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Abstract: The impact of several land surface models (LSMs) and microphysics (MP), planetary bound-
ary layer (PBL), and surface layer schemes on the accuracy of simulated brightness temperatures (BTs)
from water vapor (WV) sensitive bands was examined via comparison with observations from the
GOES-16 Advanced Baseline Imager. Nine parameterization configurations were evaluated. Analysis
revealed that, compared to the Thompson MP scheme, the National Severe Storms Laboratory MP
scheme produced lower simulated WV BTs in the upper troposphere but higher WV BTs in the middle
and lower troposphere. The configuration with the Geophysical Fluid Dynamics Laboratory MP and
hybrid eddy-diffusivity mass-flux (EDMF) PBL instead of Mellor–Yamada–Nakanishi–Niino (MYNN)
PBL produced higher BTs. Yet, changing the PBL from MYNN to Shin–Hong or EDMF reduced the
simulated WV BTs. Changing the LSM from Noah to RUC also resulted in lower simulated WV BTs,
which were further enhanced with the MYNN surface layer instead of the GFS. The location and
orientation of upper-level jet streams and troughs was assessed using the location of WV gradient
objects. Every configuration had an increased translation speed compared to the observations, as
forecast WV gradient objects were west of the observation objects early in the forecast and then east
later in the forecast.

Keywords: model verification; water vapor brightness temperatures; satellite observations

1. Introduction

There are many operational uses for satellite infrared brightness temperatures (BTs)
from bands sensitive to water vapor (WV) and clouds (hereafter referred to as WV bands).
WV BTs can be used to identify areas of possible aircraft icing [1,2], track disturbances that
produce severe weather [3], and derive atmospheric motion vectors [4,5] that can be used to
compute tropical cyclone outflow and estimate future intensification [6]. In addition, many
upper-level synoptic features such as jet streams [7,8] and troughs [9] can be identified in
WV BTs. The location of upper-level jet streams and troughs can help delineate areas of
potential aircraft turbulence, as wind shear near upper-level jet streams is a known cause of
aircraft turbulence [10]. Severe weather can be associated with the exit and entrance regions
of jet streams [11] or negatively tilted 500 hPa troughs [12,13]. These examples illustrate the
fact that efforts to verify and improve the accuracy of WV BTs in high-resolution numerical
weather prediction (NWP) models are very beneficial for a range of applications.

Many studies using satellite BTs to validate upper-level cloud forecasts (e.g., [14–28])
have noted that the cloud accuracy is dependent on the choice of model parameterization
scheme [23,29]. However, despite the operational uses of WV BTs, little previous research
has been conducted comparing simulated and observed WV BTs. Otkin et al. [27] compared
simulated WV BTs from a large-scale Weather Research and Forecasting (WRF) model
simulation to observations from the Spinning Enhanced Visible and Infrared Imager. Soden
and Bretherton [30] compared Geostationary Operational Environmental Satellite (GOES)
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6.7 µm BTs to simulated BTs from the European Centre for Medium-Range Weather Fore-
casts model and the National Center for Atmospheric Research Community Climate Model.
Since forecasts of WV are sensitive to the microphysics scheme [31], Cintineo et al. [29] and
Chung et al. [32] investigated the impact of the microphysics scheme on WV BTs. However,
Cintineo et al. [29] only analyzed the 6.7 µm BTs from the GOES-13 imager, whereas ob-
servations from three WV bands are now available from the Advanced Baseline Imager
(ABI) on the new GOES satellites [33]. Chung et al. [32] examined how different micro-
physics schemes affect all three WV bands; however, they did not assess the impact of other
parameterization schemes such as the planetary boundary layer (PBL) on the forecasts.

Model accuracy, especially in global models, is often assessed using metrics such
as 500 hPa height anomaly correlations [34,35] that capture errors in the large-scale flow
patterns. Such statistics can be computed using conventional observation methods such
as radiosondes or through comparisons with gridded model analyses; however, both
approaches have limitations. Conventional observations suffer from poor temporal and
spatial resolution with large data voids over the oceans. Model analyses provide continuous
coverage; however, they contain biases and are only as accurate as the data assimilation
system and model used to generate them. Moreover, these limitations are even more acute
in regions where observations are scarce or nonexistent. Satellite data, in contrast, provide
nearly continuous global observations with high spatial resolution that are useful for
verifying the accuracy of both regional-scale and global NWP models. WV BTs in particular
could be used to assess the location of upper-level features such as jet streams and troughs
since they are often co-located with gradients in WV BTs [36–38]. Mohan et al. [39] have
recently shown that the location of these upper-level features in model forecasts is impacted
by the microphysics scheme.

The purpose of this study is to assess the impact of different parameterization schemes
on the accuracy of WV BTs, and to use gradients in WV BTs to assess the accuracy with
regard to upper-level jet streams and troughs. These schemes include different microphysics
(MP) and planetary boundary layer (PBL) schemes, as well as different land surface models
(LSM) and surface layers, that are being considered for inclusion in future operational
versions of the Finite-Volume Cubed-Sphere [40,41] limited area model (FV3-LAM). This
assessment uses output from a suite of experimental FV3-LAM simulations run by the
Center for Analysis and Prediction of Storms during the 2019 Hazardous Weather Testbed
(HWT) Spring Forecasting Experiment [42,43]. Similar assessments are conducted using
output from the Environmental Modeling Center (EMC) and National Severe Storms
Laboratory (NSSL) for the 2020 HWT Spring Forecasting Experiment.

2. Data
2.1. Model Configurations

This analysis used output from a suite of FV3-LAM configurations employing different
parameterization schemes during the 2019 and 2020 NOAA HWT Spring Forecasting
Experiments. All forecasts were initialized at 00 UTC and then run for 60 h. Data from the
2019 HWT included seven configurations initialized each weekday from 14–31 May 2019,
while data from the 2020 HWT included three configurations initialized each weekday from
27 April to 29 May 2020. Forecast hours 0 to 5 were excluded from the analysis to reduce
the impact of model spin-up processes on the forecast cloud field, because the model starts
from a cloud-free state.

For the 2019 HWT dataset, all forecasts were run on a domain covering CONUS at
3 km grid spacing. A description of each model configuration is included in Table 1. The
Control configuration is the baseline from which the other model configurations vary
in the 2019 HWT dataset. As described in Griffin et al. [23], it employs the Thompson
MP scheme with the aerosol-aware capability turned off [44,45], the Mellor–Yamada–
Nakanishi–Niino (MYNN) v3.6 PBL [46,47], the Global Forecasting System (GFS) surface
layer, the Noah LSM [48,49], and the North American Model (NAM) initial and lateral
boundary conditions. A second configuration explores the sensitivity to the cloud MP
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schemes by replacing the Thompson scheme with the National Severe Storms Laboratory
(NSSL) scheme [50], hereafter referred to as MP-NSSL. A third set of experiments replaced
the MYNN PBL scheme with either the Shin–Hong (SH) [51] or hybrid eddy-diffusivity
mass-flux (EDMF) [52] schemes, hereafter referred to as the PBL-SH and PBL-EDMF
configurations, respectively. A final set of configurations employed the RUC v3.6+ [53] LSM
with either the GFS or MYNN surface layers, denoted as LSM-RUC_SFC-GFS and LSM-
RUC_SFC-MYNN, respectively. The rapid radiative transfer model for general circulation
models (RRTMG) [54] radiation scheme was used in all of the simulations when computing
radiative fluxes at the surface and in the atmosphere, and in-cloud fluxes are directly
coupled to the cloud properties via the prognostic mixing ratios and diagnosed effective
radii for each cloud species [28].

Table 1. Description of model configurations for the 2019 HWT dataset used in this analysis.

Name Microphysics
Scheme

Planetary Boundary
Layer Scheme Surface Layer Land Surface Model

Control Thompson MYNN GFS Noah

MP-NSSL National Severe
Storms Laboratory MYNN GFS Noah

PBL-SH Thompson Shin–Hong GFS Noah

PBL-EDMF Thompson EDMF GFS Noah

LSM-RUC_SFC-GFS Thompson MYNN GFS RUC

LSM-RUC_SFC-MYNN Thompson MYNN MYNN RUC

The configurations for the 2020 HWT simulations are shown in Table 2. The EMC
FV3-LAM configuration uses the Geophysical Fluid Dynamics Laboratory (GFDL) MP
scheme [55], the hybrid EDMF PBL [51], the GFS surface layer, and the Noah LSM. The
hybrid EDMF PBL scheme uses the EDMF scheme for strongly unstable PBLs, while the
eddy-diffusivity counter-gradient (EDCG) scheme is used for weakly unstable PBLs mostly
over the tropics [51]. EMC FV3-LAMx has the same configuration as Control from the
2019 HWT dataset: the Thompson MP scheme, the MYNN v3.6 PBL, the GFS surface
layer, and the Noah LSM. Lastly, the NSSL FV3-LAM configuration is identical to the EMC
FV3-LAMx configuration except that it uses the MYNN surface layer. Unlike the 2019 ex-
periments, these configurations employ the GFS initial and lateral boundary conditions.
These forecasts were also run on a domain covering CONUS at 3 km grid spacing.

Table 2. Description of configurations for the 2020 HWT dataset used in this analysis.

Name Microphysics Scheme Planetary Boundary
Layer Scheme Surface Layer Land Surface

Model

EMC FV3-LAM Geophysical Fluid Dynamics
Laboratory Hybrid EDMF GFS Noah

EMC FV3-LAMx Thompson MYNN GFS Noah

NSSL FV3-LAM Thompson MYNN MYNN Noah

2.2. Water Vapor Brightness Temperatures

The verification dataset used in this study consisted of the observed 6.2, 6.9, and
7.3 µm BTs from the GOES-16 ABI sensor. These three bands are generally considered
upper-level, mid-level, and low-level WV bands with the weighting function peaking at
approximately 325 hPa, 475 hPa, and 675 hPa, respectively, in clear-sky scenes [33]. These
BTs had a 2 km pixel spacing at the nadir, or approximately 3–4 km over the study domain.
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For the observations, the GOES-16 radiances were remapped to the model grid using an
area-weighted average of all the observed pixels overlapping a given model grid box, and
then converted to BTs.

Simulated ABI BTs were generated for all configurations using the Community Radia-
tive Transfer Model (CRTM V2+) and vertical profiles of temperature, specific humidity, and
cloud hydrometeors [56,57]. A diagnosed effective radius for each microphysical species
(cloud water, rainwater, ice, snow, and graupel) that was consistent with the assumptions
made by the parameterization scheme [28,58] was input to the CRTM for cloudy grid
points. The National Polar-orbiting Operational Environmental Satellite System (NPOESS)
emissivity database was used to model land surface emissivity [56].

2.3. Pressure-Level Data

In addition to simulated BTs, pressure-level data are available for the EMC FV3-LAM.
These data are available for 45 pressure levels from 2 hPa to 1000 hPa. Specifically, the zonal
and meridional wind components and geopotential height were used to evaluate the utility
of the gradient-based verification method for synoptic and mesoscale features. Specific
humidity was also used to calculate the water vapor mixing ratio using the equation:

Water Vapor Mixing Ratio =
Specific Humidity

(1 − Specific Humidity)
. (1)

The water vapor mixing ratio was used to compare the simulated BTs to the amount
of water vapor in the atmosphere.

3. Methodology
3.1. Grid Point Metrics

Overall model accuracy was assessed using the mean absolute error (MAE). The MAE
was used instead of the root mean square error because errors in the simulated BTs did not
follow a normal distribution based on a Shapiro–Wilk test [59,60]. The MAE was calculated
using the equation

MAE =
1
N∑n

i=1|Fi −Oi|, (2)

where F (O) represents the forecast (observed) BTs. An MAE of zero represents a per-
fect forecast.

The model bias was assessed using two metrics. The first metric was the mean bias
error (MBE), which is calculated using the equation

MBE =
1
N

n

∑
i=1

(Fi −Oi). (3)

Since the MBE calculates the difference between the forecast and observed BTs before
calculating the average, it requires the same number of grid points for both the forecast
and observed BTs. The second metric was the mean difference (MD), which is calculated
using the equation:

MD =
1

NF

NF

∑
i=1

Fi −
1

NO

NO

∑
i=1

Oi . (4)

The MD differs from the MBE because the average is computed separately for the
forecast and observed BTs before calculating the difference between these two quantities.
This approach is useful for situations when the forecast and the observations do not have
the same number of grid points, which may occur if the forecasts have more or fewer
clouds than the observations. It is used when evaluating error characteristics for clear grid
points. A positive (negative) MBE and MD indicates that the simulated BTs are too high
(low) compared to the observed BTs.
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3.2. Identifying Upper-Level Jet Streams and Troughs

As the upper-level features such as jet streams between 150 and 350 hPa and 500 hPa
short-wave troughs are often co-located with gradients in WV BTs [36–38], this analysis
focused on the location of spatial changes in 6.2 µm BTs. These spatial changes, hereafter re-

ferred to as WV gradients, were calculated using the equation: ∇BT =
√
(∆BT(x) + ∆BT(y))2,

where ∆BT is the difference between BTs at ±5 grid points surrounding a given point. An
example of the simulated 6.2 µm BTs and corresponding BT gradients valid at 08 UTC on
02 May 2020 are shown in Figure 1a,b, respectively. As can be seen in Figure 1c,d, this was
a complex scene characterized by areas of enhanced upper-level winds associated with a
large ridge over the central U.S., troughs over the West and East Coasts, and a short-wave
trough riding the top of the ridge over the north-central U.S. and southern Canada.
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Figure 1. (a) Simulated 6.2 µm BTs, (b) 6.2 µm BT gradients, (c) maximum EMC FV3-LAM wind speed
between 150 hPa and 350 hPa, and (d) EMC FV3-LAM 500 hPa heights valid 20200502 at 08 UTC.
The black outlined objects in (b) indicate MODE objects defined using a BT gradient threshold of 2 K.
The black outlined objects in (c,d) indicate objects that are co-located with either a jet stream or a
trough, respectively.
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The Method for Object-Based Diagnostic Evaluation (MODE) [61–64] was used to
evaluate the attributes of WV gradient objects. Using a process called convolution thresh-
olding, MODE identifies objects in the smoothed observed and forecast WV gradient fields
and then calculates object attributes such as location or axis angle. In this analysis, BTs
were smoothed using a convolution radius of 5 grid points (15 km). The black outlines
in Figure 1b indicate MODE objects identified using a minimum gradient threshold of
2 K, which was chosen to lessen the impact of small-scale noise. In addition to object
attributes, MODE matches forecast and observation objects, with the similarity between
matched objects represented by an interest score that ranges from 0 to 1, with 1 representing
a perfect match. MODE also identifies attributes for matched object pairs, such as the cen-
troid distance (distance between objects’ centers of mass) and area ratio (ratio of matched
object areas).

In this study, we used WV gradient objects from observed and simulated 6.2 µm BTs
to assess the accuracy of forecast upper-level jet streams and troughs (ULJSTs). Because
the spatial resolution of radiosonde observations is much coarser than that of the BTs,
we used high-resolution wind and geopotential height analyses from the EMC FV3-LAM
configuration to identify the location of observed ULJST objects. Therefore, this object-based
analysis was limited to 2020, because similar high-resolution analyses are not available for
2019. Jet streams were identified as maximum wind speeds greater than 26 m s−1 and the
edges of troughs were identified as areas where the geostrophic wind speed was greater
than 25 m s−1. At least 50% of a given MODE forecast object had to overlap an observed jet
stream between 150 and 350 hPa or a 500 hPa trough to be considered co-located with an
ULJST. EMC FV3-LAM forecast WV gradient objects that were co-located with jet streams
or troughs are shown in the black outlines in Figure 1c,d, respectively. To allow comparison
with all configurations, we assumed that the observed 6.2 µm WV gradient objects with the
highest interest scores above 0.5 with respect to WV gradient objects in the EMC FV3-LAM
forecasts were co-located with an ULJST. This is a reasonable approximation that allows
these objects to be used to evaluate all of the configurations.

3.3. Mean Error Distance

The distance between matching WV gradient objects was calculated using the mean
error distance (MED). The MED was used in addition to the centroid distance provided by
MODE because the centroid distance could be more strongly influenced by other features
such as cloud distribution. The MED calculates the shortest distance between every grid
point identified as an observation object to the closest grid point identified as a forecast
object [65]. This could be more beneficial for forecasts of aircraft turbulence and severe
weather on the edges of jet streams or troughs. The MEDs from the observation objects (O)
to the forecast objects (F) were calculated using:

MED(F, O) =
1

NO
∑

x ε O
d(x, F) (5)

where NO is the number of grid points in the observation objects and d(x,F) is the shortest
distance from a grid point in an observation object to a forecast object. The MED has a
perfect value of zero, which occurs when all grid points in the observation and forecast
objects overlap.

4. Results
4.1. Grid Point Metrics

The MAE and MBE for the 6.2 µm BTs for the 2019 HWT dataset are shown in
Figure 2a,b, respectively, with the rightmost image displaying the statistical significance
from Control over all forecast hours based on Student’s t-test. Smaller values indicate
that the difference between the average MAE/MBE for the configuration and Control
is more statistically significant, as seen for the MBEs. Control had the lowest average
MAE, and therefore had the most accurately simulated 6.2 µm BTs overall. Control also
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had the least-negative average MBE, indicating it has less of a cold bias than the other
configurations. PBL-SH and PBL-EDMF had the next-highest MAEs and more negative
MBEs than Control. The fact that PBL-SH and PBL-EDMF had more-negative MBEs than
Control is consistent with results from Cintineo et al. [29] indicating that the MYNN PBL
scheme had the smallest cold bias in the 6.7 µm WV BTs from GOES-13. MP-NSSL had
the next-highest average MAE, though the MBE was smaller than that of PBL-SH. While
MP-NSSL had the highest MAE for early forecast hours, the largest average MAEs were
for LSM-RUC_SFC-GFS and LSM-RUC_SFC-MYNN, and the difference in MAE between
Control and LSM-RUC_SFC-MYNN was statistically significant. Therefore, changing the
land surface model from Noah to RUC decreased the accuracy of the 6.2 µm BTs, with
further reductions in accuracy occurring when using the MYNN surface layer instead
of GFS. LSM-RUC_SFC-MYNN also had the most-negative MBE of all configurations.
These results when using the RUC land surface model were similar to those observed in
Griffin et al. [23] for the 10.3 µm infrared window channel, which suggests that the negative
MBE for LSM-RUC_SFC-MYNN was due to excessive cloud cover.

Since WV BTs are sensitive not only to WV but also to clouds, Figure 2c displays
the MD for clear grid points only, defined as grid points where the 10.3 µm BT is greater
than 270 K. The MD was used since the number of clear grid points varies among the
model configurations and observations. The negative MD indicates that the model forecasts
were too moist in the upper troposphere, which was also shown in Otkin et al. [66]. All
configurations also had more clear grid points than the observations, as seen in Figure 2d
which displays the number of grid points as a function of BT computed using all forecast
cycles and times. The delineation between cloudy and clear grid points is the lowest
observed clear-sky BT averaged over all forecast initializations and hours. MP-NSSL had
the largest MD, with an average MD that was statistically significant compared to Control.
MP-NSSL also had the most clear grid points, which is consistent with the reduction in
clouds for the NSSL MP scheme compared to Thompson in Griffin et al. [23]. Only PBL-
SH had an average MD for clear grid points that was statistically significant compared
to Control, even though the percentage of clear pixels was similar for both PBL-SH and
Control. LSM-RUC_SFC-MYNN had the lowest number of clear grid points and the third-
smallest average MD, confirming that some of the higher MBE was due to the excessive
cloud cover. However, the average MD was not statistically significant compared to Control.
All configurations had more grid points than the observations at the lowest BTs (<200 K)
and fewer for the highest BTs (>245 K), resulting in the negative MBEs seen in Figure 2b.

The MAEs and MBEs for the 6.2 µm BTs for the 2020 HWT dataset are shown in
Figure 3. Overall, the EMC FV3-LAM configuration had the smallest MAE but the highest
MBE. EMC FV3-LAMx was the least-accurate configuration. While EMC FV3-LAMx em-
ploys the same parameterization schemes as the Control configuration from the 2019 HWT,
the initial and lateral boundary conditions are different. This could be why EMC FV3-
LAMx was the least-accurate configuration even though Control was the most-accurate
configuration from the 2019 HWT (Figure 2a). EMC FV3-LAMx also had the least-positive
MBE (Figure 3b), with the difference between the average MBE being statistically significant
compared to EMC FV3-LAM and NSSL FV3-LAM. This was possibly due to an overpro-
duction of the coldest clouds, as suggested by the increased number of grid points with
BT < 210 K compared to the observations (Figure 3d). EMC FV3-LAMx had a lower MBE
than NSSL FV3-LAM, which indicates that using the GFS surface layer instead of MYNN
reduces the production of clouds, based on Figure 3d.

For clear grid points (Figure 3c), all configurations had a positive average MD, which
is the opposite of what occurred in the 2019 HWT dataset. The positive MD for the 2020
HWT could be due to the use of GFS analyses rather than NAM analyses for the initial and
lateral boundary conditions. EMC FV3-LAM had the lowest MD, and the difference from
EMC FV3-LAMx was statistically significant. Therefore, either the GFDL MP or hybrid
EDMF PBL schemes reduced the clear-sky 6.2 µm BTs compared to the Thompson MP
scheme and MYNN PBL. Assuming the EDMF PBL scheme is used by EMC FV3-LAM for
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these grid points, the possibility of the EDMF PBL reducing the 6.2 µm BTs compared to
MYNN is consistent with Figure 2. However, since the difference between the average MD
for clear grid points was five times greater between EMC FV3-LAM and EMC FV3-LAMx
in 2020 compared to Control and PBL-EDMF in 2019 (Figure 2), it is probable that the GFDL
MP scheme also reduced the 6.2 µm BTs. EMC FV3-LAMx had a slightly lower average
MD for clear grid points than NSSL FV3-LAM. Therefore, using the MYNN surface layer
instead of the GFS does not necessarily result in less-accurate clear-sky 6.2 µm BTs, as is
suggested by the 2019 HWT dataset, and this may instead depend on the LSM or initial and
lateral boundary conditions used. Running LSM-RUC_SFC-MYNN and NSSL FV3-LAM
for the same dates would provide a more accurate comparison, but that is beyond the scope
of this study.
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brightness temperature for configurations employed during the 2019 Hazardous Weather Testbed.
The colored symbols on the right side of (a–c) show the average errors for each configuration over the
entire time series and the statistical significance from Control. The delineation between cloudy and
clear grid points in (d) is the lowest observed clear-sky BT, averaged over all forecast initializations
and hours.
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To evaluate WV biases in the middle and lower troposphere, Figure 4 shows the
average MBE and MD for clear grid points for the 6.2, 6.9, and 7.3 µm WV BTs during the
2019 and 2020 HWT forecasts. Only biases are shown in Figure 4, because the relationship
between the average MAE and the different configurations is the same for each WV band.
Compared to the 6.2 µm BTs (Figure 4a), one noticeable difference is that the MBEs for the
6.9 µm BTs (Figure 4c) were more negative, with PBL-SH and PBL-EDMF again having
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more-negative MBEs than Control. The MD for clear grid points was also more negative for
the 6.9 µm BTs compared to the 6.2 µm BTs (Figure 4b,d). This is especially evident in the
2020 HWT datasets, as the MDs for clear grid points were negative in this case instead of
positive. For the 7.3 µm BTs sensitive to WV in the middle and lower troposphere, the MBEs
were the highest of any WV band. For the 2019 HWT forecasts, LSM-RUC_SFC_MYNN
was the only configuration with a negative MBE, and the difference between Control and
LSM-RUC_SFC_MYNN increased with increasing wavelength. MP-NSSL had the most-
positive MBE (Figure 4e) for the 7.3 µm BTs, whereas Control had the highest MBE for
6.2 and 6.9 µm BTs. The MD for clear grid points was once again positive for the 2020 HWT
forecasts (Figure 4f), indicating a dry bias in the lower troposphere. The MDs for the 2019
HWT forecasts were negative, but they were the highest in any of the three WV bands.
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To investigate what can be inferred from the MBEs from EMC FV3-LAM, Figure 5
compares the simulated WV BTs to the average total WV mixing ratio above a certain
pressure level for all grid points with a given BT, averaged over every 12 and 24 h forecast
for all three WV bands. As expected, lower BTs are associated with more WV above a
given pressure level, regardless of band or time of day. The positive MBE in the 6.2 µm BTs
therefore indicates a dry bias in the upper troposphere whereas the 6.9 µm BTs indicate
a moist bias in the middle troposphere. These results allow us to infer that a moist bias
was also present in the upper tropopause in the 2019 dataset, based on the negative 6.2 µm
BTs MBE. Because this moist bias occurred in all configurations in the 2019 dataset, it was
possibly unrelated to which MP or PBL schemes were used, though modifications with
respect to the Control configuration did influence the magnitude of the moist bias, as was
similarly noted by Cintineo et al. [29]. In comparison, the 2020 HWT dataset did not have a
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moist bias in the upper troposphere, which was probably related to the fact that the GFS
initial conditions were used instead of the NAM.
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The positive bias in the 7.3 µm BTs for both years indicates a dry bias in the lower
troposphere. Dry biases in the lower troposphere are thought to inhibit convection [67].
For the 2019 HWT dataset, only LSM-RUC_SFC-MYNN had a moist bias and also had the
highest area of upper-level clouds, as identified in Griffin et al. [23]. Both MP-NSSL and
EMC FV3-LAM had the largest dry bias and also the smallest area of upper-level clouds.
They also had the highest number of clear grid points, which could contribute to the dry
bias. MP-NSSL and EMC FV3-LAM had the lowest MD for clear grid points, i.e., the largest
negative and least-positive values, respectively. Since more intense storms can occur with
greater amounts of low-level moisture [67], this moist bias in the clear grid points could be
contributing to the higher number of grid points observed with the lowest BTs, especially
for MP-NSSL, as shown in Figure 4e.

As mentioned previously, the simulated 6.9 µm BTs for the 2020 HWT dataset had a low
bias while the 6.2 µm BTs had a high bias for clear grid points. To examine this more closely,
Figure 6 presents a cumulative distribution function (CDF) of the observed and simulated
6.2 µm and 6.9 µm BTs for clear grid points for the 2020 HWT dataset. The pressure, shown
on the upper x-axis, is the level where the atmospheric temperature reaches the given WV
BT [5] based on pressure profiles from the EMC FV3-LAM configuration. For the 6.2 µm
BTs, the CDF for the observed BTs was shifted to the left of all the configurations, consistent
with the positive MBE. The opposite was observed for the 6.9 µm BTs, as the configurations
had slightly lower BTs at all percentiles. Based on the corresponding atmospheric pressures,
these CDFs indicate a lack of WV above approximately 350 hPa, as this is where the CDFs
for the 6.2 µm BTs become more similar to the observations, and an excess of WV below
350 hPa, as this is where the CDFs for the 6.9 µm BTs begin to differ even more. This excess
of WV below 350 hPa is possibly associated with the increase in cloudy grid points seen in
Figure 3d, as Lu and Takle [68] found an increase in WV saturation below 350 hPa to be
correlated with increased precipitation.

4.2. Brightness Temperature Differences

Brightness temperature differences (BTDs) between two satellite bands can be used to
examine how well model configurations represent observed cloud properties. The first BTD
used was that at 6.9–11.2 µm, which examines cloud top height [29]. The largest 6.9–11.2 µm
BTDs generally occur in clear-sky regions [69], and BTDs become progressively smaller
as the cloud top height increases. Due to the strong WV absorption at 6.9 µm combined
with 11.2 µm BTs that generally decrease with height, these BTDs are usually negative. The
second BTD used was at 8.4–11.2 µm, which discriminates between liquid and ice clouds.
Absorption for water is lower at 8.4 µm compared to 11.2 µm, while the absorption for
ice is higher at 8.4 µm than 11.2 µm [70–72]. Therefore, ice clouds are characterized by a
positive 8.4–11.2 µm BTD, while the reverse is true for water clouds [27].

Figures 7 and 8 present two-dimensional histograms of 6.9–11.2 µm BTDs and
8.4–11.2 µm BTDs, respectively, compared to the corresponding 11.2 µm BTs. Red (blue)
colors indicate a higher (lower) number of grid points for a given configuration compared
to the observations. These are the only colors used in Figures 7a and 8a, as well as
in Figures 7g–i and 8g–i since these figures only compare a single configuration to the
observations. Figures 7b–f and 8b–f show histograms comparing the model configurations
to both the Control and observations. This novel visualization approach was used to
identify the impacts of the different parameterization schemes on the cloud compositions
more easily, with respect both to the observations and the Control configuration, without
the need for multiple figures. In these panels, the blue shading indicates that there are
fewer configuration grid points and no Control grid points for a given BTD and 11.2 µm BT
combination compared to the observations. Purple shading indicates that the configuration
has fewer grid points at the given BTD and 11.2 µm BT combination than the observations
and Control, while pink indicates that the configuration has more grid points than the
observations and Control. Green indicates the configuration also has more grid points
than the observations at the given BTD and 11.2 µm BT but fewer than Control, and
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orange indicates the configuration has more grid points than Control but fewer than the
observations. The results are shown for each model configuration during 2019 and 2020.
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Figure 7. Histograms of GOES-16 ABI 6.9–11.2 µm brightness temperature differences plotted as a
function of the ABI 11.2 µm brightness temperature (a–i). Red (blue) shading in the first color bar
indicates a higher (lower) number of grid points with a given BTD and 11.2 µm BT combination for the
configuration compared to the observations. Purple (pink) shading in the second color bar indicates a
given configuration has fewer (more) grid points at the given BTD and 11.2 µm BT combination than
both the observations and Control. In the third color bar, green indicates the configuration also has
more grid points than the observations for a given combination but fewer than Control, while orange
indicates that the configuration has more grid points than Control but fewer than the observations.
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both the observations and Control. In the third color bar, green indicates the configuration also has
more grid points than the observations for a given combination but fewer than Control, while orange
indicates that the configuration has more grid points than Control but fewer than the observations.

All configurations from both years had an increased number of grid points with a
positive 6.9–11.2 µm BTD (Figure 7). This increase can be identified by the red shading for
positive BTD in Figure 7a,g–i and pink shading in Figure 7b–f. A positive 6.9–11.2 µm BTD
is indicative of overshooting clouds exceeding the tropopause height [73]. Using the NSSL
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MP scheme instead of the Thompson scheme increased the number of grid points with a
positive BTD, as indicated by the pink color in Figure 7d. LSM-RUC_SFC-MYNN also had
more grid points with a positive BTD than Control, as shown in in Figure 7f, consistent
with the excess in clouds noted by Griffin et al. [23]. The number of grid points with cloud
tops exceeding the tropopause height was reduced when using the Shin–Hong PBL instead
of the MYNN PBL, as shown in Figure 7b by the green colors. To a lesser extent, the EDMF
PBL also reduced the number of grid points with a positive BTD compared to the MYNN
PBL, as shown in Figure 7e. This reduction can also be seen by comparing EMC FV3-LAM
in Figure 7g to EMC FV3-LAMx and NSSL FV3-LAM in Figure 7h,i. However, regardless
of which configurations were used, there were still more grid points with a positive BTD in
the forecasts than occurred in the observations.

As seen in the two-dimensional histogram of 8.4–11.2 µm BTD compared to the
11.2 µm BT in Figure 8, all configurations produced too many ice clouds compared to
the observations. These additional ice clouds can be seen in the red shading for positive
8.4–11.2 µm BTD for Control in Figure 8a. Changing from the Thompson MP scheme to
NSSL reduced the number of ice clouds (green shading in Figure 8d), as did changing the
PBL from MYNN to Shin–Hong (Figure 8b) or EDMF (Figure 8e), though to a lesser extent.
The reduction in the number of ice clouds when using the hybrid EDMF instead of MYNN
PBL, as well as GFDL MP scheme instead of the Thompson scheme, can also be seen in
the lower number of grid points with a positive BTD (red shading) for EMC FV3-LAM
(Figure 8g) compared to EMC FV3-LAMx (Figure 8h) and NSSL FV3-LAM (Figure 8i). As
seen in Figure 8f, LSM-RUC_SFC-MYNN had an increased number of ice clouds (pink
shading) compared to Control while LSM-RUC_SFC-GFS had fewer ice clouds (green
shading, Figure 8c). While it appears that using the MYNN surface layer instead of GFS
increases the number of ice clouds, NSSL FV3-LAM (Figure 8i), had a lower probability of
ice clouds compared to the EMC FV3-LAMx (Figure 8h). NSSL FV3-LAM uses the MYNN
surface layer like LSM-RUC_SFC-MYNN but it uses the Noah LSM like Control, and EMC
FV3-LAMx has the same configuration as Control. Therefore, it is possible the conjunction
of RUC LSM and MYNN surface layer could result in more ice clouds.

In addition to the increased production of ice clouds, all configurations underproduced
the number of water clouds compared to the observations. This lack of water clouds can
be seen in the blue, purple, and orange shading for negative BTDs in Figure 8. Focusing
on 11.2 um BTs between 253 K and 273 K, where aircraft icing conditions are possible [2],
the Thompson MP scheme produced more water clouds compared to the NSSL (purple
shading in Figure 8d). This increase was expected, as one target of the Thompson scheme is
improving forecasts of aircraft icing [74]. The GFDL MP scheme with the hybrid EDMF PBL,
however, produced more water clouds than the Thompson MP scheme with the MYNN
PBL and the observations. This indicates that changing from the MYNN PBL increases
the number of water clouds within the icing range, as does using the RUC LSM instead
of Noah.

4.3. Upper-Level Jet Streams and Troughs

To determine the location and orientation of upper-level jet streams and troughs
(ULJSTs), objects from the gradients in the simulated and observed 6.2 µm BTs were
identified using a threshold of 2 K in MODE. ULJSTs are often co-located with gradients in
WV BTs; however, current validation of these features usually relies on sparse radiosonde
observations or model re-analyses. The distances between matching WV gradient objects
associated with ULJSTs can be seen in Figure 9 for the 2020 HWT dataset. To be included in
this analysis, observation objects had to have a matching forecast object with an interest
score and area ratio greater than 0.5 in all three configurations. Figure 9a depicts the MED
from every grid point considered an observation object to the closest forecast object grid
point. The MED increases with forecast lead time, probably due to larger displacement
errors between the centroids of the matching objects (Figure 9b). EMC FV3-LAM had a
larger average MED than EMC FV3-LAMx but a similar average centroid distance. The
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increased MED for EMC FV3-LAM was possibly due to smaller gradient objects (not
shown), and therefore a lower percentage of observation object grid points having an
overlapping EMC FV3-LAM object. For NSSL FV3-LAM, the MED and overlapping
percentage was smaller than EMC FV3-LAMx but larger than EMC FV3-LAM.
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Figure 9c displays the west/east displacement between the configuration and ob-
servation WV gradient objects associated with ULJSTs. Especially noticeable for EMC
FV3-LAM, the centers of mass for the WV gradient objects associated with ULJSTs were
westward of the observation objects early in the forecast but shifted to being too far to the
east later in the forecast. Therefore, the translation speed of ULJSTs appears to be faster in
the configurations compared to the observations. This displacement was consistent among
all configurations, which suggests that these translation errors are related to the dynamic
core in the FV3-LAM rather than the various parameterization schemes being used.

To compare the progression of 500 hPa troughs, Figure 10a displays the difference
in axis angle between matching forecast and observation WV gradient objects when both
objects have a negative tilt, for the 2020 HWT dataset. The difference between the matching
forecast and observation axis angles are mostly negative, and the overall average is also
negative except for EMC FV3-LAMx. Therefore, the forecast object had a more negative tilt
than the observation object. This negative tilt is possibly correlated with more convection,
as evidenced by the larger number of very low 6.2 µm BTs for all configurations in Figure 3d,
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and also the fact that the average area encompassed by MODE objects defined using a
10.3 µm BT of 235 K was larger than the observations for all configurations even though
the average area of objects defined using 265 K was smaller (not shown). There were
subtle differences in the axis angles, as EMC FV3-LAMx generally had a less-negative
tilt in the matched objects compared to EMC FV3-LAM. EMC FV3-LAMx also had more
area encompassed by cold cloud objects; therefore, the greater extent of these objects was
not solely related to an increased negative tilt in 500 hPa troughs. Extreme differences
in the axis angles around forecast hours 25 and 49 were associated with local minima in
the number of matching objects, as seen in Figure 10b. These local minima were probably
caused by increased cloud cover, similar to that observed in Griffin et al. [23], resulting in
larger gradient objects that reduce the percentage of gradient object grid points overlapping
with troughs. This diurnal cycle in total area of gradient objects can be seen in the light-blue
boxes in Figure 11a. A diurnal cycle was not observed in the total area encompassed by or
the number of EMC-FV3-LAM objects overlapping with troughs, as shown in in the grey
boxes in Figure 11a,b, respectively. The number of EMC-FV3-LAM objects overlapping with
troughs also did not decrease with forecast hour, as shown in Figure 11b. Therefore, the
decrease in the number of matched objects in Figure 10b was probably due to displacement
and other forecast errors increasing with time, resulting in fewer matching objects having
an interest score and area ratio higher than 0.5.
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5. Discussion and Conclusions

In this study, simulated WV BTs from the GOES-16 ABI sensor were used to assess
the impact of different parameterization schemes in the FV3-LAM on the WV and cloud
fields, and on the location and orientation of ULJSTs. Nine model configurations from
high-resolution simulations performed during the 2019 and 2020 HWT Spring Forecasting
Experiment were evaluated. The accuracy and bias in the simulated WV BTs were assessed
using MAE, MBE, and MD. Cloud composition was evaluated using BT differences. The
locations of ULJSTs were evaluated by calculating the gradient in the 6.2 µm BTs and then
creating MODE objects.

The impact of different MP schemes on the average water vapor brightness temper-
atures can be seen in Table 3. Changing the MP scheme from Thompson to NSSL in the
2019 HWT dataset increased WV in the upper atmosphere, which led to less-accurate
6.2 µm BTs over the full domain. In contrast, higher MBEs for the 6.9 and 7.3 µm BTs
indicated less WV in the middle and lower troposphere, and these simulated BTs were
also less accurate. The dry bias and lack of clouds in the lower troposphere when using
the NSSL MP scheme is consistent with the higher MBEs in the 10.3 µm BTs found in
Griffin et al. [23]. Although the NSSL MP scheme produced more overshooting clouds
exceeding the tropopause height than the Thompson MP scheme, it also produced fewer
ice clouds and water clouds potentially related to aircraft icing. Conversely, the GFDL MP
scheme combined with the hybrid EDMF PBL produced more supercooled water clouds
than the Thompson scheme with MYNN PBL in the 2020 HWT dataset, while still produc-
ing fewer ice clouds. Unfortunately, there is no direct comparison between the Thompson
and GFDL MP schemes in either dataset, but since the Thompson MP and EDMF PBL
also produced more of these water clouds compared to Thompson MP and MYNN in the
2019 HWT dataset, some of the additional clouds could be related to the change in PBL
schemes. However, using the Thompson scheme with EDMF PBL instead of MYNN only
led to a 5% increase in the number of supercooled water clouds, while the GFDL MP and
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hybrid EDMF PBL showed an increase of 18%. Therefore, some of the increase in these
water clouds could be due to the GFDL MP. Similarly, the decrease in ice clouds with the
GFDL MP scheme and hybrid EDMF PBL was probably due to the GFDL MP scheme, since
the Thompson MP and EDMF PBL configuration had a negligible reduction in ice clouds
compared to the Thompson MP and MYNN PBL.

Table 3. Comparison of average mean absolute error (MAE), mean bias error (MBE), and mean
difference (MD) of clear grid points between the Thompson MP scheme and the NSSL and GFDL MP
schemes. Bold arrows indicate that the averages are statistically different at the 95th percentile based
on Student’s t-test.

Average
MAE NSSL GFDL Average

MBE NSSL GFDL Average MD for Clear
Grid Points NSSL GFDL

6.2 µm ↑ ↓ 6.2 µm ↓ ↑ 6.2 µm ↓ ↓
6.9 µm ↑ ↓ 6.9 µm ↑ ↑ 6.9 µm ↓ ↓
7.3 µm ↑ ↓ 7.3 µm ↑ ↑ 7.3 µm ↓ ↓

The reduction in ice clouds for both the NSSL and GFDL MP schemes could be due to
their treatment of hail compared to the Thompson scheme. The NSSL MP scheme includes
separate hail and graupel categories [50], while the GFDL MP combines graupel and hail
into a single category like the Thompson scheme, but with a particle density almost twice
as large [45,75]. This additional category or increase in particle density could impact the
spatial coverage and composition of ice clouds due to cloud ice being considered as graupel
or hail and the resultant impact on particle fall speed. The lack of ice clouds for the GFDL
MP scheme with the hybrid EDMF PBL appears to result in more accurately simulated
BTs for all three WV bands, even though the MBE over the full domain is the highest.
The MBE is the highest because the MD for cloudy grid points is positive when using the
GFDL MP and the hybrid EDMF PBL configuration but negative for the Thompson MP
and MYNN PBL configuration, due to a lack of clouds with 6.2 µm BTs between 215 K
and 223 K. For clear grid points, the MD is lowest for the GFDL MP and the hybrid EDMF
PBL configurations, indicating an increase in WV at all levels of the troposphere when
compared to the Thompson MP and MYNN PBL configuration. However, it is unclear
whether the higher WV content is due to the GFDL MP scheme or the hybrid EDMF PBL,
as the Thompson MP scheme with the EDMF PBL also has similarly lower BTs. Further
work is needed to confirm whether the GFDL MP or the hybrid EDMF PBL scheme, or
both, led to a higher WV content.

The impact of different PBL schemes on the average water vapor brightness tempera-
tures can be seen in Table 4. Changing the PBL scheme from the MYNN to the Shin–Hong
or EDMF schemes reduced the accuracy of all WV BTs in the 2019 HWT dataset. The higher
MAE for the Shin–Hong PBL scheme compared to MYNN is consistent with the findings
in Cintineo et al. [29], where the Thompson MP scheme and Yonsei University (YSU) PBL
scheme, on which the Shin–Hong scheme is based [76], had a slightly higher MAE for
6.7 µm BTs than the Thompson MP scheme and MYNN PBL. Since the Shin–Hong and
EDMF PBL schemes had more-negative MBEs compared to the MYNN scheme, this lower
accuracy is possibly due to an increased amount of WV at all levels of the troposphere.
This increase in WV does not appear to be related to the additional cloud cover produced
by the Shin–Hong and EDMF PBL schemes [23], as the average MD for the Shin–Hong
and EDMF PBL schemes for clear grid points is also lower than MYNN, except for the
7.3 µm BTs. While the MBEs increased between EMC FV3-LAM and EMC FV3-LAMx in the
2020 HWT dataset, this increase could possibly be due to the use of the GFDL MP scheme
instead of the hybrid EDMF PBL scheme. Compared to the MYNN PBL, the Shin–Hong
and EDMF PBL schemes also reduced the number of ice clouds and increased the number
of water clouds potentially related to aircraft icing to numbers that better represented the
observations. These results are consistent with those of Schwitalla et al. [77], who found
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that replacing the MYNN PBL with YSU when using the Thompson MP scheme resulted in
cloud liquid water that was more consistent with the observations.

Table 4. As in Table 3 but for a comparison between the MYNN PBL scheme and the Shin–Hong and
EDMF PBL schemes.

Average
MAE Shin-Hong EDMF Average

MBE Shin–Hong EDMF Average MD for
Clear Grid Points Shin–Hong EDMF

6.2 µm ↑ ↑ 6.2 µm ↓ ↓ 6.2 µm ↓ ↓
6.9 µm ↑ ↑ 6.9 µm ↓ ↓ 6.9 µm ↓ ↓
7.3 µm ↑ ↑ 7.3 µm ↓ ↓ 7.3 µm ↑ ↑

The impact of different surface features on the average water vapor brightness temper-
atures can be seen in Table 5. For the configurations using different LSMs and surface layers,
changing to the RUC LSM from Noah generally resulted in lower and less-accurate WV BTs
over the full domain in the 2019 HWT dataset. These lower WV BTs were consistent with
there being too much WV and too many clouds, especially when using the RUC LSM in-
stead of Noah and the MYNN surface layer instead of the GFS. These additional clouds can
be seen in the more frequent overshooting clouds produced by the LSM-RUC_SFC-MYNN
and the fact that the MD for clear pixels was less negative compared to the full domain.
However, the MD for clear grid points was still more negative when using the RUC LSM.
Since Jin et al. [78] found that simulations using the RUC LSM had a higher surface air
temperature than those using the Noah LSM, it is possible that these higher surface air
temperatures resulted in higher atmospheric air temperatures, which would support the
additional WV, based on the Clausius–Clapeyron equation. Interestingly, changing the
LSM from Noah to RUC with the GFS surface layer did reduce the number of overshooting
clouds and ice clouds to something better matching the observations. Furthermore, using
the MYNN surface layer instead of the GFS with the Noah LSM resulted in more-positive
MBEs in the 2020 HWT dataset. Therefore, the MYNN surface layer did not solely result in
the additional clouds in LSM-RUC_SFC-MYNN compared to LSM-RUC_SFC-GFS. Instead,
the additional clouds could be due to the combination of MYNN surface layer and the RUC
LSM or the NAM initial and boundary conditions instead of the GFS.

Table 5. As in Table 3 but for a comparison between the Noah land surface model with the GFS
surface layer and the RUC land surface model with the GFS or MYNN surface layer.

Average
MAE

RUC
GFS

RUC
MYNN

Average
MBE

RUC
GFS

RUC
MYNN

Average MD for
Clear Grid Points

RUC
GFS

RUC
MYNN

6.2 µm ↑ ↑ 6.2 µm ↓ ↓ 6.2 µm ↑ ↓
6.9 µm ↑ ↑ 6.9 µm ↓ ↓ 6.9 µm ↑ ↓
7.3 µm ↑ ↑ 7.3 µm ↑ ↓ 7.3 µm ↑ ↓

When analyzing the location of ULJSTs, it was found that every configuration in the
2020 HWT dataset had an increased translation speed compared to the observations, as the
center of mass for the WV gradient objects associated with these features were west of the
observation object early in the forecast but too far to the east later in the forecast. The axes
of matching WV gradient objects associated with 500 hPa troughs were also more negative,
when both observation and forecast objects had a negative tilt. However, while the location
and orientation of these synoptic-scale features differed among the model configurations,
there was no consistently optimal configuration.

Since the ULJST analysis required upper-level forecast information from at least one
configuration to be accomplished, future work on this project will include expanding
the identification of WV gradient objects associated with ULJSTs, so that the upper-level
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forecast information will not be necessary. Identifying objects associated with ULJSTs may
be accomplished by increasing the threshold used for defining gradient objects, looking at
other object features such as length compared to width, or restricting objects to those north
of a given latitude. Additional work on this project will also look at analyzing ULJSTs for
different seasons. An important aspect of the object-based verification using satellite WV
band BTs is that it could be applied globally and serve as an important verification method
for synoptic-scale features in regions lacking conventional observations. Additional future
work will also assess the impact of the GFDL MP scheme on simulated BTs compared to the
Thompson MP scheme, without the confounding influence of changes in the PBL scheme.
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