
1. Introduction
Land surface processes are key in regulating regional sources of energy and moisture, which may significantly 
impact the timing and spatial evolution of convection and precipitation. For example, in the Southeastern United 
States, land surface heterogeneity characterized by adjacent areas of forests, grassland, and cropland is a factor 
in determining regional initiation of convection (Gambill & Mecikalski,  2011). Understanding the processes 
impacting cumulus clouds that undergo the convective initiation (CI) process is essential as the development 
of isolated convective clouds during summer months are driven primarily by strong surface heating in weakly 
forced environments (Brown & Arnold, 1998; Gambill & Mecikalski, 2011; Kirshbaum et al., 2016; Miller & 

Abstract The influence of the Unified Noah and Noah-MP land surface models (LSMs) on the evolution 
of cumulus clouds reaching convective initiation (CI) is assessed using infrared brightness temperatures (BT) 
from GOES-16. Cloud properties from individual cloud objects are examined using output from high-resolution 
(500 m horizontal grid spacing) model simulations. Cloud objects are tracked over time and related to observed 
clouds reaching CI to examine differences in cloud extent, longevity, and growth rate. The results demonstrate 
that differences in assumed surface properties can lead to large discrepancies in the net surface radiative 
budget, particularly in the sensible and latent heating components where differences exceed 40 W m −2. These 
differences lead to changes in the local mesoscale circulation patterns that are more pronounced near the edges 
of forested and grassland boundaries where lower-level convergence is stronger. Higher sensible heating from 
the Noah-MP LSM produced growth of CI clouds earlier and with increased longevity, which was closer to the 
timing and growth observed from GOES-16. The increased cloud growth in the Noah-MP experiment results 
from stronger and deeper updrafts, which lofts more cloud water into the upper levels of the troposphere. The 
weaker updrafts from the Noah LSM experiment results in shallower convection after CI is detected due to 
slower growth rates. The differences in cloud properties and growth are directly related to the land surfaces 
they develop above and point to the importance of accurately representing land properties and radiative 
characteristics when simulating convection in numerical weather prediction models.

Plain Language Summary Weather prediction models consist of many different parameters and 
assumptions. In this study, we compared how assumptions of the land surface impact the growth of cumulus 
clouds and thunderstorms across the southeastern United States. It was found that differences in the land surface 
schemes can directly impact the local circulations where cumulus clouds and convective storms develop; 
this leads to differences in how large the clouds grow and sustain over time. By tracking clouds using an 
object-based methodology, we were able to compare growth characteristics to those observed by geostationary 
satellites. The model and satellite comparisons helped demonstrate that the cloud growth is quite sensitive to 
the model interpretation of surface energy balances, particularly over heterogeneous landscapes containing 
forests and grasslands. The differences in the amount of energy transferred from the surface to the atmosphere 
lead to downstream differences in cloud updraft strength. These differences in cumulus cloud characteristics 
influence the formation of ice in the upper levels of clouds, which is essential in the convective storm initiation 
process. The comparison with satellite data provided the ability to validate cloud growth and further understand 
the processes leading to longer-lived thunderstorms.

HENDERSON ET AL.

© 2022. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial License, 
which permits use, distribution and 
reproduction in any medium, provided the 
original work is properly cited and is not 
used for commercial purposes.

Examining the Role of the Land Surface on Convection Using 
High-Resolution Model Forecasts Over the Southeastern 
United States
David S. Henderson1  , Jason A. Otkin1,2  , and John R. Mecikalski3 

1Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI, USA, 2Cooperative Institute 
for Meteorological Satellite Studies, University of Wisconsin-Madison, Madison, WI, USA, 3Department of Atmospheric 
Sciences, University of Alabama in Huntsville, Huntsville, AL, USA

Key Points:
•  The Noah-MP LSM leads to a more 

accurate size distribution and growth 
rate of convection compared to the 
Noah LSM

•  The latent and sensible heating 
components of the surface radiation 
balance drive differences in local 
circulation patterns

•  Surface energy imbalances impact 
updraft characteristics, leading to 
downstream influences of cloud 
growth and sustained convection

Correspondence to:
D. S. Henderson,
dshenderson@wisc.edu

Citation:
Henderson, D. S., Otkin, J. A., & 
Mecikalski, J. R. (2022). Examining the 
role of the land surface on convection 
using high-resolution model forecasts 
over the Southeastern United States. 
Journal of Geophysical Research: 
Atmospheres, 127, e2022JD036563. 
https://doi.org/10.1029/2022JD036563

Received 27 JAN 2022
Accepted 25 JUL 2022

10.1029/2022JD036563
RESEARCH ARTICLE

1 of 20

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-3062-2471
https://orcid.org/0000-0003-4034-7845
https://orcid.org/0000-0003-1367-8075
https://doi.org/10.1029/2022JD036563
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022JD036563&domain=pdf&date_stamp=2022-08-21


Journal of Geophysical Research: Atmospheres

HENDERSON ET AL.

10.1029/2022JD036563

2 of 20

Mote, 2017). Over large regions of the Southeast United States, these storms make up a significant portion of the 
spring and summer seasonal precipitation totals (Rickenbach et al., 2020).

The Southeast United States poses an especially challenging forecast problem related to CI and the upscale 
development of convective storms. CI forecasting is particularly challenging during the summer when synoptic 
scale forcing is typically weak, solar heating is strong, surface moisture is abundant, and given high land surface 
heterogeneity (i.e., forests intermingled with farmland and small water bodies). Prediction of the onset time, 
location, and evolution of convection remains a difficult problem for observational and numerical weather predic-
tion (NWP) models (e.g., Cintineo et al., 2020; Henderson et al., 2021; Kain et al., 2013; Lawson et al., 2018; 
Mecikalski et  al.,  2015). Studies by Gambill and Mecikalski  (2011) and Asefi et  al.  (2012) show that heter-
ogeneous land cover and small lakes significantly influence summertime convective cloud development and 
storm initiation in the Southeastern United States. A heterogeneous landscape coupled to weak winds in synop-
tically tranquil environments (≤5 m s −1 surface and 500 hPa winds <7.5 m s −1 winds; Brown & Arnold, 1998) 
leads to the formation of differential heating-generated mesoscale circulations that in turn help buoyant thermal 
updrafts reach the level of free convection (LFC) in advance of CI, especially when surface dew points are high 
(≥22–27°C; Carlton et al., 2008; Trier et al., 2004; Wilson & Schreiber, 1986). In these environments, there 
is a close coupling between the land surface and convective storm development, which is often dictated by 
local vegetation, land cover, antecedent rainfall, and topography features that generate the differential heating 
circulations (Avissar & Schmidt, 1998; Walker et al., 2009). As synoptic scale wind velocities increase, these 
differential heating-generated circulations become more organized linear features that cause cloud streets and 
horizontal convective rolls (Avissar & Schmidt, 1998; LeMone, 1973). Because of the sensitivity of CI to land 
cover and land use, and of CI related to cloud microphysical schemes (Henderson et al., 2021), convection allow-
ing NWP models often fail to resolve the subtle factors that lead to the development of convective storms in the 
Southeastern United States. An accurate depiction of the land characteristics and land surface interactions with 
the atmosphere becomes essential to predict cloud formation over regions with complex variations in vegetation 
and weak atmospheric flow.

Differences in the treatment of land and vegetation processes in land surface models (LSMs) impact surface sensi-
ble and latent heat fluxes, convective mixing, boundary layer growth, and the transport of moisture into the upper 
troposphere (e.g., Anthes, 1984; Duda et al., 2017; Pielke, 2001; Santanello et al., 2018). Modeling-based studies 
have examined the interactions between the land surface and the atmosphere to discuss land impacts on down-
stream cloud growth (e.g., García-García et al., 2021; Kirkpatrick et al., 2011; Knist et al., 2020; PaiMazumder 
et al., 2012; Pei et al., 2014) and LSM perturbation studies can be used to gauge the impacts of systematic changes 
in land surface properties (Deng et al., 2016; Duda et al., 2017; Orth et al., 2016; Zhu et al., 2018). Ground-based 
observational studies have examined the land-atmosphere coupling conditions leading to deep convection (e.g., 
Lareau, 2020; Qiu & Williams, 2020; Van Weverberg et al., 2018; Zhang & Klein, 2010) and high temporal 
resolution data from geostationary satellites have also been used to better understand the processes leading to CI 
(Bikos et al., 2012; Griffin et al., 2021; Henderson et al., 2021; Mecikalski et al., 2015; Senf & Deneke, 2017). 
Geostationary satellites, however, are unable to observe below the cloud top due to signal saturation, resulting in a 
disconnect to the cloud and atmosphere below. Further, the aforementioned model and ground-based studies lack 
conclusions on the quantitative effects of the different types of land surface heterogeneity.

The high-temporal-resolution data from the GOES-16 Advanced Baseline Imager (ABI; Schmit et  al.,  2017) 
provides an ideal data set to track the life cycle of convection. The temporal resolution of 1–5 min allows vali-
dation on scales of cumulus cloud growth (Gravelle et al., 2016). The object tracking methodology and vali-
dation strategies employed during this study are consistent with observation-based tracking techniques used 
to describe CI characteristics and nowcasting studies (e.g., Harris et al., 2010; Mecikalski et al., 2010; 2016; 
Senf & Deneke, 2017). This has been shown to provide beneficial information in CI nowcasting applications 
(Mecikalski et al., 2015; Patou et al., 2018). Using the 5-min temporal-resolution data from the GOES-16 ABI, 
Henderson et al. (2021) applied cloud object tracking methods to examine the growth of individual convective 
cells produced by high-resolution Weather Research and Forecasting (WRF; Powers et al., 2017) model simula-
tions to understand how bulk microphysical parameterization schemes represent the formation and development 
of hydrometeor species, cloud growth, and precipitation processes. The study showed that while the micro-
physical parameterization schemes produce varying magnitudes of hydrometeor mixing ratios (i.e., cloud water, 



Journal of Geophysical Research: Atmospheres

HENDERSON ET AL.

10.1029/2022JD036563

3 of 20

ice, and precipitation), the schemes agreed in the processes leading to CI when evaluating clouds with similar 
observed IR BT growth rates.

The overall goal of this work is to examine how the LSM and land-atmosphere interactions influence cloud 
extent, longevity, updrafts, and in-cloud microphysics for convection reaching CI. Specifically, we use geosta-
tionary satellite data in conjunction with high-resolution WRF model simulations to validate cloud growth in the 
model. This work expands upon the results from Henderson et al. (2021) to shed light on other factors controlling 
the growth of convection to better understand the conditions optimal for CI occurrence and upscale storm growth 
in weakly forced scenarios. The work concentrates on how the use of different LSMs leads to changes in the 
overall net surface radiative budget and the respective impact on convective growth and updraft characteristics. 
CI from high-resolution simulations is evaluated using lag-based composites of cloud objects as a function of 
the timing of CI to track individual convective cells. Comparing observed and simulated GOES-16 ABI imagery 
focuses on the model's ability to simulate the evolution of convection independent of the cloud location and 
time. The  object-based evaluation is applied to gain greater understanding of the relationships between the land 
surface, the surface radiation budget, and their respective downstream influences on atmospheric motion and 
cloud growth.

This study is organized as follows. In Section 2, we briefly describe each data set, model experiment setup, and 
methods used to track clouds. In Section 3, we evaluate and discuss the differences in CI and storm evolution 
between the Unified Noah and Noah with Multiple Parameterizations (Noah-MP) LSMs. After that, we then 
document the physical differences occurring in convection leading to discrepancies in cloud growth. Finally, a 
summary and discussion are given in Section 4.

2. Methods
2.1. Model Setup

This work expands upon the Henderson et  al.  (2021) case study from May 20, 2018 that used WRF model 
version 3.9.1.1 to examine convection over the Southeastern United States (Figure 1). This event was character-
ized by weakly forced, slow-moving convective features that occurred across Alabama and Mississippi during 
the afternoon and evening hours. The model configuration consists of three two-way feedback permitted nests 
with 12.5 km, 2.5 km, and 500 m resolution, respectively (Figure 1). The innermost domain contains 700 × 700 
horizontal grid points with 53 vertical sigma levels and a model top of 25 hPa. The initial and lateral boundary 
conditions are provided by the National Centers for Environmental Prediction final (NCEP FNL) analyses with a 
6-hr temporal resolution on a 0.25° latitude-longitude grid.

Figure 1. (a) The three Weather Research and Forecasting Model domains used in the land surface model experiments. Convective initiation is assessed within the 
inner domain (D03). (b) The MODIS land use classes on D03.
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The model setup was derived through a series of sensitivity experiments (not shown) that examined the impacts 
of using different microphysical schemes, planetary boundary layer (PBL) schemes, and model spin-up time on 
the results. The chosen configuration below provides the most accurate representation of the cloud evolution 
during this event when compared to the GOES-16 ABI observations. The two simulations evaluated in this study 
are initialized at 1200 UTC, allowing for ∼5 hr of spin-up before CI occurs, and contain an identical model 
configuration apart from the LSM. The data is output every 5 min, which matches the temporal resolution of the 
GOES-16 ABI observations. The Thompson cloud microphysics scheme (Thompson et al., 2008) is used along 
with the Rapid Radiative Transfer Model for Global Climate Models (RRTMG; Iacono et al., 2008) longwave 
and shortwave radiation schemes. The Thompson microphysics scheme is used because Henderson et al. (2021) 
concluded that it provided the most accurate cloud growth rates and evolution of cloud top ice microphysics 
during the case study examined. The Tiedtke (Tiedtke,  1989; Zhang et  al.,  2011) cumulus parameterization 
scheme is used only on the outermost domain. Though Henderson et al. (2021) employed the Yonsei University 
(YSU; Hong et al., 2006; Lim & Hong, 2010) PBL scheme, here we use the Mellor-Yamanda-Nakanishi-Niino 
(MYNN; Nakanishi & Niino, 2004, 2009) 2.5-level closure PBL scheme. Utilizing the MYNN PBL scheme 
yielded more accurate cloud growth when compared to GOES-16 in our sensitivity analysis and has showed 
better PBL evolution in convection-allowing models (e.g., Coniglio et al., 2013). We note, however, that changes 
in the LSM resulted in a larger impact on cloud evolution compared to the PBL scheme, which is a similar finding 
to Griffin et al. (2021).

To assess the impact of the land surface on CI, two WRF sensitivity experiments are performed using the Noah 
and Noah-MP LSMs with the above configuration. The Noah LSM contains four soil layers and combines a 
surface layer of vegetation and soil surface, which makes it applicable in both operational weather and climate 
models (Barlage et al., 2010; Ek et al., 2003). When moving toward higher resolution, representation of the land 
surface becomes increasingly important (e.g., Case et al., 2008; Sutton et al., 2006). The Noah-MP LSM expands 
upon the Noah model by providing a highly configurable LSM with numerous options to represent groundwa-
ter and vegetation processes. The Noah-MP LSM provides a multi-layer snow pack, explicit representation of 
surface water infiltration runoff and groundwater transfer, and adds a physical canopy layer with explicit radia-
tive transfer interactions between the surface and canopy. The canopy layer is separated from the surface, which 
improves the representation of the surface energy balance (i.e., solar radiation, longwave radiation, sensible heat, 
latent heat, and ground heat fluxes). This allows the Noah-MP model to compute the canopy temperature, and 
related radiative energy, water, and carbon fluxes explicitly between the surface and canopy and the canopy to the 
overlying atmosphere (Niu et al., 2011). For this work, we utilize the default recommended options for different 
parameterizations available in WRF V3.9.1.1. This includes static vegetation (dynamics option 5). Static vegeta-
tion helps focus the differences between the Noah and Noah-MP LSMs on the representation of land surface types 
and canopy radiative transfer from the Noah-MP LSM. We note that for this case study, the maximum vegetation 
fraction used by the recommended dynamics option does not alter the overall results compared to a climatological 
vegetation fraction (dynamics option 1). Further discussion of the vegetation fraction can be found in Section 4.

2.2. Cloud Tracking

2.2.1. Observed and Simulated Brightness Temperatures

The verification data set is observed BTs from the GOES-16 ABI sensor (Schmit et al., 2017). This analysis uses 
the 10.35 μm BTs, which have a 2-km pixel spacing at nadir at 5-min time intervals. Similar to previous meth-
odologies (e.g., Griffin et al., 2017, 2021; Henderson et al., 2021), the Community Radiative Transfer Model 
version 2.1 (CRTM; Ding et al., 2011) is used to generate simulated GOES-16 ABI IR BT data from the WRF 
simulations. The CRTM provides all-sky top-of-the-atmosphere BTs that incorporate the viewing geometry for 
the GOES-16 ABI. For cloudy grid points, an effective radius consistent with the assumptions made by the 
Thompson microphysics scheme (Otkin et al., 2007; Thompson et al., 2016) is diagnosed for each species (cloud 
water, rainwater, ice, snow, and graupel) and then input along with the hydrometeor mixing ratios to the CRTM. 
The CRTM then computes cloud optical properties (i.e., single scatter albedo, asymmetry parameter, and full 
scattering phase function) for each grid point and vertical layer. Finally, the combined set of cloud optical prop-
erties is used to compute the simulated IR BTs on the 500 m resolution grid, which is then averaged to the 2-km 
resolution GOES-16 ABI grid to maintain consistency with the ABI observations.
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2.2.2. Cloud Tracking and Compositing Data

The cloud tracking procedure for the observed and simulated BT data sets follows the method described in 
Henderson et al. (2021) and is summarized briefly here. The physical basis for the tracking method is derived 
using the Tracking Of Organized Convection Algorithm through 3D segmentation (TOOCAN; Fiolleau & 
Roca, 2013) algorithm with clouds tracked through time when overlapping cloud objects occur in successive 
images (e.g., Vila et al., 2008). The overlapping method is feasible by using a 5-min satellite image timestep.

To define the boundaries of individual cloud objects, the cloud tracking method uses 10.35 μm BTs that are 
sensitive to cloud particles (their size, phase, and amount) in the upper portion of the cloud, which helps separate 
cloud clusters through time. Fiolleau and Roca (2013) describe the cloud detection as iteratively growing cloud 
“seeds” from colder to warmer BTs. Cloud objects are identified by detecting initial boundaries using a low BT 
threshold of 210K. For each identified object, pixels are added to the cold cloud-top object using a 2.5K warmer 
BT threshold to identify the edge of the new boundary. The warmer BT threshold is also applied to detect new 
cloud objects at warmer BTs up to 285K.

Cloud objects reaching CI are tracked over time and are defined as when a cloud object in the 10.35 μm BTs 
contains a radar reflectivity of 35 dBZ or higher within its cloud boundary (e.g., Henderson et  al.,  2021; 
Mecikalski & Bedka, 2006; Weckwerth & Parsons, 2006). Ground-based reflectivities from level 2 NEXRAD 
weather radars are matched to the individual cloud objects. When the radar reflectivity within a cloud object 
surpasses the 35 dBZ threshold, that time step is labeled time lag 0 and the data before, during, and after this 
CI time step are composited to describe the evolution of the cloud objects. The same radar-based reflectivity CI 
threshold is applied to the simulation experiments. In WRF, the Thompson microphysics scheme computes the 
output of a radar reflectivity factor based on the Rayleigh approximation, which is very similar to the S-band 
wavelength observations of the ground-based radar data (e.g., Li et al., 2022). As in Henderson et al. (2021), 
tracking of observed and simulated cloud objects focuses on objects whose BTs grow colder than 250K at some 
point in their evolution. For brevity, the term “CI clouds” will refer to clouds reaching 250K during their lifecycle 
indicating a cloud that is likely to produce heavy precipitation. Therefore, the analysis concentrates on clouds that 
grow into heavily precipitating clouds and helps remove possible biases from the overproduction of cloud objects 
in the NWP simulations (e.g., Davis et al., 2009; Griffin et al., 2017; Henderson et al., 2021). The advantage of 
comparing tracked CI objects over time is that it allows the evaluation to focus on the model's ability to simulate 
the evolution of convection independent of the cloud location and time. The evaluation can then be applied to 
gain greater understanding of the physical processes occurring within the clouds that lead to various cloud-top 
signatures depicted in satellite IR imagery and each WRF simulation.

3. Results
This analysis first examines differences in cloud top evolution in the simulations and compares them to the 
observed BTs to determine which LSM provides a more realistic depiction of the cloud evolution. Differences in 
the surface energy budget and their environmental impacts are then discussed to better understand why the cloud 
evolutions differ. Finally, the model data is used to evaluate how environmental differences due to the change in 
LSM lead to physical changes in cloud properties and structure.

3.1. Evolution of Cloud Top Brightness Temperatures

The effect of the LSM can be examined by investigating changes in cloud top BT growth between the WRF 
experiments and observations. Cloud BT comparisons are first assessed from a domain-wide point of view. To 
illustrate differences between the two LSM experiments, the number of CI cases over the 3-hr period (1700–2000 
UTC) and their cloud object areas are shown in Figure 2. Overall, it is evident that there are large differences 
between the simulations. The Noah-MP and Noah LSMs produce a higher occurrence of CI clouds compared 
to the GOES-16 observations, mainly between 1830 and 1930 UTC. Henderson et  al.  (2021) found that this 
overestimation was related to an overproduction of clouds with BTs remaining warmer than 250K. Near 1845 
UTC, the number of CI clouds in both simulated and observed cases begins to plateau or decrease (Figure 2a). 
While the number of CI cloud objects is similar toward the end of the experiments, the cloud objects using the 
Noah-MP LSM are larger (Figure 2b), which better matches the observed cloud-top areas from the GOES-16 
ABI. Along with the smaller clouds from the Noah experiment, the Noah LSM leads to a distinct delay in CI 
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formation (Figure 2a) before 1800 UTC compared to the Noah-MP LSM and GOES-16 observations. The differ-
ences in cloud size are apparent in BT snapshots for two times during the WRF experiments (Figure 3). At 1800 
UTC (Figures 3a–3c), CI clouds in the Noah-MP experiment begin to develop most prominently over the north-
east quadrant of the domain, which primarily contains forests and croplands. The difference in cloud-top extent 

Figure 2. The evolution of convective initiation (CI) occurrence and cloud top extent from 1700 to 2000 UTC. The (a) occurrence of active CI cloud objects containing 
a reflectivity higher than 35 dBZ at each time step and (b) the distribution of CI cloud objects sizes for GOES-16 (gray) observations and Noah-MP land surface model 
(LSM) (blue), and Noah LSM (green) Weather Research and Forecasting experiments shown using box-and-whisker diagrams.

Figure 3. Comparison of the observed and simulated Advanced Baseline Imager 10.35 μm brightness temperatures (K). Brightness temperatures (BTs) at 1800 
UTC for (a) GOES-16, (b) the Noah land surface model (LSM), and (c) Noah-MP LSM, respectively. BTs at 1900 UTC for (d) GOES-16, (e) the Noah LSM, and (f) 
Noah-MP LSM, respectively.
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becomes more apparent at 1900 UTC (Figures 3d–3f), particularly in the northeast quadrant, where the coverage 
of high cloud tops (i.e., BTs <250K) is larger in the Noah-MP experiment.

To examine the differences in the cloud top characteristics, Figures 4a–4c show the evolution of the BTs at 5-min 
intervals for all CI clouds tracked during their entire lifecycle for the observations and each model experiment. To 
more easily assess differences between the observed and simulated 10.35 μm BT distributions, each 2D histogram 
is normalized and differenced (Figures 4d and 4e). Early in the time period, there is a distinct BT signature in the 
simulations near 240K related to a cloud shield in the southern portion of the domain that moves out of the domain 
by 1800 UTC (Figures 3b and 3c). In Figure 4, the observed and simulated histograms contain BTs of warmer 
cloud tops ranging between 260 and 275K throughout the time period. The observations, however, contain more 
frequent BTs of warm cloud tops near 275K. After 1800 UTC, a higher occurrence of BTs colder than 240K 
begins to appear. This is most prominent in the observed BTs and Noah-MP LSM BTs. Beyond 1830 UTC, the 
WRF experiments contain a bimodal peak of BTs near 260 and 220K. The GOES-16 observations contain a 
broader distribution of BTs compared to the bimodal cloud distributions from the models. The difference fields 
(Figures 4d and 4e) show that the model simulations overpredict clouds near 260K. This increase in mid-level 
convection is amplified with the Noah LSM, whereas the Noah-MP LSM produces a more accurate distribution of 
higher cloud tops—albeit producing more frequent upper-level clouds at BTs <220K. The delay in cloud growth 
is evident for Noah LSM (Figure 4d) with a lower frequency of cloud top BTs <240K after 1800 UTC.

To investigate temporal biases in cloud evolution, Figure 5 shows the distribution of cloud top BTs as a function 
of time from 30 min before until 30 min after CI detection. Both of the LSM experiments contain a similar cool-
ing of cloud top temperatures before the time of CI. For the model simulations and observed ABI BTs, the cloud 
growth (i.e., cloud top getting colder) is slower during the 30 min before CI is detected. A jump toward colder BTs 
at the cloud top occurs near CI detection, where the models and observations exhibit accelerated cloud growth 
once CI occurs. Henderson et al. (2021) demonstrated that this jump in growth is associated with an increase of 
in-cloud ice content that produces the latent heating necessary to sustain cloud development. The main difference 

Figure 4. 2D-histograms of normalized Advanced Baseline Imager 10.35 μm brightness temperature occurrence from 1700 to 1900 UTC for (a) GOES-16, (b) 
Noah land surface model (LSM), and (c) Noah-MP LSM. The difference in normalized occurrences between GOES-16 and the Weather Research and Forecasting 
experiments are shown in (d) for the Noah LSM and (e) for the Noah-MP LSM.
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between the model experiments occurs around 15 min after CI, where the Noah clouds exhibit a reduction or a 
cessation of in-cloud growth. The Noah-MP BTs, however, continue to cool, which suggests that CI clouds from 
the Noah-MP experiment develop into deeper convection at a rate more similar to that observed by the GOES-16 
ABI. Within this analysis, the Noah-MP LSM provides a better representation of the spatial extent of CI clouds 
and convective growth.

3.2. Evaluating the Surface Energy Budget

Isolated convective clouds and precipitation are more common over the heterogeneous vegetation in the South-
eastern United States compared to other regions such as the Great Plains (Gambill & Mecikalski, 2011; Kirshbaum 
et al., 2016; Miller & Mote, 2017; Rickenbach et al., 2020). Varying assumptions between LSMs can lead to 
large differences in the surface energy balance between adjacent land cover types and thus influence the devel-
opment of mesoscale circulations responsible for aiding convective development (e.g., Avissar & Pielke, 1991; 
Weaver, 2004). Changes in the circulation could explain the cloud top extent differences illustrated in Figure 2. 
To diagnose potential reasons for cloud top BT and extent differences, the downward and upward shortwave 
(SW) and longwave (LW) emissions, along with the latent heat (LH) and sensible heat (SH) fluxes at the surface 
are examined for the first 2 hr of the analysis period (1700–1900 UTC). The surface energy balance compari-
son focuses on a subset region in the eastern half of the domain (dashed box in Figure 1b) that contained larger 
differences in cloud extent (Figures 2 and 3). This region is comprised of mostly forested vegetation mixed with 
grassland/cropland. Each energy budget component is compared for all-sky conditions starting right before CI 
is detected in the model and GOES-16 observations until when the subset region begins to fill with high clouds.

Comparing the surface energy components across the region sheds light on the differences in the land-atmosphere 
interactions occurring in each model experiment. In Figure 6, it is evident that LH in the Noah experiment is 
consistently higher than Noah-MP by ∼45 W m −2. This difference is initially balanced by the Noah-MP via 
increased SH at the beginning of the analysis period; however, the SH becomes more similar later in each exper-
iment as cloud sizes grow and precipitation increases. In Figures 6a and 6c, LH and SH comparisons are also 
shown for clear-sky conditions. For Noah-MP, the SH does not drop off as quickly in clear-sky conditions. 
Figures 6b and 6d illustrate that the differences are generally consistent over the model domain where the LH 
and SH discrepancies related to vegetation are apparent between the grassland/cropland and forested regions. The 
land-based comparisons are split into conditional means of two land-based categories for any land types contain-
ing grasslands or cropland and land-based categories for all forested land types. The conditional mean LH and SH 
for the forests agrees with the overall domain-wide results, but the opposite signal occurs over cropland/grassland 
regions. For the Noah-MP LSM, regions with grassland/cropland types have lower sensible heat conductance. 
Further, the grassland/cropland regions are characterized by higher evaporation rates in comparison to transpira-
tion rates, which is due to lower vegetation fractions along with a lower leaf area index. These factors ultimately 
lead to higher LH and lower SH in the grassland/cropland regions compared to forested regions. The LH and SH 

Figure 5. Box-and-whisker plots of Advanced Baseline Imager 10.35 μm brightness temperatures (K) for GOES-16 (gray), Noah land surface model (LSM) (green), 
and Noah-MP LSM (blue). Bars are spaced at 5-min intervals of 30 min before and after convective initiation (CI) was detected. Time = 0 is defined as the time CI was 
detected.
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differences are generally consistent over the model domain (Figure 7), where the LH and SH discrepancies are 
related to differences in vegetation. The largest differences are apparent between the grassland/cropland regions 
(Figure 1b). This is qualitatively illustrated by regions of negative SH differences in Figure 7f for grassland/crop-
land regions and positive SH differences in Figure 7f over the forested regions.

The means of all surface energy components from 1700 to 1800 UTC are shown in Table 1. The largest differ-
ences occur in the upward fluxes from the surface to the atmosphere. Consistent with the time series in Figure 6, 
the SH and LH fluxes are +46 and –43 W m −2, respectively, with higher SH (lower LH) in the Noah-MP experi-
ment. The SH and LH discrepancies could be related to the canopy representation in forested land types from the 
Noah-MP LSM. The Noah-MP surface albedo is systematically lower across the model domain (Table 1), with 
differences being largest over the forested regions (Figure 8). In particular, the mixed forest region land types 
contain albedo differences of around 5%. Greater surface absorption is apparent by the decreased upwelling SW 
radiation as well as the increased ground heat flux (heat storage) shown in Table 1. As evidenced by the larger 
ground heat flux in the Noah-MP experiment, differences in albedo as well as the assumed thermal emissivity 
characteristics for the vegetation types also lead to a radiative imbalance at the surface. The reduced upwelling 
LW radiation and LH (evaporative cooling) in Noah-MP are due to greater land surface heat storage, which would 
then be released to heat the atmosphere at later model timesteps.

To investigate the different impacts of LH and SH on the atmosphere, the evolution of simulated relative humid-
ity and air temperature on the model is shown in Figure 9. The difference in the air temperature demonstrates 
that the ambient air is warmer and drier within the PBL in the Noah-MP experiment (Figure 9a) before 1730 

Figure 6. 5-min (a) surface latent heat flux for clear (dashed lines) and all-sky (solid lines) conditions and (b) surface latent heat flux split into conditional means of 
land types containing grasslands or cropland and land-based categories for all forested land types, (c) surface sensible heat flux for clear and all-sky conditions, and (d) 
surface sensible heat flux split into conditional means of land types containing grasslands or cropland and land-based categories for all forested land types. All units are 
W m −2 and provided over a 2-hr period starting at 1700 UTC.
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UTC. This is consistent with the differences in the surface energy balance from Figure 7 as higher SH will act 
to warm the lower atmospheric layers. While the surface and boundary layer are initially drier in the Noah-MP 
experiment, a slight but potentially important increase in the PBL height can be seen in Figure 9b. For both 
experiments, the PBL is near 1.5 km AGL, but the PBL in the Noah LSM is around 100–200 m deeper. This slight 

difference in PBL height is indicated by the band of lower relative humidity 
near the top of the PBL, which could impact cloud inflow and updraft char-
acteristics (Murzdek et  al.,  2022). While the surface and boundary layers 
are drier in the Noah-MP experiment, the relative humidity increases in the 
upper-troposphere after 1800 UTC in Noah-MP. Similar results in clear-sky 
conditional relative humidity means (not shown) are found when compared 
to the all-sky in Figure 9b. Higher relative humidity in the upper-troposphere 
could provide an environment more favorable for upper-level cloud growth 
(e.g., Henderson et al., 2018). Dai et al.  (2021) describe that regions with 
higher LH flux could preferentially trigger convection by lowering the level 
of free convection (LFC) closer to the top of the PBL. While both the Noah 
and Noah-MP experiments contain high LH values, the increased SH in 
Noah-MP will aid in providing the buoyancy needed to reach the LFC and, 
therefore, the Noah-MP LSM would be more likely to trigger and sustain 
deep convection.

Previous research has demonstrated that differences in the surface energy 
balance are likely to lead to changes in the local mesoscale circulation (e.g., 
Anthes,  1984; Duda et  al.,  2017; Pielke,  2001; Santanello et  al.,  2018). 
Figure 10 illustrates low-level divergence (950 hPa) and maximum vertical 
velocity over the entire column at a given grid point between the two simula-
tions. Blue colors in Figures 10a and 10b show where the LSM experiments 

Figure 7. Surface latent heat flux (W m −2) over the domain for (a) Noah land surface model (LSM) and (b) the Noah-MP LSM. Surface sensible heat flux (W m −2) 
for (c) the difference between Noah LSM and Noah-MP LSM latent heating. Surface latent heat flux (W m −2) over the domain for (d) the Noah LSM, (e) the Noah-MP 
LSM, and (f) the difference between Noah LSM and Noah-MP LSM sensible heating. Flux values are taken at 1700 UTC before convective initiation was observed in 
the experiments.

Noah-MP Noah Difference (NoahMP-Noah)

SWD,sfc 988 992 −4

LWD,sfc 405 406 −1

SWU,sfc 133 168 −35

LWU,sfc 493 521 −28

SHsfc 208 162 +46

LHsfc 420 463 −43

Ground flux 133 75 +58

Sfc emissivity 0.99 0.95 +0.04

Sfc albedo 0.14 0.17 −0.03

Note. Included elements in the table are: downwelling SW (SWD,sfc), 
downwelling LW (LWD,sfc), upwelling SW (SWU,sfc), upwelling LW (LWU,sfc), 
surface sensible heat flux (SHsfc), surface latent heat flux (SHsfc), ground heat 
flux, surface emissivity, and surface albedo. All units are in W m −2 with the 
exception of albedo and emissivity which are unitless.

Table 1 
Domain and Time Averaged Values for Individual Components of the 
Surface Radiation Budget for Each of the Model Experiments
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contain increased surface convergence (i.e., negative divergence) and more yellow colors in Figures 10c and 10d 
are regions where this experiment has higher maximum vertical velocities. The higher vertical velocities for 
both LSM experiments are most noticeable in the northeast section of the model domain containing pockets of 
forests, grassland, or cropland. Regions of stronger near-surface convergence and vertical velocities occur within 
forested land types. This is particularly prominent near the boundaries of forested and grassland/cropland regions. 
The higher velocities are more noticeable in the Noah-MP LSM experiment. These conditions are supported by 
high afternoon convective available potential energy, which provides a more ideal region for cloud formation. 
Figure 11 illustrates that high convective available potential energy (CAPE) ≥1500 J kg −1 is ubiquitous in the 
model domain. Further, Figures 11c and 11d illustrate that the LFC is near 1.5–2 km for both experiments. The 
low LFC is close to the top of the PBL (1.5 km) and provides evidence of an environment preferential to trigger-
ing convection.

To more clearly illustrate this relationship, Figure 12 compares the low-level divergence (950 hPa) against the 
maximum vertical velocities. The scatterplots in Figures 12a and 12c utilize all land types, whereas the scatter-
plots in Figures 12b and 12d are separated into two land-based categories; colors in blue are for any land types 
containing grasslands or cropland and colors in black are for all forested land types. In general, both LSM exper-
iments exhibit a trend that as the surface convergence increases, it corresponds with higher maximum vertical 
velocities. The Noah-MP LSM produces regions with higher convergence near the surface along with stronger 
vertical velocities, especially where a forested vegetation type is prominent (Figure 12d). Further, the Noah-MP 
LSM has a larger contrast in the strength of convergence between the forested and grassland/cropland regions 
compared to the Noah LSM. This signal agrees with the larger regional differences in SH shown in Figure 7.

Figure 8. Surface albedo across the domain for (a) Noah land surface model (LSM) and (b) the Noah-MP LSM, and (c) the difference between Noah and Noah-MP. 
Albedo values are taken at 1600 UTC.

Figure 9. Differences in (a) ambient air temperature and (b) relative humidity between the model experiments. Differences are defined as Noah-MP land surface model 
(LSM) minus Noah LSM values. Values are displayed as a domain average across the subset region at each vertical sigma layer. The dashed line references the domain 
averaged freezing level.
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3.3. Physical Impacts on Convective Updrafts and Cloud Properties

This section examines the differences in vertical profiles of updrafts and cloud properties between model exper-
iments. Updraft characteristics are evaluated using methods similar to Morrison et  al.  (2012) and Lebo and 
Morrison (2015) who derived the profiles of vertical mass flux and updraft fraction from WRF simulations. For 
this work, the vertical convective mass flux (Equation 1) is defined at each vertical sigma level using the vertical 
velocity, w, and the air density, ρ, for all locations with a CI cloud object containing w ≥ 2 m s −1. The updraft 
fraction (Equation 2) is defined as the fraction of the convective updraft (w ≥ 2 m s −1) compared to the area of all 
regions of updraft in a cloud object. The resulting updraft mass flux and updraft fraction at the sigma levels are 
then averaged at 500 m increments from the surface to 12 km.

Mass Flux =

𝑤𝑤𝑤𝑤

Cloud Area
 (1)

Updraft Fraction =
Cloud Area,𝑤𝑤 ≥ 2ms−1

Cloud Area,𝑤𝑤 ≥ 0ms−1
 (2)

Figure 10. Maximum vertical velocity in the column at each model grid point for (a) Noah land surface model (LSM) and (b) the Noah-MP LSM and near-surface 
divergence at 950 mb for (c) Noah LSM and (d) the Noah-MP LSM. Values are taken at 1700 UTC before convective initiation was observed in the experiments.
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Figure  13 displays the vertical profiles of updraft mass flux (Figures  13a–13c) and updraft fraction 
(Figures 13c–13f). For each variable, the panels show the evolution of mass flux and updraft fraction starting 
15 min before CI is detected, the time of CI detection, and 15 min after CI was detected. To help confirm that 
the differences in the mass flux and updraft fraction are not related to temporal differences (e.g., the delay in CI 
for Noah LSM in Figure 2), we have included two different time periods. The solid lines display results for all 
time periods, whereas the dashed lines display results for CI detected only after 1800 UTC. Both time periods 
yield similar results; therefore, the resulting discussion will focus on the solid lines in Figure 13. For the updraft 
mass flux 15 min before the detection of CI (Figure 13a), there is little difference in the amount of mass moved 
upward through the updraft. This agrees with Figure 5, where the general growth pattern of the cloud-top temper-
atures and extent are similar between the model experiments and GOES ABI. At the time of CI (Figure 13b), 
the Noah-MP experiment (orange line) has a greater average cloud object updraft mass flux starting at 3 km that 
persists to the upper portions of the cloud above 10 km. The increased mass flux in Noah-MP continues 15 min 

Figure 11. Convective available potential energy [J kg −1] for (a) the Noah land surface model (LSM), (b) the Noah-MP LSM. The level of free convection [m] for (a) 
the Noah LSM and (b) the Noah-MP LSM. Values are derived at 1700 UTC.
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after CI detection (Figure 13c) with a slight increase of mass flux above 5 km, which is above the freezing level 
(near 4 km). CI clouds in the Noah-MP experiment contain stronger updrafts and flux more water above the 
freezing level after CI is detected.

The increased updraft mass flux is consistent with differences in updraft fraction between the two experiments 
(Figures 13d–13f). Convective updraft size is larger in Noah-MP near 4 km 15 min before CI; however, 15 min 
after CI, the larger fraction of convective updrafts in Noah-MP is focused in the upper levels of the cloud. This 
indicates that larger/stronger updrafts reach higher into the clouds after CI detection. This implication is consist-
ent with the cloud growth after CI in Figure 5, where the Noah-MP and observed clouds sustain growth beyond 
15  min of CI detection, while cloud growth appears to stall in the Noah experiment. A snapshot of updraft 
velocities shows the distribution of vertical velocities (w ≥ 0.1 ms −1) for CI clouds (Figure 14). The median 
values (black lines in boxes) are similar for each model experiment between 4 and 8 km; however, the Noah-MP 
experiment contains more cloud objects in the high portions of the whisker and outlier distribution. From 8 to 
11 km, the Noah-MP vertical velocities are consistently skewed higher. This agrees with the resultant mass flux 
and updraft fraction differences in Figures 13c and 13f.

Past observational work has indicated that the accelerated and sustained growth of deep convection after CI is 
related to an increase in ice formation within the upper levels of the cloud (Henderson et al., 2021; Mecikalski 
et al., 2016; Senf & Deneke, 2017; Zipser, 2003). The differences in cloud top evolution shown in Section 3.1 
could be related to differences in water content fluxed from the lower levels of the cloud to above the freezing 
level. Increased moisture flux to upper levels would lead to increased ice formation, in-cloud latent heating, and 

Figure 12. The relationship between the maximum vertical velocity in the column at each grid point near surface divergence at 950 mb. Panels are shown for (a) Noah 
land surface model (LSM), (b) Noah LSM split into forested or non-forested land types, (c) Noah-MP LSM, and (d) Noah-MP LSM split into forested or non-forested 
land types.
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therefore cloud growth. By comparing simulated clouds that best matched GOES ABI growth rates, Henderson 
et al. (2021) demonstrated that CI cloud growth from multiple microphysics schemes was proportional to the ice 
formation at cloud top. Clouds that do not advect enough cloud water from the lower levels to the upper levels 
could not sustain growth. Figure 15 shows the differences in cloud hydrometeor mixing ratio profiles for CI 
detected clouds from 1700 to 1900 UTC, where red colors show when the Noah-MP simulation contains higher 
mixing ratios in the cloud. In Figure 15a, the Noah-MP liquid cloud mixing ratios are consistently higher above 

Figure 13. Evolution of mean profiles for (top) convective mass flux and (bottom) updraft fraction from 15 min before convective initiation (CI) until 15 min after CI 
was identified. Dashed lines indicate results isolated only to CI detected after 1800 UTC.

Figure 14. Weather Research and Forecasting model simulated updrafts (w > 0.1 m s −1) for the Noah and Noah-MP land 
surface models (LSMs). Values are derived for cloud objects 15-min after convective initiation was detected. Data are 
presented in a box-and-whiskers format and all values have been averaged over 1-km layers.
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the PBL (∼1.5 km) and the higher cloud water contents monotonically increase into the upper levels. The higher 
mass flux in the convective clouds results in more cloud water and thus more graupel and ice formation in the 
upper levels (Figures 15b and 15c). With more graupel in the upper levels of the cloud and continued cloud 
growth, the resulting clouds also contain higher rainwater content above the freezing level (Figure 15d), which 
eventually leads to more rain at the surface. Henderson et al. (2021) demonstrated that increased rain content was 
consistent with sustained cloud growth.

4. Summary and Discussion
In this study, we described the impacts of LSMs on simulated convection and its cloud evolution. These sections 
showed that: (a) the Noah LSM and Noah-MP LSM can have substantially different impacts on the size and 
growth of convection after the cloud reaches CI. By comparing the simulated cloud evolution to the GOES-16 
ABI observations, the Noah-MP LSM provides a more representative cloud top size distribution and growth rate 
of convection. (b) The changes in convective growth are largely related to the partitioning between surface SH and 
LH fluxes. The higher SH from Noah-MP LSM results in enhanced local forcing over forested regions. Increased 
surface convergence was largest near the boundaries of cropland and forested areas, which resulted in higher peak 
vertical velocities within those transition regions. (c) The strongest low-level convergence and upward vertical 
velocities occurred in the Noah-MP experiment. This was related to CI clouds with higher convective mass flux, 
which led to more cloud water advected higher in the troposphere and greater upper-level ice content.

The use of GOES-16 ABI IR data helped examine the accuracy of cloud-top growth for CI clouds that reach 
250K cloud-top temperatures at some point during their lifecycle. Comparing only CI clouds demonstrates that 
the growth of convection is quite sensitive to the LSM. As the model simulations progress in this case study, the 

Figure 15. Domain-wide differences in simulated cloud mixing ratios for (a) cloud water (qc), (b) graupel (qg), (c) cloud ice (qi), and (d) cloud rain water (qr). 
Differences are defined as Noah-MP land surface model (LSM) minus Noah LSM values over a 2-hr period starting at 1700 UTC. The dashed line references the 
domain averaged freezing level.



Journal of Geophysical Research: Atmospheres

HENDERSON ET AL.

10.1029/2022JD036563

17 of 20

cloud extent from the Noah-MP experiment begins to exceed the Noah experiment around 1800 UTC. Compar-
ison to the satellite observations showed that the larger growth from Noah-MP more closely matches reality. 
Overall, larger cold cloud tops were found in both simulations over the forested region in the northeast portion 
of the domain, whereas the observed ABI clouds exhibit large growth across the entirety of the northern portion 
of the domain.

The largest growth for both the observed and simulated clouds occur in regions containing forested vegetation 
types. In the Noah-MP LSM, the albedo is lower in the domain, especially in forested regions compared to the 
Noah LSM, which increased surface absorption of solar radiation, SH, and ground heat flux. Sensitivity analyses 
within the experiments demonstrated that forested land was necessary to produce the longer-lived storms. When 
testing Noah-MP sensitivity experiments, if the forested land was removed or the green vegetation fraction was 
reduced below 50%, CI was significantly suppressed. The representation of the forested canopy and its green 
fraction are important factors in aiding CI and sustainment of convection. Increased SH in the forested regions 
provides an additional forcing in the Noah-MP experiment that helps grow convection by inducing stronger 
surface convergence that ultimately leads to higher peak vertical velocities.

Both the Noah and Noah-MP experiments contain relatively high LH flux over forested regions. For the Noah 
LSM, the forested regions contain the highest LH values. The Noah-MP LH values are slightly lower, but the 
increased SH in the forested regions provides an additional forcing that helps grow convection by providing 
additional surface convergence and ultimately leads to higher peak vertical velocities. These conditions, along 
with high afternoon convective available potential energy provide more ideal conditions for cloud formation. The 
increased surface convergence over and adjacent to the forested areas in the Noah-MP simulation allows stronger 
updrafts to form in CI clouds and thus increase mass flux higher into the upper levels of the clouds.

These factors allow additional cloud graupel and ice to form and the necessary latent heating to sustain cloud 
growth. In contrast, the Noah experiment leads to weaker updrafts that do not sustain upper-level cloud ice, 
and therefore stalls cloud growth after CI occurs. This behavior provides additional evidence of the need for 
ice formation at the time of CI to sustain cloud growth into stronger convective storms. The sustained growth 
found in the Noah-MP experiment is also accompanied by increased rain at the surface. While not examined 
here, rainfall is essential to produce cold-pool-induced gust fronts where subsequent outflow boundary collisions 
may provide the uplift to trigger and sustain new convection. This can be an essential mechanism for CI across 
the Southeastern United States due to the prevalence of isolated convection formation resulting from enhanced 
convergence near outflow boundaries (Goggins et al., 2010; Wilson & Schreiber, 1986), especially when outflow 
boundaries collide (Harrison et al., 2009; Karan & Knupp, 2006).

Additional simulations are likely necessary to determine if the results are consistent across other parts of the 
United States and world. Mixed vegetation, such as those driving the results in this study, is common through-
out the Southeastern United States, where strong isolated convection is frequently observed. Further, the model 
results are sensitive to the fraction of greenness, which directly impacts SH and LH; therefore, additional simula-
tions examining the impacts of seasonality will be useful. The results highlight the importance of high-resolution 
vegetation data when assessing convective growth. Lower resolution (>5 km) studies would smooth the vegeta-
tion boundaries and likely dampen the enhanced surface convergence. Further, the findings have implications for 
land representation and land use change, which are difficult to assess in global model studies and highlight the 
importance of representing land use and vegetation change when assessing future climate studies due to the need 
to represent spatial heterogeneities of land vegetation and change (e.g., Clark et al., 2015; Harper et al., 2018; 
Vanden Broucke et al., 2015). Additional examination of the evolution of precipitation using the object-based 
validation methods and the extensive ground radar networks would further expand on past work relating convec-
tive growth and precipitation in NWP models (e.g., Bytheway et al., 2017).

Data Availability Statement
GOES-16 data used in this analysis can be downloaded from the National Oceanic and Atmospheric Adminis-
tration Amazon Web Services (NOAA AWS; https://registry.opendata.aws/noaa-goes; NOAA GOES, 2019) data 
inventory. NEXRAD data provided by the NOAA National Center for Environmental Information were accessed 
in December 2020 (https://doi.org/10.7289/V5W9574V; NOAA National Weather Service, 1991). CAPE values 
were derived using the WRF-Python package (Ladwig, 2017). Simulated brightness temperature data used in 

https://registry.opendata.aws/noaa-goes
https://doi.org/10.7289/V5W9574V
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this analysis have been uploaded to a repository for archive (https://doi.org/10.5281/zenodo.6544626; Henderson 
et al., 2022).
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