts (brown lines in Figure 8), the skill from 
the offline experiment decreases rapidly in the first 20 min (till 1910 UTC) after which the FSS drops below 0.5. 
The online approach is able to sustain the useful forecast until about 1930 UTC. For the 1900 UTC initialized 
forecast, the online approach is seen to develop both the northern and southern storms with the track, longevity 
and morphology more similar to the reality than the offline approach. In the offline approach the north storm 
weakens after about 30 min and redevelops which is seen as a small break in the corresponding reflectivity swath. 
Due to enhanced convection further north of two long lived supercells, several new severe thunderstorms initiate 
at around 1900 UTC. Although the rapid development of the thunderstorm immediately north of the northern 
supercell is seen in both the online and offline bias correction experiments, the online approach captures the 
storm near the Oklahoma Panhandle better than the offline approach. The FSS of the online approach starts with 
a skill of about 0.8 against 0.7 from the offline bias correction experiment (purple curves of Figure 8). For about 
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50 min into the forecast, the online approach is able to maintain its skill above 0.5, whereas the offline approach 
could not maintain its skillful forecast for more than 40 min. Verification of forecast using other reflectivity 
thresholds and neighborhood radii (not shown) revealed similar improvement in forecast skills gained by the 
online bias correction approach. Verification was also performed for the probabilistic forecasts derived from the 
40 ensemble members and the results (not shown) are consistent and support those of the deterministic forecast 
shown in Figures 7 and 8.

4.2.3. Physical Diagnostics

In this section, physical diagnostics are performed during the DA cycling to examine the reasons behind the 
improved analysis by the online approach during the development stage of the observed supercells. The differ-
ence in the bias correction approach has very little effect in the first two cycles. The background BT departure 
valid at 1800 UTC from both offline and online bias correction experiments show similarly large negative inno-
vations due to the absence of clouds in the ensemble mean background over the observed storm location (not 
shown). Beginning at the 1800 UTC analysis cycle, the offline bias correction approach removes a large part of 
the innovation as bias as shown by a smaller bias corrected innovation (Figure 9a). However, the online approach 
retains most of the negative innovation over the observed storm region (Figure 9c). The differences of the bias 
corrected innovations are more apparent during later cycles as the supercell continues to develop. At 1810 UTC, 
the online approach again estimates a smaller bias and therefore retains more negative innovations over the 

Figure 9. Bias corrected radiance innovation in K from offline (a), (b) and online (c), (d) bias correction experiment at 1800 
and 1810 UTC also shown is the plane AB which is used to plot cross-section along the storm.
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northern and southern storm locations compared to the offline approach 
(Figures 9b and 9d). The difference in the estimated bias from the offline and 
the online approach is consistent with the theoretical expectation presented 
in Section 2.1. The estimated bias in the offline approach includes a larger 
contribution from the model bias, which in this case is the underestimation of 
storm coverage by the model.

The different impacts of the online and offline bias correction are further 
understood by the resulting analysis increments of humidity, hydrometeor 
mixing ratios and updraft velocity. At 1800 UTC, the model background has 
no hydrometeors in the region of observed storms. A cross-section (line AB in 
Figure 9 for 1800 UTC) of background ensemble spread of RH shows simi-
lar background ensemble spreads in offline and online bias correction experi-
ments (Figures 10a and 10b). Given the larger negative bias corrected innova-
tion in the online approach (Figure 9c), the online bias correction experiment 
produces larger analysis increments to RH at the observed northern and south-
ern storm locations (which is denoted by red and blue circles in Figure 10). 
The resultant differences of the RH analyses influence the hydrometeor field in 
the subsequent background forecast at 1810 UTC. As shown in Figure 11, the 
background hydrometeor ensemble spread at 1810 UTC in the online approach 
is larger than the offline approach especially at the observed southern storm 
location and the upper portion of the northern storm. Such a larger background 
hydrometeor spread together with the greater bias corrected innovation results 
in a larger positive hydrometeor increment at both lower and higher model levels 
for the southern storm and at upper levels for the northern storm by the online 
approach. At 1820 UTC, the hydrometeor spread and increment continue to 
grow. The online approach shows again larger background hydrometeor spread 
and greater positive increments at the observed northern and southern storm 
locations. The greater addition of the positive hydrometeor increments lead to 
rapid formation of the supercells with a coherent storm structure in the online 
approach, consistent with Figure 6. At 1830 UTC, the online approach is able 
to spin up both northern and southern storms with a deep towering cloud struc-
ture with additionally greater increments of the hydrometeors. In summary, 
Figures 10 and 11 show that the online approach is able to more appropriately 
increment the moisture and hydrometeor fields during the DA cycling. As a 
result, the analysis of the online approach is able to capture the developing 
storms more rapidly, leading to the reduction of conditional bias over observed 
cold BT regions (Figure 5b). Such a difference is rooted back to the fundamen-
tal differences of the two approaches in estimating observation biases.

In addition to the thermodynamic field, the online and offline bias correction 
experiments analyze dynamical fields differently. In view of this, the back-
ground updraft velocity at 500 hPa from offline and online bias correction 
experiment at 1810, 1820 and 1830 UTC is shown in Figure 12. At 1810 UTC, 
there is no significant difference in background updraft velocity between the 
offline and online bias correction experiment. As the storm intensifies, at 
1820 UTC, the online bias correction experiment shows stronger ensemble 
mean background updraft (represented by red color in the plot) at northern 
and southern storm location compared to the offline bias correction experi-

ment. Similar differences in updraft velocity can be observed at 1830 UTC. This stronger updraft along with the 
more proper hydrometeor and moisture field analysis by the online approach contribute to the superior forecast 
of the two supercells shown in Figure 8. In summary, the online bias correction retains useful information in the 
innovation, which in turn produces different analyses and background ensemble spread for both thermodynamic 
and dynamical fields. The effect is accumulated during the DA cycling that is responsible for the superior analysis 
and forecast of the supercells.

Figure 10. Cross section (along AB) plot of background ensemble spread 
in RH (%) from (a) offline and (b) online bias correction experiment at 
1800 UTC with ensemble mean analysis increments shown as contour lines 
from −30% to 30% in 3% intervals. The positive and negative increments are 
shown in solid and dotted lines respectively. The x-axis denotes the distance 
in km measured along the plane AB. The locations of northern and southern 
storm are shown in red and blue colored circles respectively.
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Figure 11. Cross-section (along AB as in Figure 9) plot of background ensemble spread in total (sum of solid and liquid 
phase) hydrometeor (in g/kg) with contour lines (positive increments in solid line and negative increments in dotted line) 
representing the ensemble mean analysis increments to hydrometeor at 1810, 1820 and 1830UTC.
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5. Conclusions
This study implemented an online nonlinear bias correction for all-sky ABI radiance DA with a rapidly updated 
EnKF for a case of rapidly developing supercells. The online nonlinear bias correction was comprehensively 
compared with the corresponding offline approach through examining the analysis and prediction of a rapidly 
developing supercell event of 18 May 2017 over the U.S. Great Plains.

The use of the radar reflectivity as the anchoring observation is developed and explored. Although the radar 
reflectivity and ABI radiances are sensitive to different variables and contribute to the analysis increment in 
different regions of the cloud, radar reflectivity and ABI cloud sensitive radiances can be physically connected. 
In this study, the observed and spurious precipitating cloud regions are identified as the regions utilizing the 
anchoring information from radar. The bias correction coefficients for both the nonlinear offline and online 
bias correction experiments were calculated and applied using ABI radiances in the vicinity of radar anchored 
regions. A set of experiments were first conducted to determine the best predictor for the bias. Three predic-
tors, namely observed BT, simulated BT and symmetric BT were examined for the offline bias correction. The 
simulated BT predictor was found to produce the least innovation bias and RMSI and was therefore chosen for 
further study.

Figure 12. Background vertical velocity in m/s at 500 hPa at 1810, 1820 and 1830 UTC from offline (a–c) and online (d–f) 
bias correction experiment with the A and B denoting the northern and southern storm respectively.
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Objective and subjective evaluation were performed during the rapid DA cycling over the radar anchored region, 
ABI spurious cloud, ABI observed cloud and non-precipitating cloud regions. The online bias correction performs 
better than the offline approach during the suppression of the spurious clouds and the development of non-pre-
cipitating and precipitating cloud regions when the supercell storms develops in reality. Apart from the direct 
improvement over the radar anchored region, the online bias correction was able to provide a firstguess with less 
bias and RMSI than the offline approach over observed and spurious non-precipitating cloud regions. In addition 
to evaluating the analyses and the background forecasts during the DA cycling, quantitative and subjective veri-
fication of the deterministic forecasts showed consistent superior performance from the online bias correction 
over the offline approach. To further the understanding of the effect of various bias correction methods, several 
physical diagnostics were performed during the development of the supercells. Consistent with the online bias 
correction theory, the estimated bias in the offline approach included a larger contribution from the model bias, 
which in this case is the underestimation of storm by the model. Whereas, the online bias correction retains useful 
information in the innovation, which in turn produces different subsequent analysis, background and background 
ensemble spread for both the thermodynamic and dynamic fields. The effect is accumulated during the DA 
cycling that is responsible for the superior analyses and forecast of the supercells.

This study is the first to explore the use of radar reflectivity as the anchoring for online nonlinear bias correction 
to assimilate GOES-R ABI all-sky infrared radiances for the analysis and prediction of rapidly developing super-
cells. As a proof of concept, the present study utilizes only channel 9 water-vapor sensitive radiances from ABI. 
Given this is the first time such a study is presented and the need to introduce the details of the approach and 
the diagnostics, the present study focuses on a single high impact weather event for the demonstration. Further 
studies should evaluate the effect of the online and offline bias correction assimilating additional water-vapor 
and surface sensitive channels and extend to multiple cases. Furthermore, work is underway to implement the 
nonlinear online and offline bias correction approach in EnVar.

Data Availability Statement
All data required for running the experiments and produced by the experiments are archived locally and 
available upon request. The GSI EnKF source code can be found from https://dtcenter.org/community-code/
gridpoint-statistical-interpolation-gsi.

References
Aravéquia, J. A., Szunyogh, I., Fertig, E. J., Kalnay, E., Kuhl, D., & Kostelich, E. J. (2011). Evaluation of a strategy for the assimilation of satellite 

radiance observations with the local ensemble transform Kalman filter. Monthly weather review, 139(6), 1932–1951.
Auligné, T., McNally, A. P., & Dee, D. P. (2007). Adaptive bias correction for satellite data in a numerical weather prediction system. Quarterly 

Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 
133(624), 631–642.

Benjamin, S. G., Dévényi, D., Weygandt, S. S., Brundage, K. J., Brown, J. M., Grell, G. A., et al. (2004). An hourly assimilation–forecast cycle: 
The RUC. Monthly Weather Review, 132(2), 495–518. https://doi.org/10.1175/1520-0493(2004)132<0495:ahactr>2.0.co;2

Biswas, S. K., & Chandrasekar, V. (2018). Cross-validation of observations between the GPM dual-frequency precipitation radar and ground 
based dual-polarization radars. Remote Sensing, 10(11), 1773. https://doi.org/10.3390/rs10111773

Bluestein, H. B. (1992). Synoptic-dynamic meteorology in midlatitudes: Volume 1, principles of kinematics and dynamics.
Burghardt, B. J., Evans, C., & Roebber, P. J. (2014). Assessing the predictability of convection initiation in the high plains using an object-based 

approach. Weather and Forecasting, 29(2), 403–418. https://doi.org/10.1175/waf-d-13-00089.1
Campbell, W. F., Bishop, C. H., & Hodyss, D. (2010). Vertical covariance localization for satellite radiances in ensemble Kalman filters. Monthly 

Weather Review, 138(1), 282–290. https://doi.org/10.1175/2009mwr3017.1
Carr, N., Kirstetter, P. E., Hong, Y., Gourley, J. J., Schwaller, M., Petersen, W., et al. (2015). The influence of surface and precipitation charac-

teristics on TRMM Microwave Imager rainfall retrieval uncertainty. Journal of Hydrometeorology, 16(4), 1596–1614. https://doi.org/10.1175/
jhm-d-14-0194.1

Chen, Y., Weng, F., Han, Y., & Liu, Q. (2008). Validation of the community radiative transfer model by using CloudSat data. Journal of Geophys-
ical Research: Atmospheres, 113(D8), D00A03. https://doi.org/10.1029/2007jd009561

Cintineo, R. M., & Stensrud, D. J. (2013). On the predictability of supercell thunderstorm evolution. Journal of the Atmospheric Sciences, 70(7), 
1993–2011. https://doi.org/10.1175/jas-d-12-0166.1

Cintineo, R. M., Otkin, J. A., Jones, T. A., Koch, S., & Stensrud, D. J. (2016). Assimilation of synthetic GOES-R ABI infrared brightness temper-
atures and WSR-88D radar observations in a high-resolution OSSE. Monthly Weather Review, 144(9), 3159–3180. https://doi.org/10.1175/
mwr-d-15-0366.1

Cucurull, L., Anthes, R. A., & Tsao, L. L. (2014). Radio occultation observations as anchor observations in numerical weather prediction models 
and associated reduction of bias corrections in microwave and infrared satellite observations. Journal of Atmospheric and Oceanic Technology, 
31(1), 20–32. https://doi.org/10.1175/jtech-d-13-00059.1

Dee, D. P. (2004). Variational bias correction of radiance data in the ECMWF system, In Proceedings of the ECMWF Workshop on Assimilation 
of High Spectral Resolution Sounders in NWP. (Vol. 28, pp. 97–112).

Acknowledgments
The work is primarily supported by 
NA16OAR4320115. This work used 
the Extreme Science and Engineering 
Discovery Environment (XSEDE), 
which is supported by National Science 
Foundation grant number ACI-1053575. 
Computing for this project was also 
performed at the OU Supercomput-
ing Center for Education & Research 
(OSCER) at the University of Oklahoma 
(OU).The authors are grateful to Jeffrey 
S Whitaker from NOAA Earth system 
Research Laboratories for code sharing. 
The authors are also grateful to Steve 
Wanzong for providing the level 2 ABI 
radiance products. The WRF model 
used in this study can be downloaded 
from National Center for Atmospheric 
Research (NCAR: https://www2.
mmm.ucar.edu/wrf/users/download/
get_sources.html). The global ensembles 
required for generating the initial and 
boundary conditions were obtained 
from National Centers for Environmen-
tal Prediction (NCEP: https://www.
ncdc.noaa.gov/data-access/model-data/
model-datasets/global-ensemble-fore-
cast-system-gefs). The ABI channel 9 
radiance observations can be obtained 
from National Centers for Environmen-
tal Prediction (NCEP: https://www.
ncdc.noaa.gov/airs-web/search). The 
GSI EnKF package can be found from 
https://dtcenter.org/community-code/
gridpoint-statistical-interpolation-gsi.

https://dtcenter.org/community-code/gridpoint-statistical-interpolation-gsi
https://dtcenter.org/community-code/gridpoint-statistical-interpolation-gsi
https://doi.org/10.1175/1520-0493(2004)132%3C0495:ahactr%3E2.0.co;2
https://doi.org/10.3390/rs10111773
https://doi.org/10.1175/waf-d-13-00089.1
https://doi.org/10.1175/2009mwr3017.1
https://doi.org/10.1175/jhm-d-14-0194.1
https://doi.org/10.1175/jhm-d-14-0194.1
https://doi.org/10.1029/2007jd009561
https://doi.org/10.1175/jas-d-12-0166.1
https://doi.org/10.1175/mwr-d-15-0366.1
https://doi.org/10.1175/mwr-d-15-0366.1
https://doi.org/10.1175/jtech-d-13-00059.1


Journal of Advances in Modeling Earth Systems

CHANDRAMOULI ET AL.

10.1029/2021MS002711

23 of 25

Dee, D. P., & Uppala, S. (2009). Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quarterly Journal of the 
Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 135(644), 1830–
1841. https://doi.org/10.1002/qj.493

Derber, J. C., & Wu, W. S. (1998). The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Monthly Weather Review, 126(8), 
2287–2299. https://doi.org/10.1175/1520-0493(1998)126<2287:tuotcc>2.0.co;2

Doviak, R. J. (2006). Doppler radar and weather observations. Courier Corporation.
Dowell, D. C., Wicker, L. J., & Snyder, C. (2011). Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma 

City supercell: Influences of reflectivity observations on storm-scale analyses. Monthly Weather Review, 139(1), 272–294. https://doi.
org/10.1175/2010mwr3438.1

Dowell, D. C., Zhang, F., Wicker, L. J., Snyder, C., & Crook, N. A. (2004). Wind and temperature retrievals in the 17 May 1981 Arcadia, Okla-
homa, supercell: Ensemble Kalman filter experiments. Monthly Weather Review, 132(8), 1982–2005. https://doi.org/10.1175/1520-0493(200
4)132<1982:watrit>2.0.co;2

Eyre, J. R. (1992). A bias correction scheme for simulated TOVS brightness temperatures. ECMWF Tech. Memo.
Eyre, J. R. (2016). Observation bias correction schemes in data assimilation systems: A theoretical study of some of their properties. Quarterly 

Journal of the Royal Meteorological Society, 142(699), 2284–2291. https://doi.org/10.1002/qj.2819
Fertig, E., Baek, S. J., Hunt, B., Ott, E., Szunyogh, I., Aravéquia, J., et al. (2009). Observation bias correction with an ensemble Kalman filter. 

Tellus A: Dynamic Meteorology and Oceanography, 61(2), 210–226. https://doi.org/10.1111/j.1600-0870.2008.00378.x
Gao, J., & Stensrud, D. J. (2012). Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classifica-

tion. Journal of the Atmospheric Sciences, 69(3), 1054–1065. https://doi.org/10.1175/jas-d-11-0162.1
Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteoro-

logical Society, 125(554), 723–757.
Geer, A. J., & Bauer, P. (2011). Observation errors in all-sky data assimilation. Quarterly Journal of the Royal Meteorological Society, 137(661), 

2024–2037. https://doi.org/10.1002/qj.830
Gourley, J. J., Kaney, B., & Maddox, R. (2003). Evaluating the calibrations of radars: A software approach. Preprints, 31st Int. Conf. on Radar 

Meteorology, Seattle, WA, Amer. Meteor. Soc., P3C.1. Retrieved from http://ams.confex.com/ams/pdfpapers/64171.pdf
Hamill, T. M., Whitaker, J. S., Fiorino, M., & Benjamin, S. G. (2011). Global ensemble predictions of 2009’s tropical cyclones initialized with an 

ensemble Kalman filter. Monthly Weather Review, 139(2), 668–688. https://doi.org/10.1175/2010mwr3456.1
Han, M., Braun, S. A., Matsui, T., & Williams, C. R. (2013). Evaluation of cloud microphysics schemes in simulations of a winter storm using 

radar and radiometer measurements. Journal of Geophysical Research: Atmospheres, 118(3), 1401–1419. https://doi.org/10.1002/jgrd.50115
Han, Y. (2006). JCSDA community radiative transfer model (CRTM): Version 1.
Harnisch, F., Weissmann, M., & Periáñez, Á. (2016). Error model for the assimilation of cloud-affected infrared satellite observations in an 

ensemble data assimilation system. Quarterly Journal of the Royal Meteorological Society, 142(697), 1797–1808. https://doi.org/10.1002/
qj.2776

Harris, B. A., & Kelly, G. (2001). A satellite radiance-bias correction scheme for data assimilation. Quarterly Journal of the Royal Meteorological 
Society, 127(574), 1453–1468. https://doi.org/10.1002/qj.49712757418

Honda, T., Miyoshi, T., Lien, G. Y., Nishizawa, S., Yoshida, R., Adachi, S. A., et al. (2018). Assimilating all-sky Himawari-8 satellite infrared 
radiances: A case of Typhoon Soudelor (2015). Monthly Weather Review, 146(1), 213–229. https://doi.org/10.1175/mwr-d-16-0357.1

Houtekamer, P. L., & Mitchell, H. L. (1998). Data assimilation using an ensemble Kalman filter technique. Monthly Weather Review, 126(3), 
796–811. https://doi.org/10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2

Ice, R. L., Warde, D. A., & Pratte, F. (2005). Investigating external and dual polarization calibration options for the WSR-88D. In 32nd Confer-
ence on Radar Meteorological. American Meteorological Society.

Johnson, A., Wang, X., Carley, J. R., Wicker, L. J., & Karstens, C. (2015). A comparison of multiscale GSI-based EnKF and 3DVar data assim-
ilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Monthly Weather Review, 143(8), 
3087–3108. https://doi.org/10.1175/mwr-d-14-00345.1

Johnson, A., Wang, X., & Jones, T.A. (2021). Impacts of assimilating GOES-16 ABI channels 9 and 10 with additive inflation and adaptive 
observation error in GSI-EnKF for a case of rapidly evolving severe supercells. Monthly Weather Review. Under Review.

Jones, T. A., Otkin, J. A., Stensrud, D. J., & Knopfmeier, K. (2013). Assimilation of satellite infrared radiances and Doppler radar observa-
tions during a cool season observing system simulation experiment. Monthly weather review, 141(10), 3273–3299. https://doi.org/10.1175/
mwr-d-12-00267.1

Jones, T. A., Otkin, J. A., Stensrud, D. J., & Knopfmeier, K. (2014). Forecast evaluation of an observing system simulation experiment assimilat-
ing both radar and satellite data. Monthly Weather Review, 142(1), 107–124. https://doi.org/10.1175/mwr-d-13-00151.1

Kain, J. S., Coniglio, M. C., Correia, J., Clark, A. J., Marsh, P. T., Ziegler, C. L., et al. (2013). A feasibility study for probabilistic convection 
initiation forecasts based on explicit numerical guidance. Bulletin of the American Meteorological Society, 94(8), 1213–1225. https://doi.
org/10.1175/bams-d-11-00264.1

Kazumori, M. (2014). Satellite radiance assimilation in the JMA operational mesoscale 4DVAR system. Monthly Weather Review, 142(3), 
1361–1381. https://doi.org/10.1175/mwr-d-13-00135.1

Kelly, G. A., & Flobert, J. F. (1988). Radiance tuning. In Technical proceedings of the fourth international TOVS study conference (pp. 16–22).
Lang, S. E., Tao, W. K., Zeng, X., & Li, Y. (2011). Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Trop-

ical convective systems. Journal of the Atmospheric Sciences, 68(10), 2306–2320. https://doi.org/10.1175/jas-d-10-05000.1
Liu, H., Hu, M., Ge, G., Stark, D., Shao, H., Newman, K., & Whitaker, J. (2018). Ensemble Kalman Filter (EnKF) User's Guide Version 1.3. 

Developmental Testbed Center.
Mecikalski, J. R., & Bedka, K. M. (2006). Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES 

imagery. Monthly Weather Review, 134(1), 49–78. https://doi.org/10.1175/mwr3062.1
Minamide, M., & Zhang, F. (2018). Assimilation of all-sky infrared radiances from Himawari-8 and impacts of moisture and hydrometer 

initialization on convection-permitting tropical cyclone prediction. Monthly Weather Review, 146(10), 3241–3258. https://doi.org/10.1175/
mwr-d-17-0367.1

Miyoshi, T., Sato, Y., & Kadowaki, T. (2010). Ensemble Kalman filter and 4D-Var intercomparison with the Japanese operational global analysis 
and prediction system. Monthly Weather Review, 138(7), 2846–2866. https://doi.org/10.1175/2010mwr3209.1

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a 
validated correlated-k model for the longwave. Journal of Geophysical Research, 102(D14), 16663–16682. https://doi.org/10.1029/97jd00237

Nakanishi, M., & Niino, H. (2004). An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bounda-
ry-layer meteorology, 112(1), 1–31. https://doi.org/10.1023/b:boun.0000020164.04146.98

https://doi.org/10.1002/qj.493
https://doi.org/10.1175/1520-0493(1998)126%3C2287:tuotcc%3E2.0.co;2
https://doi.org/10.1175/2010mwr3438.1
https://doi.org/10.1175/2010mwr3438.1
https://doi.org/10.1175/1520-0493(2004)132%3C1982:watrit%3E2.0.co;2
https://doi.org/10.1175/1520-0493(2004)132%3C1982:watrit%3E2.0.co;2
https://doi.org/10.1002/qj.2819
https://doi.org/10.1111/j.1600-0870.2008.00378.x
https://doi.org/10.1175/jas-d-11-0162.1
https://doi.org/10.1002/qj.830
http://ams.confex.com/ams/pdfpapers/64171.pdf
https://doi.org/10.1175/2010mwr3456.1
https://doi.org/10.1002/jgrd.50115
https://doi.org/10.1002/qj.2776
https://doi.org/10.1002/qj.2776
https://doi.org/10.1002/qj.49712757418
https://doi.org/10.1175/mwr-d-16-0357.1
https://doi.org/10.1175/1520-0493(1998)126%3C0796:dauaek%3E2.0.co;2
https://doi.org/10.1175/mwr-d-14-00345.1
https://doi.org/10.1175/mwr-d-12-00267.1
https://doi.org/10.1175/mwr-d-12-00267.1
https://doi.org/10.1175/mwr-d-13-00151.1
https://doi.org/10.1175/bams-d-11-00264.1
https://doi.org/10.1175/bams-d-11-00264.1
https://doi.org/10.1175/mwr-d-13-00135.1
https://doi.org/10.1175/jas-d-10-05000.1
https://doi.org/10.1175/mwr3062.1
https://doi.org/10.1175/mwr-d-17-0367.1
https://doi.org/10.1175/mwr-d-17-0367.1
https://doi.org/10.1175/2010mwr3209.1
https://doi.org/10.1029/97jd00237
https://doi.org/10.1023/b:boun.0000020164.04146.98


Journal of Advances in Modeling Earth Systems

CHANDRAMOULI ET AL.

10.1029/2021MS002711

24 of 25

Nakanishi, M., & Niino, H. (2006). An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction 
of advection fog. Boundary-Layer Meteorology, 119(2), 397–407. https://doi.org/10.1007/s10546-005-9030-8

Otkin, J. A. (2010). Clear and cloudy sky infrared brightness temperature assimilation using an ensemble Kalman filter. Journal of Geophysical 
Research, 115(D19), D19207. https://doi.org/10.1029/2009jd013759

Otkin, J. A. (2012). Assimilation of water vapor sensitive infrared brightness temperature observations during a high impact weather event. Jour-
nal of Geophysical Research: Atmospheres, 117(D19), D19203. https://doi.org/10.1029/2012jd017568

Otkin, J. A., & Pothast, R. (2019). Assimilation of all-sky SEVIRI infrared brightness temperatures in a regional-scale ensemble data assimilation 
system. Monthly Weather Review, 147(12), 4481–4509. https://doi.org/10.1175/mwr-d-19-0133.1

Otkin, J. A., Potthast, R., & Lawless, A. S. (2018). Nonlinear bias correction for satellite data assimilation using Taylor series polynomials. 
Monthly Weather Review, 146(1), 263–285. https://doi.org/10.1175/mwr-d-17-0171.1

Putnam, B., Xue, M., Jung, Y., Snook, N., & Zhang, G. (2019). Ensemble Kalman filter assimilation of polarimetric radar observations for the 
20 May 2013 Oklahoma tornadic supercell case. Monthly Weather Review, 147(7), 2511–2533. https://doi.org/10.1175/mwr-d-18-0251.1

Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J., & Lebair, W. J. (2017). A closer look at the ABI on the GOES-R series. 
Bulletin of the American Meteorological Society, 98(4), 681–698. https://doi.org/10.1175/bams-d-15-00230.1

Simmer, C. (1994). Satellitenfernerkundung Hydrologischer Parameter der Atmosphare mit Mikrowellen (p. 313). Verlag.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2008). A description of the Advanced Research 

WRF version 3. NCAR Technical note-475+ STR.
Smith, P. L. (1984). Equivalent radar reflectivity factors for snow and ice particles. Journal of Climate and Applied Meteorology, 23(8), 1258–

1260. https://doi.org/10.1175/1520-0450(1984)023<1258:errffs>2.0.co;2
Stanford, M. W., Varble, A., Zipser, E., Strapp, J. W., Leroy, D., Schwarzenboeck, A., et al. (2017). A ubiquitous ice size bias in simulations of 

tropical deep convection. Atmospheric Chemistry and Physics, 17(15), 9599–9621. https://doi.org/10.5194/acp-17-9599-2017
Tang, L., Zhang, J., Simpson, M., Arthur, A., Grams, H., Wang, Y., & Langston, C. (2020). Updates on the radar data quality control in the MRMS 

quantitative precipitation estimation system. Journal of Atmospheric and Oceanic Technology, 37(9), 1521–1537. https://doi.org/10.1175/
jtech-d-19-0165.1

Tao, W. K., Wu, D., Lang, S., Chern, J. D., Peters-Lidard, C., Fridlind, A., & Matsui, T. (2016). High-resolution NU-WRF simulations of a deep 
convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observa-
tions. Journal of Geophysical Research: Atmospheres, 121(3), 1278–1305. https://doi.org/10.1002/2015jd023986

Thompson, G., Field, P. R., Rasmussen, R. M., & Hall, W. D. (2008). Explicit forecasts of winter precipitation using an improved bulk micro-
physics scheme. Part II: Implementation of a new snow parameterization. Monthly Weather Review, 136(12), 5095–5115. https://doi.
org/10.1175/2008mwr2387.1

Upadhyaya, S. A., Kirstetter, P. E., Gourley, J. J., & Kuligowski, R. J. (2020). On the propagation of satellite precipitation estimation errors: From 
passive microwave to infrared estimates. Journal of hydrometeorology, 21(6), 1367–1381. https://doi.org/10.1175/jhm-d-19-0293.1

Vivekanandan, J., Zhang, G., Ellis, S. M., Rajopadhyaya, D., & Avery, S. K. (2003). Radar reflectivity calibration using differential propagation 
phase measurement. Radio Science, 38(3). https://doi.org/10.1029/2002rs002676

Wang, Y., & Wang, X. (2017). Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in 
the GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma City tornadic supercell. Monthly Weather Review, 
145(4), 1447–1471. https://doi.org/10.1175/mwr-d-16-0231.1

Wang, Y., & Wang, X. (2020). Prediction of tornado-like vortex (TLV) embedded in the 8 May 2003 Oklahoma City tornadic supercell initialized 
from the subkilometer grid spacing analysis produced by the dual-resolution GSI-based EnVar data assimilation system. Monthly Weather 
Review, 148(7), 2909–2934. https://doi.org/10.1175/mwr-d-19-0179.1

Wang, Y., & Wang, X. (2021). Development of convective-scale static background error covariance within GSI-based hybrid EnVar system for 
direct radar reflectivity data assimilation. Monthly Weather Review, 149(8), 2713–2736. https://doi.org/10.1175/mwr-d-20-0215.1

Whitaker, J. S., & Hamill, T. M. (2002). Ensemble data assimilation without perturbed observations. Monthly weather review, 130(7), 1913–
1924. https://doi.org/10.1175/1520-0493(2002)130<1913:edawpo>2.0.co;2

Whitaker, J. S., & Hamill, T. M. (2012). Evaluating methods to account for system errors in ensemble data assimilation. Monthly Weather Review, 
140(9), 3078–3089. https://doi.org/10.1175/mwr-d-11-00276.1

Wu, T. C., Zupanski, M., Grasso, L. D., Kummerow, C. D., & Boukabara, S. A. (2019). All-sky radiance assimilation of ATMS in HWRF: A 
demonstration study. Monthly Weather Review, 147(1), 85–106. https://doi.org/10.1175/mwr-d-17-0337.1

Yang, P., Wei, H., Huang, H. L., Baum, B. A., Hu, Y. X., Kattawar, G. W., et al. (2005). Scattering and absorption property database for nonspher-
ical ice particles in the near-through far-infrared spectral region. Applied optics, 44(26), 5512–5523. https://doi.org/10.1364/ao.44.005512

Yi, B., Yang, P., Liu, Q., van Delst, P., Boukabara, S. A., & Weng, F. (2016). Improvements on the ice cloud modeling capabilities of the Commu-
nity Radiative Transfer Model. Journal of Geophysical Research: Atmospheres, 121(22), 13–577. https://doi.org/10.1002/2016jd025207

Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., et  al. (2016). Multi-Radar Multi-Sensor (MRMS) quantitative precipita-
tion estimation: Initial operating capabilities. Bulletin of the American Meteorological Society, 97(4), 621–638. https://doi.org/10.1175/
bams-d-14-00174.1

Zhang, F., Minamide, M., & Clothiaux, E. E. (2016). Potential impacts of assimilating all-sky infrared satellite radiances from GOES-R 
on convection-permitting analysis and prediction of tropical cyclones. Geophysical Research Letters, 43(6), 2954–2963. https://doi.
org/10.1002/2016gl068468

Zhang, Y., Stensrud, D. J., & Zhang, F. (2019). Simultaneous assimilation of radar and all-sky satellite infrared radiance observations for 
convection-allowing ensemble analysis and prediction of severe thunderstorms. Monthly Weather Review, 147(12), 4389–4409. https://doi.
org/10.1175/mwr-d-19-0163.1

Zhang, Y., Zhang, F., & Stensrud, D. J. (2018). Assimilating all-sky infrared radiances from GOES-16 ABI using an ensemble Kalman filter for 
convection-allowing severe thunderstorms prediction. Monthly Weather Review, 146(10), 3363–3381. https://doi.org/10.1175/mwr-d-18-0062.1

Zhou, X., Zhu, Y., Hou, D., Luo, Y., Peng, J., & Wobus, R. (2017). Performance of the new NCEP global ensemble forecast system in a parallel 
experiment. Weather and Forecasting, 32(5), 1989–2004. https://doi.org/10.1175/waf-d-17-0023.1

Zhu, K., Xue, M., Pan, Y., Hu, M., Benjamin, S. G., Weygandt, S. S., & Lin, H. (2019). The impact of satellite radiance data assimilation within a 
frequently updated regional forecast system using a GSI-based ensemble kalman filter. Advances in Atmospheric Sciences, 36(12), 1308–1326. 
https://doi.org/10.1007/s00376-019-9011-3

https://doi.org/10.1007/s10546-005-9030-8
https://doi.org/10.1029/2009jd013759
https://doi.org/10.1029/2012jd017568
https://doi.org/10.1175/mwr-d-19-0133.1
https://doi.org/10.1175/mwr-d-17-0171.1
https://doi.org/10.1175/mwr-d-18-0251.1
https://doi.org/10.1175/bams-d-15-00230.1
https://doi.org/10.1175/1520-0450(1984)023%3C1258:errffs%3E2.0.co;2
https://doi.org/10.5194/acp-17-9599-2017
https://doi.org/10.1175/jtech-d-19-0165.1
https://doi.org/10.1175/jtech-d-19-0165.1
https://doi.org/10.1002/2015jd023986
https://doi.org/10.1175/2008mwr2387.1
https://doi.org/10.1175/2008mwr2387.1
https://doi.org/10.1175/jhm-d-19-0293.1
https://doi.org/10.1029/2002rs002676
https://doi.org/10.1175/mwr-d-16-0231.1
https://doi.org/10.1175/mwr-d-19-0179.1
https://doi.org/10.1175/mwr-d-20-0215.1
https://doi.org/10.1175/1520-0493(2002)130%3C1913:edawpo%3E2.0.co;2
https://doi.org/10.1175/mwr-d-11-00276.1
https://doi.org/10.1175/mwr-d-17-0337.1
https://doi.org/10.1364/ao.44.005512
https://doi.org/10.1002/2016jd025207
https://doi.org/10.1175/bams-d-14-00174.1
https://doi.org/10.1175/bams-d-14-00174.1
https://doi.org/10.1002/2016gl068468
https://doi.org/10.1002/2016gl068468
https://doi.org/10.1175/mwr-d-19-0163.1
https://doi.org/10.1175/mwr-d-19-0163.1
https://doi.org/10.1175/mwr-d-18-0062.1
https://doi.org/10.1175/waf-d-17-0023.1
https://doi.org/10.1007/s00376-019-9011-3


Journal of Advances in Modeling Earth Systems

CHANDRAMOULI ET AL.

10.1029/2021MS002711

25 of 25

Zhu, Y., Derber, J., Collard, A., Dee, D., Treadon, R., Gayno, G., & Jung, J. A. (2014). Enhanced radiance bias correction in the National Centers 
for environmental prediction's gridpoint statistical interpolation data assimilation system. Quarterly Journal of the Royal Meteorological 
Society, 140(682), 1479–1492. https://doi.org/10.1002/qj.2233

Zrnic, D. S. (2012). Doppler radar for USA weather surveillance. IntechOpen.
Zupanski, D., Zupanski, M., Grasso, L. D., Brummer, R., Jankov, I., Lindsey, D., et al. (2011). Assimilating synthetic GOES-R radiances in 

cloudy conditions using an ensemble-based method. International journal of remote sensing, 32(24), 9637–9659. https://doi.org/10.1080/01
431161.2011.572094

https://doi.org/10.1002/qj.2233
https://doi.org/10.1080/01431161.2011.572094
https://doi.org/10.1080/01431161.2011.572094

	Online Nonlinear Bias Correction in Ensemble Kalman Filter to Assimilate GOES-R All-Sky Radiances for the Analysis and Prediction of Rapidly Developing Supercells
	Abstract
	Plain Language Summary
	1. Introduction
	2. Offline and Online Bias Correction Methods
	2.1. Theoretical Differences Between Offline and Online Bias Correction Methods and Their Practical Application
	2.2. Non-linear Offline Bias Correction
	2.3. Non-Linear Online Bias Correction

	3. Overview of Case Study, Model and DA Configuration
	4. Specific Experiments and Results
	4.1. Bias Predictor Selection
	4.2. Online and Offline Bias Correction Experiment Results
	4.2.1. Impact on the Analysis and First Guess
	4.2.2. Impact on the Forecast
	4.2.3. Physical Diagnostics


	5. Conclusions
	Data Availability Statement
	References


