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ABSTRACT: The evolution of model-based cloud-top brightness temperatures (BT) associated with convective initiation

(CI) is assessed for three bulk cloud microphysics schemes in the Weather Research and Forecasting Model. Using a

composite-based analysis, cloud objects derived from high-resolution (500m) model simulations are compared to 5-min

GOES-16 imagery for a case study day located near the Alabama–Mississippi border. Observed and simulated cloud

characteristics for clouds reaching CI are examined by utilizing infrared BTs commonly used in satellite-based CI now-

casting methods. The results demonstrate the ability of object-based verification methods with satellite observations to

evaluate the evolution of model cloud characteristics, and the BT comparison provides insight into a known issue of model

simulations producing too many convective cells reaching CI. The timing of CI from the different microphysical schemes is

dependent on the production of ice in the upper levels of the cloud, which typically occurs near the time of maximum cloud

growth. In particular, large differences in precipitation formation drive differences in the amount of cloud water able to

reach upper layers of the cloud, which impacts cloud-top glaciation. Larger cloud mixing ratios are found in clouds with

sustained growth leading to more cloud water lofted to the upper levels of the cloud and the formation of ice. Clouds unable

to sustain growth lack the necessary cloud water needed to form ice and grow into cumulonimbus. Clouds with slower

growth rates display similar BT trends as clouds exhibiting growth, which suggests that forecasting CI using geostationary

satellites might require additional information beyond those derived at cloud top.

SIGNIFICANCE STATEMENT: Several studies have used weather satellites to examine storm properties; however,

they do not provide information about processes occurring within clouds. To address this limitation, we used numerical

weather prediction model simulations and an object-based analysis method to learn more about in-cloud processes that

influence the evolution of thunderstorms in the southeastern United States. The model and satellite comparison helped

demonstrate that differences in the timing of rainfall formation can impact the amount of ice reaching the upper portion

of the cloud. When ice forms, the cloud begins to grow rapidly and is more likely to become a long-lived thunderstorm.

The results highlight the importance of using satellite data sensitive to clouds to evaluate the conditions under which

cumulus clouds transition into severe storms.

KEYWORDS: Cloudmicrophysics;Convective storms; Satellite observations;Model comparison;Model evaluation/performance;

Numerical analysis/modeling

1. Introduction

In the southeasternUnited States, the quick onset of isolated

thunderstorms with heavy rainfall is commonly observed

(Rickenbach et al. 2015). Accurate prediction of the onset

time, location, and evolution of convection continues to be a

difficult problem for observational and numerical weather

prediction (NWP) models (e.g., Kain et al. 2013; Mecikalski

et al. 2015; Lawson et al. 2018; Cintineo et al. 2020). When

tracking growing cumulus clouds using radar and satellite ob-

servations, convective initiation (CI) is commonly referred to

as the time during which growing convection contains a radar

reflectivity $ 35 dBZ because that threshold is highly corre-

lated to convection that eventually develops into a mature

cumulonimbus cloud (Roberts and Rutledge 2003; Mecikalski

and Bedka 2006). CI in the southeastern United States,

particularly during the spring and summer months, can be

complicated to forecast as cumulus clouds are often more

isolated, and driven primarily by strong surface heating

(Gambill and Mecikalski 2011; Miller and Mote 2017;

Kirshbaum et al. 2016; Rickenbach et al. 2020). Such isolated

weakly forced thunderstorms can also be initiated by subtle

variations in surface heating and evaporation caused by land-

use variations and topography (Gambill and Mecikalski 2011)

and by small lakes (Asefi-Najafabady et al. 2012). Once con-

vection begins, subsequent isolated convective cells typically

are initiated by outflow boundaries from the surrounding

convection (Goggins et al. 2010).

To help mitigate difficulties in forecasting the onset of CI,

several methodologies have been developed to make use of

geostationary satellite platforms to improve CI nowcasting

lead times (Roberts and Rutledge 2003; Mecikalski and Bedka

2006; Mecikalski et al. 2010; Sieglaff et al. 2011; Walker et al.

2012). Along with these tracking methods, implementing

combinations of the satellite brightness temperature (BTs) andCorresponding author: David Henderson, dshenderson@wisc.edu
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their tendencies, or so-called satellite-based interest fields,

have been developed to aid the prediction of CI and the

onset of heavy precipitation and lightning (e.g., Mecikalski

and Bedka 2006; Harris et al. 2010). However, even when

using auxiliary information about the environmental condi-

tions, false positive detection remains an issue (Mecikalski

et al. 2015). The higher spatial and temporal resolution

available from the current generation of geostationary sat-

ellites have demonstrated improvements in describing the

evolution of cloud characteristics associated with intense

convection (e.g., Senf and Deneke 2017; Apke et al. 2018).

Senf and Deneke (2017) and Patou et al. (2018) demon-

strated that tracking cloud-top cooling and cloud-top hy-

drometeor phase are important factors when identifying

clouds that will likely transition to heavy precipitation. Patou

et al. (2018) and Mecikalski et al. (2015) demonstrated that

connecting tracked-cloud features in satellite observations

with output from NWP model forecasts has the potential to

improve our understanding of the trigger mechanisms lead-

ing to CI.

The main motivation for this study was to increase under-

standing of the processes leading to CI in weakly forced envi-

ronments through application of object-based CI composites

commonly used in CI satellite nowcasting studies. Application

of the satellite-based techniques provides a novel method to

evaluate high-resolution models using established satellite-

based metrics. NWP models allow in-cloud processes to be

resolved, but as NWP resolution has increased the represen-

tation of CI location and timing has thus far shown limited

improvement (Kain et al. 2008; Schwartz et al. 2009; Langhans

et al. 2013; Burghardt et al. 2014). Evaluating model perfor-

mance using standard point-by-point methods is difficult at

higher resolutions because small positioning errors in the

forecast may be penalized for not forecasting the event at the

observation point even though qualitatively it may be a better

forecast. Improvements in CI forecasting have been demon-

strated when assimilating surface observations (Liu and Xue

2008; Sobash and Stensrud 2015); however, forecasting on the

meso-a storm scale (2.5–25 km) requires a high-density net-

work of surface (Madaus and Hakim 2016, 2017) or satellite

observations (e.g., Yussouf et al. 2015; Zhang et al. 2019; Jones

et al. 2020). Further, forecasts from model simulations can

drastically change in relation to the assumptions in the model

setup (e.g., Otkin and Greenwald 2008; Cintineo et al. 2014;

Griffin et al. 2017), and the accuracy of storm location and

timing remains an issue (Weisman et al. 2008; Mittermaier and

Bullock 2013; Shrestha et al. 2013; Bytheway and Kummerow

2015, 2018). Because satellite and radar observations alone are

unable to fully resolve CI, additional insight concerning pro-

cesses occurring within the cloud are needed to improve

forecast accuracy. This can be accomplished using high-

resolution NWP simulations that provide information about

in-cloudmicrophysical processes. To apply knowledge gained

from simulated cloud properties to observations, however, we

must ensure that the forecasted cloud properties are repre-

sentative of the convection reaching CI. Convection pro-

duced in weakly forced environments, that commonly occur

in the Southeastern United States, therefore provides the

opportunity to evaluate CI processes driven largely by cloud

microphysics in conditions devoid of large synoptic forcing.

Linking output from NWP models to geostationary satellite

observations has been accomplished by previous studies

through the use of radiative transfer models to simulate sat-

ellite BTs (e.g., Tselioudis and Jakob 2002; Lopez et al. 2003;

Grasso and Greenwald, 2004; Otkin and Greenwald 2008;

Otkin et al. 2009; Cintineo et al. 2014; Lee et al. 2017;

Thompson et al. 2016; Griffin et al. 2017; Bytheway et al. 2017;

Griffin et al. 2020; Kim et al. 2020). These studies track and

compare mean characteristics of clouds as a whole, yet lack an

ability to evaluate cloud morphology. Work is therefore

needed in order to track specific processes driving individual

convective cells evolving from shallow cumulus to clouds

that deepen and produce heavy precipitation within an en-

vironment with little to no mesoscale or synoptic-scale var-

iability. Comparing the observed and simulated BTs can be

challenging due to timing and location errors in the forecast

cloud objects, which makes point-to-point comparisons with

traditional verification methods difficult (Griffin et al. 2017).

Object-based analysis can improve these comparisons by

accounting for spatial displacement errors (e.g., Burghardt

et al. 2014; Griffin et al. 2017; Bytheway and Kummerow

2018). This study will build upon prior work that has pri-

marily focused on larger cloud systems by examining the

evolution of individual convective cells in a weakly forced

environment.

The high-temporal-resolution data from the GOES-16

Advanced Baseline Imager (ABI; Schmit et al. 2017) provides

an ideal dataset to track the life cycle of convection because the

temporal resolution of 1–5min is more in line with the time

scales of cumulus cloud growth (Gravelle et al. 2016). For this

study, individual convective cells produced by high-resolution

Weather Research and Forecasting (WRF) Model simulations

will be tracked and evaluated using geostationary-derived CI

interest fields to understand how bulk microphysical parame-

terization schemes represent the formation and development

of hydrometeor species, cloud growth, and precipitation pro-

cesses. We present a strategy to evaluate the evolution of

simulated convection using recent observation-based tracking

techniques in parallel with recent methods used to describe

CI in observational-based studies (e.g., Harris et al. 2010;

Mecikalski et al. 2011, 2016a; Senf and Deneke 2017).

Mecikalski et al. (2011) demonstrated that satellite BT CI in-

terest fields describing cloud growth are most beneficial when

nowcasting CI using geostationary satellites, specifically using

Meteosat Second Generation data, which mimics those from

GOES-16. These CI interest fields will be computed using

GOES-16 ABI observed and simulated model BT imagery,

and then compared in lag-based composites of cloud objects

as a function of the timing of CI. This composite-based method

focuses the evaluation on the model ability to simulate the

evolution of convection independent of the cloud location and

time. The evaluation will also be applied to gain greater un-

derstanding of the cloud processes occurring within the clouds

that lead to various cloud-top signatures depicted in satellite

infrared (IR) imagery. Going forward, the paper is structured

as follows: The case analysis, model setup, and observational
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data are described in section 2, and the cloud tracking tech-

nique and methods are described in section 3; analysis of the

WRF simulations and discussion of the results are shown in

section 4, with a summary of the overall findings provided in

section 5.

2. Data and model setup

a. Geostationary data

This analysis will employ observations from the GOES-16

ABI sensor (Schmit et al. 2017). Individual and combinations

of ABI bands will be assessed that together provide a detailed

depiction of the cloud properties in different parts of the tro-

posphere (Fig. 2 in Schmit et al. 2017). The ABI IR BTs from

spectral window regions are highly sensitive to cloud particles

in the uppermost portion of a cloud and therefore provide

valuable information about the horizontal and vertical extent

of the clouds. The emphasis on IR channels in this work en-

sures continuous day–night cloud observations. The 2-km-

resolution IR channels on the ABI sensor also allow for a more

accurate discrimination of liquid and ice clouds that are

crucial to evaluate the various mixed-phase and ice processes

in a bulk microphysics parameterization scheme, as found by

Mecikalski et al. (2010, 2015) and Senf and Deneke (2017).

BT-derived forecast factors used in this study include the

evolution in cloud-top height (10.35mm channel), cloud

growth tendencies (10.35mm BT tendency every 5min), and

channel differences providing cloud-top glaciation estimates

(8.4–10.35mmBT difference). TheseGOES-16ABI channels

are available over CONUS every 5min, which permits more

frequent comparisons with the WRF output compared to

previous satellite sensors. This in turn supports a more de-

tailed comparison of clouds evolving in CI events, particu-

larly the early stages of convection that may have beenmissed

previously due to limited temporal resolution (Mecikalski

et al. 2008).

b. Ground radar data

Ground-based NEXRAD S-band data for three radar sites

located in Alabama and Mississippi (KBMX-Birmingham,

KGWX-Columbus, and KDGX-Jackson) are used in this

analysis. The spatial coverage of these radars is shown by the

blue circles in Fig. 1. The NEXRAD data comes from

Doppler weather radars that operate at S-band (10 cm) and

level 2 data are collected for the vertically resolved radar

reflectivity. Volume scan data for the three radar sites are

converted to a 1 km horizontal and vertical cartesian grid

using the open-source Python Atmospheric Radiation

Measurement Radar Toolkit (Helmus and Collis 2016).

Composite reflectivity data are created from the gridded

data using the maximum reflectivity at each grid point and

then the four closest reflectivity data points are matched to

the closest 2 km GOES-16 IR observation. Radar scanning

intervals are not constant due to changes in radar volume

coverage for a particular scan; therefore, we collocate the

radar data to the nearest 5 min GOES-16 observations.

Application of the radar reflectivities to CI identification is

described in section 3.

c. WRF Model setup and simulated brightness
temperatures

The WRF-ARW Model (version 3.9.1.1) is used to sim-

ulate a case study from 20 May 2018 that was characterized

by weakly forced deep convection across Alabama and

Mississippi during the afternoon and evening. A ridge over the

domain brought a typical summer weather pattern to the

Mississippi and Alabama region that is devoid of major syn-

optic forcing mechanisms and wind shear, yet with moderate

afternoon instability. High pressure located off the eastern

coast of the United States provided the region with abundant

moisture from the Gulf of Mexico. The 0000 UTC 21 May

BMX sounding (not shown) indicates a freezing level near

4000m and a warm layer near 5800m. CAPE was above

1500 J kg21 and surface temperatures exceeded 908F, but

moderate convective inhibition is observed with CIN near

240 J kg21. Convection able to surpass this warm lid would be

able to grow toward deep convection across the entire region

during the afternoon and evening hours. Multiple slow-moving

isolated convective cells with damaging wind gusts and hail

occurred across the region according to storm reports from the

Storm Prediction Center. Slow-moving convective features

such as these are common in late spring and summer across this

region and allow for easier tracking with satellite and radar

observations. To capture the finescale convective features as-

sociated with this event, three two-way feedback permitted

WRF Model domains are used with nests possessing 12.5 km,

2.5 km, and 500m resolution, respectively, centered over

Alabama and Mississippi (Fig. 1). The initial and lateral

boundary conditions are provided every 6 h by the National

Centers for Environmental Prediction final (NCEP FNL) an-

alyses on a 0.258 latitude–longitude grid. The WRF Model

FIG. 1. Illustration of the three WRFModel domains. Convective

initiation is assessed within the inner domain (D03) usingGOES-16

observations and data from three WSR-88D sites (blue circles).
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simulations contain 53 sigma levels, with the model top set

to 25 hPa.

Three commonly used bulk microphysics schemes are ex-

amined in this study: the Thompson et al. (2008), Morrison

(Morrison et al. 2005, 2009), and WRF double-moment 6-class

(WDM6; Lim and Hong 2010) schemes. All of these micro-

physics schemes predict mass mixing ratios of cloud water,

rainwater, cloud ice, snow, and graupel. The Thompson and

WDM6 are mixed- moment schemes, where WDM6 predicts

two-moments (mixing ratio and number concentration) in

warm rain processes and the Thompson scheme predicts two-

moments of cloud water and ice. The two-moment Morrison

scheme predicts mixing ratios for all cloud hydrometeor cate-

gories and number concentrations are also predicted for cloud

ice, snow, rain, and graupel. Each microphysics scheme allows

output of a radar reflectivity factor based on the Rayleigh ap-

proximation, which is very similar to the S-band wavelength

observations of our ground-based radar data.

All WRF simulations use an identical model configura-

tion, apart from the microphysics scheme. Simulations are

initialized at 1200 UTC, which allows sufficient model

spinup as the first CI case occurs near 1700 UTC. Physics

options included are the Rapid Radiative Transfer Model

for Global Climate Models (RRTMG; Iacono et al. 2008),

the nonlocal-mixing Yonsei University (YSU; Hong et al.

2006; Lim and Hong 2010) planetary boundary layer

scheme, and the Noah-MP land surface model (Niu et al.

2011). No cumulus parameterization is used on the higher-

resolution 2.5 km and 500 m domains, whereas the Tiedtke

(Tiedtke 1989; Zhang et al. 2011) scheme is used on the

outermost 12.5 km domain.

The evolution of CI events will be assessed on the high-

resolution 500m innermost domain. Data were output every

5min to be consistent with the temporal resolution of CONUS

GOES-16 ABI data. Following Griffin et al. (2017), the

Community Radiative Transfer Model version 2.1 (CRTM;

Ding et al. 2011) was used to convert the WRF Model output

into simulated GOES-16 ABI IR BT data. The CRTM pro-

vides all-sky top-of-the-atmosphere BTs that incorporate the

GOES-16 viewing geometry for channels 7–16 of theABI (3.9–

13.3mm). Top-of-the-atmosphere BTs in clear-sky scenes are

generated using surface emissivity provided by the University

of Wisconsin High Spectral Resolution Emissivity Algorithm

(Borbas et al. 2007), and WRF Model predicted surface skin

temperature, 10m wind speed, and vertical profiles of tem-

perature, pressure, and water vapor mixing ratio. Cloudy

scenes use the above information, as well as derived cloud

properties (i.e., effective particle radius, cloud water content)

consistent with the assumptions made by each cloud micro-

physics parameterization scheme used (e.g., Otkin et al. 2007;

Thompson et al. 2016; Griffin et al. 2017). Cloud properties

were derived individually for each cloud species and input into

the CRTM to compute the cloud optical properties (i.e., single

scatter albedo, asymmetry parameter, and full scattering phase

function) for each model grid point and vertical layer. Finally,

the combined set of hydrometeor optical properties were used

to compute the top-of-the-atmosphere BT data for each IR

band measured by the ABI.

3. Cloud object identification and CI compositing

a. Cloud object and CI identification

Cloud tracking and detection methods are applied identi-

cally for the observed and simulated BT datasets. Cloud

tracking is based on 10.35mm BTs because radar observations

may not be available during the entire cloud life cycle

(Mecikalski and Bedka 2006). Cloud objects are identified

based on the Tracking Of Organized Convection Algorithm

through 3D segmentation (TOOCAN; Fiolleau and Roca

2013) algorithm and tracked through time when overlapping

areas occur in successive images of cloud objects (e.g., Vila

et al. 2008). This tracking scheme takes advantage of the fact

that IR BTs are sensitive to cloud particles (their size, phase,

and amount) in the upper portion of the cloud giving extensive

information on the horizontal and vertical extents of cloud

tops, which helps separate cloud clusters through time. Using

this iterative method of tracking clouds using the IR channels

has been shown to be effective tracking intense convection

(e.g., Wall et al. 2018; Cancelada et al. 2020).

To maintain consistency with the ABI observations, model

gridded BTs are averaged to 2 km grid spacing when identify-

ing objects. Inspection of the BT imagery showed that the

coldest cloud tops during the observation period have BT ,
210K. Thus, cloud boundaries are first searched for using BT,
210K and then iteratively increasing by 2.5K to detect cloud

boundaries (Fig. 2), where the warmest cloud boundaries

within this case study are defined as where the 10.35mm BTs

are , 285K. This warm cloud boundary threshold helps cap-

ture cloud growth before CI is detected, but also ensures that

possible surface BT contamination is excluded. Fiolleau and

Roca (2013) describe the cloud detection as iteratively growing

cloud ‘‘seeds’’ from colder to warmer BTs. In this work, clouds

are identified using the TOOCAN methodology by detecting

initial boundaries using a low BT threshold of 210K. For each

identified object, pixels are added to the cold cloud-top object

using a 2.5K warmer BT threshold to identify the edge of the

new boundary. The warmer BT threshold is also applied to

detect new cloud object ‘‘seeds.’’ This iterative process of ex-

tending the cloud boundary by 2.5K is repeated until each of

the grid boxes within a cloud object are colder than 285K or if

cloud overlap is detected with a neighboring object. Once

cloud objects are identified for each 5-min time step from

the observations and simulations, the SciPy data package

(Virtanen et al. 2020) is used to detect and track the cloud

object overlap between time steps.

To be consistent with previous observational studies (e.g.,

Roberts and Rutledge 2003; Mecikalski et al. 2006;Weckwerth

and Parsons 2006), a cloud object from theGOES-16ABI and

WRF simulations will be defined as CI when radar reflectivity.
35dBZ occurs in a cloud object. This threshold is common in

thunderstormnowcasting studies where CI is exclusively defined

using a radar precipitation echo intensity criteria of $30–

40 dBZ (Browning and Atlas 1965; Marshall and Radhakant

1978; Schreiber 1986; Wilson and Schriber 1986; Wilson et al.

1992; Wilson and Mueller 1993; Mueller et al. 2003; Walker

et al. 2012; Lee et al. 2017; Han et al. 2019). The 35 dBZ

threshold signifies convective precipitation near the surface of
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;8mmh21. Clouds reaching this threshold typically produce

significant precipitation, but it does not guarantee that the CI

events will lead to long-lived convective storms (Mecikalski

et al. 2015). Tomitigate vertical resolution differences between

NEXRAD and the model vertical grid we define CI when the

maximum reflectivity in the cloud column exceeds 35 dBZ

(e.g., Matthee et al. 2014; Senf and Deneke 2017).

b. Composite analysis methodology

Several physical cloud characteristics from observed and

simulated cloud objects reaching CI are tracked and compared

using lag-composite analysis. When the radar reflectivity

within a cloud object surpasses the 35 dBZ threshold, that time

step is labeled time lag zero and the data before, during, and

after this CI time step are composited to describe the evolution

of the cloud objects. Objects reaching CI are examined and

compared when the cloud persists longer than 35min to track

the cloud evolution 15min before and 15min after the 5-min

period in which CI is detected. Composited data includes the

CI forecast interest fields described in section 2a, cloud area

(defined using the number of grid boxes in the cloud object),

and model-based properties from profiles of mixing ratios for

each of the hydrometer types. After cloud objects are identified

for each time lag, the cloud characteristics and CI forecast in-

terest fields are derived. For GOES-16 ABI data, the BT in-

terest fields described in section 2a are derived using the grid

boxes containing the two coldest 10.35mm BTs within the

cloud object (e.g., Mecikalski et al. 2010). For the WRF sim-

ulations, the coldest two grid boxes that were averaged to 2 km

within each cloud object are used to derive the CI forecast

interest fields, which is 32 grid boxes at 500m grid spacing. If

cloud objects are smaller than the grid boxes required for av-

eraging the observed or modeled cloud objects, then all cloudy

grid boxes are used with the cloud object boundaries.

4. Results

a. Comparison of domain-based characteristics

Cloud objects are compared over a 3-h period beginning at

1700 UTC, which is near the time the first CI object was

observed inGOES-16. Table 1 provides a summary of the total

cloud objects and CI cases tracked, and the time of first CI

occurrence. This 3-h period is chosen to provide a sufficient

number of objects, but also to limit new CI events that origi-

nate under larger cloud anvil regions where passive satellite

observations cannot accurately discriminate multilayer cloud

structures (Mace andWrenn 2013). Model and observed cloud

objects are first compared using domainwide statistics to un-

derstand the characteristics of the cloud objects without con-

sidering the stage of the cloud life cycle. The first observed

GOES-16 CI event occurs at 1655 UTC, with the first CI oc-

curring at 1645, 1640, and 1700 UTC for the Thompson,

Morrison, and WDM6 schemes, respectively. Overall, the

Thompson and Morrison schemes produce more CI objects

than was observed in GOES-16 data, whereas the WDM6

simulation more accurately represents the number of observed

CI objects.

CI cases over the 3-h period and their occurrence, fractional

coverage, and cloud object areas are illustrated in Fig. 3. In

Figs. 3a and 3b the number of CI cases that are active at each

time step are represented by the solid lines and in Fig. 3c the

range of CI cloud object areas are represented by the box-and-

whisker diagrams. The data are plotted at 15-min intervals

starting at 1700 UTC. The number of CI cases in the Morrison

scheme quickly increases 30min after the start of the obser-

vation period; however, the WDM6 scheme has a delay in

occurrence compared to the other simulations and observa-

tions. Overall, the observations and simulations show an

FIG. 2. (left) An example of 1900 UTC GOES-16 ABI 10.35mm brightness temperatures (K) within the inner

domain region. (right) Derived cloud objects from this time step.

TABLE 1. Number of total cloud objects colder than 285K,

number of CI objects tracked, and time of first-tracked CI cloud in

the GOES-16 observations and the Thompson, Morrison, and

WDM6 simulations.

Total cloud objects

BT , 285K

No. of CI

tracked

Time of first

CI (UTC)

GOES-16 546 52 1655

Thompson 1853 121 1645

Morrison 2160 136 1650

WDM6 1946 67 1700
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increase in cloud object area over time. When compared to the

observations (gray bars) the ranges in active CI cloud sizes

from the simulations display a general agreement in median

cloud object area throughout the 3-h period where the ranges

in object size are close to the GOES-16 observations.

The fractional coverage of active cloud objects (Fig. 3b) is

similar to the pattern of CI occurrence (Fig. 3a) for each con-

figuration, with the Thompson and Morrison schemes pro-

ducing more objects covering a larger fractional than the

WDM6 scheme. From 1700 UTC to around 1900 UTC, the

Thompson and Morrison cloud object size interquartile range

(IQR) shown in Fig. 3c is similar to observations, but the

simulations contain more active cloud objects leading to a

higher fraction of domain coverage (Fig. 3b). As clouds get

larger toward the end of the observed period the fractional

coverage for all simulations merge toward the observations,

but the Morrison simulation contains more objects (Fig. 3a)

and the Thompson cloud object size IQR is smaller than in-

dicated by the GOES-16 observations at 1945 UTC (Fig. 3c).

This suggests that the Thompson and Morrison simulations

produce too many small cloud objects compared to observa-

tions. The WDM6 simulation has a delay in occurrence, which

leads to a lower fractional coverage throughout most of the

observed period (Fig. 3b). The WDM6 simulation contains a

higher cloud object size IQR starting around 1800 UTC, where

CI cloud growth becomes more rapid than the other two mi-

crophysics schemes and cloud object occurrence and fractional

coverage begins to move closer to the GOES-16 observations.

Further insight into microphysical reasonings leading to this

delay in CI development for the WDM6 scheme will be pro-

vided in section 4b.

To investigate how the cloud height evolves within the cloud

objects, Fig. 4 displays normalized frequency distributions of

10.35mm BT for four different times in the WRF forecasts for

all objects in a time step. Figure 5 shows the 10.35mm BTs

at 1900 UTC for the observations and model simulations.

Inspection of Fig. 4 shows that there is a shift from shallow

convection at 1700 UTC (mostly warmer BTs) toward a mix

of shallow, congestus, and deep convection from 1800 to

1900 UTC (higher percentage of colder BTs), and predomi-

nantly deep convection with anvil regions at 2000 UTC. In the

Morrison simulation, a higher fraction of convection occurs at

1800 UTC for BT near 260K, whereas the WDM6 and

Thompson schemes simulate a higher fraction of cloud tops

colder than what was observed by the GOES-16 ABI.

Quantitively, this bias is found in the coldest cloud objects,

which are compared using the coldest 10th percentile of

10.35mm BT (Table 2) derived using a cumulative distribution

function sorted by cloud-top temperature. Cold biases are

largest in the Morrison scheme at 1700 UTC and continue

through 1800 UTC. Starting at 1800 UTC evidence of a cold

bias from deeper convection is found in the Thompson scheme

and becomes more pronounced at 1900 UTC where BT ,
240K are more frequent. This bias pattern continues to the

2000 UTC time step. Griffin et al. (2017) found similar be-

havior when assessing output from the High-Resolution Rapid

Refresh model.

b. Composite-based evaluation of CI

The differences in Figs. 3 and 4 begin to scratch the surface on

possible organizational differences in the spatial cloud coverage

between the observations and microphysical schemes. Previous

FIG. 3. The (a) occurrence of active CI cloud objects containing a reflectivity higher than

35 dBZ at each time step, (b) fractional coverage of active CI cloud objects, and (c) sizes of CI

cloud objects for GOES-16 (gray) observations and Thompson (blue), Morrison (green), and

WDM6 (light green) simulations.Occurrence is shown by the solid lines and the spread of cloud

object sizes is shown using the box-and-whisker diagrams.
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studies have investigated cloud-top BT biases through match-

ing cloud objects spatially and temporally to verify CI forecasts

(e.g., Burghardt et al. 2014) or by implementing object-based

analysis to track cloud systems to assess characteristics beyond

point-by-point analysis (e.g., Griffin et al. 2017). However,

these evaluations lack validation of the model representation

of the cloud evolution characteristics leading to CI itself. The

differences in Fig. 3 illustrate a direct overestimate of CI fre-

quency during the model forecasts, but it is difficult to distin-

guish the mechanisms leading to this from domain-based or

system-based statistics alone. Evaluation of CI processes based

on the cloud life cycle is possible using composite strategies

and allows investigation of simulated CI characteristics with-

out the need to match with the observations in space and time.

While this does not provide the same dichotomous validation

when model objects are matched with observations in space

and time, it allows evaluation of the full breadth of CI char-

acteristics exhibited by the simulations.

To understand how clouds leading to CI evolve through

time, the evolution of three satellite-based cloud-top interest

fields will be described to characterize the changes in cloud-top

growth and microphysical state. The 5-min temporal infor-

mation content from the ABI sensor provides the opportunity

for observing growth closer to cloud scales (e.g., Gravelle et al.

2016; Senf and Deneke 2017) when evaluating the model

simulations. The satellite-based interest fields are derived

using three BT-based methods that represent the cloud-top

height using the 10.35mm BT, 10.35mm BTs cloud growth

tendency at 5-min intervals, and cloud-top glaciation using 8.4–

10.35mm BT differences. Figures 6 and 7 provide box-and-

whisker plots for cloud growth CI interest fields that detail the

distribution of cloud-top BTs for time steps 15min before and

after CI is observed (time lag 5 0 at CI).

Similar to clouds observed in Mecikalski et al. (2013), the

10.35mm BTs begin near 270K 15min before CI occurs and

continually cool (grow vertically) throughout the period

(Fig. 6). For the Thompson and Morrison schemes, clouds

15min before CI are warmer (shallower) compared to the ABI

observed ranges. The median BTs from the Thompson and

Morrison schemes move toward the GOES-16 ABI median

values over time resulting in increased cooling rates before CI

occurrence (Fig. 7). In Fig. 7, the growth rates exhibit similar

characteristics to the 5-min analysis in Senf andDeneke (2017),

where the maximum cooling rates occur near CI and then the

cloud-top cooling rate decreases afterward. The Morrison

scheme displays faster growth rates 10–15min before CI and

the Thompson scheme exhibit a larger increase in cloud growth

5-min before CI. Further, all of the WRF Model simulations

exhibit large ranges in BTs compared to the observed ABI

clouds particularly after CI occurs. The model simulations

produce a higher fraction of clouds that begin to warm, or slow

in growth, after CI is detected (Fig. 7), suggesting cloud growth

FIG. 4. Normalized ABI 10.35mm brightness temperature probability density functions at (a) 1700, (b) 1800,

(c) 1900, and (d) 2000 UTC. Brightness temperatures are binned every 2K for GOES-16 (gray) observations and

Thompson (blue), Morrison (green), and WDM6 (light green) simulations.
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has ceased. When tracking the clouds through time, the CI

cases from the Morrison simulation last no more than 20min

42% of the time after CI was detected, whereas 35% of the CI

cases in the Thompson simulation last 20min or less, which

suggests a higher number of congestus clouds compared to

longer-lived deep cumulonimbus clouds in the Thompson and

Morrison simulations. Mean values for the observed and sim-

ulated values are shown in Table 3 using the IQR, defined as

the 25%–75% quartiles of the data in Figs. 6 and 7. The dif-

ferences described above are also evident in Table 3, where

higher growth rates before CI and a switch toward positive

(warming) after CI are found in the Thompson and Morrison

schemes.

There is a clear disconnect in the cloud development in the

WDM6 microphysics that leads to a delay in CI detection

resulting in colder cloud tops (Fig. 6; light green bars). While

theWDM6 cloud growth rates in Fig. 7 exhibit a similar pattern

as the Thompson andMorrison schemes, cloud heights in Fig. 6

are higher (colder), demonstrating that CI is detected later in

the cloud life cycle compared to the other simulations. To

further investigate cloud growth in the WDM6 simulation, the

cloud evolution is plotted starting an additional 30min before

CI was detected (hatched bars in Figs. 6 and 7), which is the

time step the median WDM6 10.35mm BTs best match the

ABI observations. The 30-min laggedWDM6 10.35mmBTs in

Fig. 6 more closely resemble the ABI observations, but the

growth rates in Fig. 7 no longer exhibit themaximum cooling at

time step zero originally found in both the GOES-16 obser-

vations and simulated clouds. Instead, the lagged WDM6

evolution is more linear. The WDM6 scheme typically pro-

duces rain drop sizes that are too small (Morrison et al. 2015;

Johnson et al. 2016; Lei et al. 2020). Radar reflectivity is pro-

portional to the sum of the sixth power of the diameter;

therefore, smaller drop size distributions will lead to lower

reflectivities in the growing convection. Further, previous re-

search describes the need for a glaciation-driven latent

heat boost within clouds to elevate them toward CI (e.g.,

FIG. 5. Observed and simulated ABI 10.35mm brightness temperatures (K) at 1900 UTC for (a) GOES-16,

(b) Thompson, (c) Morrison, and (d) WDM6.

TABLE 2. The 10th percentile of the 10.3mmBT distributions for

the GOES-16 observations and Thompson, Morrison, and WDM6

simulations at 1700, 1800, 1900, and 2000 UTC.

1700 1800 1900 2000

GOES-16 257.6 241.2 228.6 217.5

Thompson 256.3 237.8 223.1 214.8

Morrison 254.5 240.3 229.6 216.5

WDM6 260.1 241.5 227.8 218.4
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Zipser 2003; Mecikalski et al. 2016b; Senf and Deneke 2017).

The results from the cloud-top BTs indicate that the WDM6

scheme likely has a lag in rain growth and cloud glaciation

that produces the added midtropospheric latent heating

needed to reach CI, and subsequent large enough hydrome-

teors to produce a radar echo greater than 35 dBZ.

Direct comparison of BT channels sensitive to cloud-top

microphysical changes and glaciation help shed light on how

accurately the microphysics schemes handle ice processes in

the top levels of the cloud (e.g., Mecikalski et al. 2010; Senf and

Deneke 2017). Figure 8 displays box-and-whisker plots for the

observed and simulated 8.4–10.35mm BT differences. Due to

the different optical properties between liquid and ice, the BT

difference switches from negative (below 22K) for optically

thick liquid clouds toward positive when the cloud top becomes

fully glaciated (Baum et al. 2000). The observed BT difference

from GOES-16 shows that the clouds start as fully liquid

15min before CI and then the BT difference trends toward less

negative values thereafter, plateauing near 21K. Baum et al.

(2000) describe how positive trends in this BT difference field

are driven by the presence of larger ice and liquid particles at

cloud top. The larger particle size leads to smaller BT differ-

ences, and suggests that a mixed phase state is possible at cloud

top in the GOES-16 observations after CI is detected. Some

clouds do exhibit positive BT differences; however, they are

beyond the box-and-whisker ranges.

The three WRF bulk microphysical schemes are character-

ized by different evolutions of cloud-top glaciation BT differ-

ences (Fig. 8). The Thompson scheme has the closest pattern to

observations with clouds starting around –2K 15min before CI

and converging to a BT difference near 20.5K at CI. The

majority of cloud tops contain a negative BT difference in the

Thompson simulation with a few switching to positive 15-min

after CI detection. The Morrison scheme more efficiently

converts from liquid to ice phases, and the glaciation trend

increases monotonically before and after CI. Cloud-top glaci-

ation is found in clouds starting at time-lag zero and the

amount of cloud tops with positive BT differences increases

monotonically until the majority of clouds are glaciated 15min

after CI. Similar to the observations and the Thompson

scheme, the WDM6 simulation BT differences plateau after

CI, but due to the delay in CI detection, clouds exhibit ice

glaciation before CI detection. Using the 30-min lagged

WDM6 BTs described above, the glaciation BT differences

resemble the Thompson and observed GOES-16 trend but

continues to grow linearly. The presence of ice likely demon-

strates that larger liquid precipitation hydrometeors are absent

FIG. 7. Box-and-whisker plots for the ABI 10.35mm brightness

temperature growth tendency field for GOES-16 (gray), Thompson

(blue), Morrison (green), WDM6 (light green), andWDM6 lagged

30min (hatched). Bars are spaced at 5-min intervals with time5 0

defined as the time CI was detected. Each tendency is the change in

BT between the listed time step and the time step before.

TABLE 3. Differences of the mean BT (model 2 obs) of the

10.35mm BT and 8.4–10.35mm BT tendency computed using the

mean of the interquartile range. Differences are given for time

steps before and after CI is detected. All units are in K.

Time lag

from CI (min) Thompson Morrison WDM6 WDM6-lagged

10.35mm

215 3.45 3.28 216.23 21.51

210 2.78 2.03 216.31 23.81

25 0.34 21.1 220.02 23.73

0 23.48 21.98 219.93 22.41

15 22.65 22.61 220.67 20.61

110 21.33 21.95 223.52 22.91

115 20.35 21.13 224.02 22.52

10.35mm tendency

210 21.16 21.65 22.65 22.12

25 21.66 22.39 0.55 22.41

0 23.96 20.95 1.11 21.72

15 20.88 21.45 20.14 20.65

110 1.75 0.75 21.63 21.04

115 0.47 1.76 1.39 0.14

FIG. 6. Box-and-whisker plots of ABI 10.35mm brightness tem-

peratures (K) for GOES-16 (gray), Thompson (blue), Morrison

(green), WDM6 (light green), and WDM6 lagged 30 min

(hatched). Bars are spaced at 5-min intervals with time 5 0

defined as the time CI was detected.
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in the early WDM6 development, thereby delaying the de-

tection of CI.

To examine differences in the evolution of in-cloud micro-

physics, Fig. 9 presents vertical profiles of liquid and frozen cloud

mixing ratios for each simulation from 5min before until 10min

after CI is detected. To provide additional insight into the be-

havior of the WDM6 scheme, the bottom row shows vertical

profiles for the cloud mixing ratios from 25 to 10min preceding

CI. For all of the microphysics schemes, CI detection is coinci-

dent with the emergence of a precipitating core near 4–5 km and

the formation of graupel near the cloud top. The WDM6 sim-

ulation contains a similar rain mixing ratio profile 5min before

CI when compared to the Thompson and Morrison simulations.

In the WDM6 simulation, the delay in CI detection leads to

more cloud water lofted to the upper levels along with higher

mixing ratios for frozen hydrometers. For WDM6, the emer-

gence of rain mixing ratios does not occur until 10min before CI

detection. Starting 25min before CI cloud mixing ratios are still

located well above the freezing level. Near 15min before CI,

small amounts of cloud ice and snowoccur before the emergence

of rain in theWDM6 simulation and the cloud continues to grow

with cloud mixing ratios located as high as 10km above the

surface. This is consistent with the large cold biases in 10.35mm

BTs in Fig. 6 and Table 3. Both the WDM6 and Morrison

schemes produce larger amounts of graupel and snow after CI

leading to the positive BT difference bias shown in Fig. 8. The

Thompson scheme still produces graupel in the upper levels of

the cloud but is more efficient at producing rain at the surface.

This leads to less ice aloft and the development of a plateau in

the 8.4–10.35mm BT differences after CI in the Thompson

simulation and GOES-16 observations; the 8.4–10.35mm BT

differences plateau in the Thompson simulation centered on –1,

verifying the lack of cloud-top glaciation.

c. CI processes related to cloud growth

The WRF simulations contain more CI cloud objects than

observed, where the Thompson andMorrison simulations have

the most cloud objects reaching CI. As shown in Fig. 7, after CI

is detected, the simulated clouds have a large spread in growth

rates. The GOES-16 observed BT histograms presented in

Fig. 4 are characterized by 10.35mm BT peaks near 260 and

220K signifying that the CI cloud objects are subset into

shallower precipitating congestus clouds with warmer cloud

tops and clouds that continue to grow into deep cumulonimbus

clouds. The 35 dBZ threshold used to define CI in this case

study captures precipitating clouds within the 10.35mm 260

and 220K cloud subsets. These clouds all reach CI and likely

produce significant precipitation; however, combining the two

subsets of cloud growth can lead to ambiguity when comparing

the model and observational differences.

To investigate the cloud characteristics associated with the

varying life cycles of cloud growth, the CI definition is modified

to discriminate both sets of clouds. The cloud evaluation will

partition CI cloud objects into those reaching 10.35mm BTs,
250K at some point in their life cycle and those with cloud-top

BTs remaining warmer than 250K. The 250K threshold was

chosen using the BT histograms in Fig. 4, and since the clouds

observed byGOES-16 reaching 250K demonstrate continuous

growth after CI. For convenience, we will refer to cloud ob-

jects reaching the 250K threshold as the ‘‘cold-CI cloud’’

category and cloud objects remaining warmer than 250K as

the ‘‘warm-CI cloud’’ category. The 250K threshold will be

applied to the observed and simulated CI cloud objects. The

warm- and cold-CI clouds from the WRF simulations will be

further subset by the top 50% of cloud objects in each cate-

gory that most closely match the observed GOES-16 ob-

served growth rates after CI is detected. Cloud objects

outside the top 50% best matching GOES-16 growth rates

illustrate simulated cloud objects where growth is outside the

ranges measured by the GOES-16 observations. Because the

temporal delay for CI events in the WDM6 simulation leads

to a limited number of cases where cloud-top BTs remain

warmer than 250K, this analysis will focus on the Thompson

and Morrison simulations only.

FIG. 8. As in Fig. 6, but for showing ABI 8.4–10.35mm brightness temperature differences (K).
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Table 4 provides a summary of the total CI cloud objects

tracked when CI clouds are separated into warm-CI and cold-

CI cloud cases. It is evident that the overestimation of simu-

lated cloud objects reaching 35 dBZ is due to an increase in

warm-CI clouds with 21, 75, and 84 warm-CI clouds from

GOES-16 observations, Thompson, and Morrison, respec-

tively. The Thompson and Morrison schemes produce 46 and

54 cloud objects reaching 250K, respectively. Though this is

still higher than the 31 objects observed by GOES-16, it does

lead to a better match than when using the 35 dBZ CI

definition alone.

The resulting 10.35mm cloud-top BTs and BT growth rate

tendencies using the warm- and cold-CI cloud categories are

displayed in Figs. 10 and 11. Separating the CI cloud objects

into warm and cold categories leads to a clear difference in the

10.35mm cloud-top heights in Fig. 10. Near the time CI is de-

tected, the observed and simulated warm-CI cloud growth

halts and the 10.35mm BTs remain nearly constant (Fig. 10a).

This is consistent with the warm-CI clouds BT tendency where

most clouds observed by GOES-16 display zero tendency and

both sets of simulations warm after CI detection resulting in

positive BT tendencies (Fig. 11a). On the other hand, there is a

clear deepening in the cold-CI clouds after CI as the 10.35mm

BT continues to decrease (Fig. 10b). The cloud-top BTs for

cold-CI clouds are well below the freezing level of 273K at the

time CI is detected. The cloud-top BTs in Fig. 10 and

FIG. 9. Evolution ofmean profiles for ice, snow, graupel, cloudwater, and rainwatermixing ratios from 5min before CI until 10min after

CI was identified. Profiles are shown for (top) Thompson, (second row) Morrison, and (bottom two rows) WDM6 bulk microphysics

schemes. The bottom row contains WDM6 profiles lagged an additional 20min.

TABLE 4. Number of total cloud objects with 10.35mmbrightness

temperature , 285K, number of CI cloud objects meeting the

35 dBZ criterion, number of CI cloud objects meeting the 35 dBZ

and 250K criterion, and the number of CI cloud objects meeting

the 35 dBZ criterion but not the 250K criterion. Results are shown

for the GOES-16 observations and the Thompson and Morrison

simulations.

Total cloud

objects

BT, 285K

Cloud

objects

with

dBZ $ 35

Cloud

objects

reaching

250K

Cloud objects

that do not

reach 250K

GOES-16 546 52 31 21

Thompson 1853 121 46 75

Morrison 2160 136 52 84
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tendencies in Fig. 11 for the cold-CI cases resemble cloud-top

BT trends described in Matthee and Mecikalski (2013) who

demonstrated that rapidly growing convection [growth rates

;108C (15min)21] are more likely to produce heavy rain and

lightning compared to CI cases with slower growth.

Comparing the top 50% of simulated cloud objects most

closely matching the observed GOES-16 growth rates for

warm and cold-CI clouds naturally leads to improvement for

both cloud height and growth rates within the best matched

cases. For these clouds, median cloud growth rates become

closer to observations and the spread in 10.35mm BT and BT

growth rates (Figs. 10c,d and 11c,d) after CI detection are

greatly reduced. The 10.35mm cloud-top BTs in the simula-

tions remain consistently warmer than GOES-16 before CI

detection leading to the same pattern of increased growth rates

for Thompson cloud objects shown previously in Fig. 7. The

Morrison cloud objects display increased growth rates 10min

before CI in the warm-CI cases in Fig. 11a, but growth rates

closer to GOES-16 occur afterward. The simulated warm-CI

cloud cases outside the top 50% best-matching GOES-16

FIG. 10. As in Fig. 6, but for cases subset into warm-CI clouds and cold-CI clouds. (left)Warm-CI clouds for (a) all

cases, (c) top 50% best-matched cases, and (e) cases outside 50% best matched. (right) Cold-CI clouds for (b) all

cases, (d) top 50% best-matched cases, and (f) cases outside 50% best matched. Results are shown for the

Thompson (blue) and Morrison (green) simulations.
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observed growth in Figs. 10e and 11e show signs of decay

quickly after CI is detected where cloud growth trends are

warmer than the observations, whereas the simulated cold-CI

cloud cases in Figs. 10f and 11f display rapid growth at CI de-

tection and 5 min after CI. It is interesting to note that the

warm-CI cloud objects contain cloud growth rates that are

similar to the cold-CI clouds before and at CI detection. This

suggests that in the early stages of CI, the BT interest fields

used to forecast CI might not be able to differentiate clouds

with sustained growth from those that decay. This scenario

could lead to false positives in geostationary satellite–based

severe storm nowcasting algorithms since early cumulus cloud

growth signatures are not always associated with CI events in

the coming 30–45min (Mecikalski and Bedka 2006).

Figure 12 uses 8.4–10.35mm BT differences to evaluate

signals in cloud-top glaciation in the warm-CI and cold-CI

cloud categories. For warm-CI clouds, the WRF simulated BT

differences closely track the observations, where the clouds

start as fully liquid 15min before CI and then the BT difference

trends toward less negative values thereafter, plateauing just

above 22K. For the cold-CI clouds, the GOES-16 observed

BT difference are closer to zero; however, negative values

FIG. 11. As in Fig. 7, but for cases subset into warm-CI clouds and cold-CI clouds. (left)Warm-CI clouds for (a) all

cases, (c) top 50% best-matched cases, and (e) cases outside 50% best matched. (right) Cold-CI clouds for (b) all

cases, (d) top 50% best-matched cases, and (f) cases outside 50% best matched. Results are shown for the

Thompson (blue) and Morrison (green) simulations.
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before and after CI indicate a cloud top that is not fully gla-

ciated. A slight positive trend occurs in observed cold-CI cloud

BT differences proving evidence that cloud-top microphysics

contain larger hydrometeor sizes or ice after CI, which does not

occur in warm-CI clouds. A larger number of outliers occur

above zero for the observations and simulations indicating that

more clouds have reached a fully glaciated state in the cold-CI

category. For both microphysics schemes, the simulated cloud

BT differences are nearly constant until 5min before CI,

thereby demonstrating a possible delay in the presence of ice or

larger liquid hydrometeors near the cloud top compared to

observations. At CI detection, BT differences for both micro-

physics schemes begin to quickly move toward more positive

values and display evidence of a glaciated cloud top 15min

after CI. This positive BT difference also exists in theMorrison

scheme for warm-CI clouds, providing further evidence of an

overestimation of cloud ice after CI.

Figure 13 compares meanmixing ratio profiles for the warm-

and cold-CI cloud categories. Differences are evident at the

time when CI is detected, where the Thompson scheme more

efficiently produces rain hydrometeors than the Morrison

scheme. There is also a discernable difference between the

warm-CI and cold-CI clouds, where mixing ratios from the

cold-CI clouds are consistently larger than occurred during

the warm-CI cloud objects. For example, profile maxima in

cloud water mixing ratios remain higher in the cold-CI clouds.

This sustained cloud water source likely aids the creation of rain,

graupel, and other ice hydrometeors, but it is difficult to fully

evaluate how the mixing ratios are impacting growth due to the

differences in mixing ratios between the microphysics schemes.

Figure 14 displays cloud mixing ratio tendency profiles for

cloud objects in the warm-CI and cold-CI cloud categories.

Cold-CI cloud objects are further separated into the best

matched cloud objects and cloud objects that experience more

rapid growth described in Fig. 10. All warm-CI cloud objects

are combined as the tendency profiles are similar. The ten-

dency profiles were created by differencing each 5-min interval

with the time step before it for each cloud object and then

FIG. 12. The ABI 8.4–10.3mm BT difference to evaluate cloud-top glaciation for cases subset into (left) warm-CI

clouds and (right) cold-CI clouds. Results are shown for the Thompson (blue) and Morrison (green) simulations.

FIG. 13. Evolution of mean profiles for ice, snow, graupel, cloud water, and rainwater mixing ratios from 5min before CI until 10min

after CI was identified. Profiles are shown for (top) Thompson and (bottom) Morrison simulations for cold-CI clouds (solid lines) and

warm-CI clouds (dotted lines).
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averaged. The tendency profiles exhibit better agreement be-

tween the microphysics schemes and are able to describe how

changes in cloud microphysics could impact the growth of the

cloud. The mixing ratio tendency profiles for the warm-CI and

cold-CI cloud categories are similar before CI is detected,

particularly in the Thompson scheme. In Fig. 13, increases in

rain mixing ratios in the simulated clouds develop near 4 km in

the time step before CI detection. This increase of rain hy-

drometeors leads to CI detection 5min later. Five minutes

before CI, there is an discernable difference in the cloud water

fluxed from the lower-levels of the cloud to the upper levels,

where the best-matched and rapid-growth cold-CI clouds lose

less cloud water compared to the warm-CI clouds. Cloud water

is gained near 4 km for the warm-CI clouds, best-matched cold-

CI clouds, and rapid-growth cold-CI clouds, but less cloud

water is lost below 3 km where a smaller negative cloud water

tendency occurs in cold-CI cloud categories. This tendency

occurs at the CI time step as well.

At time-lag zero when CI is detected, both microphysics

schemes show increases in rainwater mixing ratios throughout

the depth of the cloud, which monotonically increases as a

function of growth and the development of graupel occurs

between 6 and 8 km. Five minutes after CI is detected, the

sustained cloud water in the lower levels of the cloud leads to

higher rain mixing ratios and a monotonic increase in graupel

from warm-CI clouds to the cold-CI clouds, which is found in

both of the microphysics schemes. This helps confirm pre-

vious geostationary-based assessments (e.g., Mecikalski et al.

2016a,b; Senf and Deneke 2017) that suggest growth related to

CI is aided by latent heat release from ice formation near and

below cloud top. Figure 13 also shows that the process requires

sustained latent heating in the lower levels from condensation,

which was also shown to be the case when 1-min-resolution

GOES-14 data were used to analyzing cumulus clouds under-

going the CI process (Mecikalski et al. 2016b). For the warm-

CI clouds in Fig. 13, the larger loss of cloud water in the lower

levels of the clouds leads to lower rain and graupel mixing

ratios with negative tendencies for all cloud species above

4 km 10min after CI was detected. Thus, clouds lacking the

sustained source of low-level cloud water are unable to sustain

their growth over time.

Due to the warm and moist boundary layer found in the

southeastern United States the warm (.08C) portion of the

cloud is 3–4 km deep (Fig. 9), and accurate representation of

warm rain processes are essential for CI in weakly forced en-

vironments over this region. Combined radar and geosta-

tionary satellite studies have demonstrated that heavily raining

convection with similar glaciation BT differences found in

Figs. 8 and 12 typically contain weaker updrafts and lower ice

contents at the cloud top (e.g., Mecikalski et al. 2013; Matthee

et al. 2014; Senf and Deneke 2017) compared to lightning

producing storms; therefore, warm rain processes are a likely

pathway to make a 35 dBZ echo for both the warm-CI clouds

and cold-CI clouds. Early rain formation dictated by the au-

toconversion process varies between the microphysics schemes

resulting in the differences found in Fig. 13 and resulting ice

aloft in the cloud (e.g., Bao et al. 2019). The ABI comparisons

in Figs. 10 and 11 help demonstrate that the simulations can

replicate the evolution in CI BT signatures. The comparisons

of the BT differences associated with cloud phase provide ev-

idence that theMorrison scheme produces toomuch graupel in

the best-matched cases (Fig. 14). While the Thompson scheme

best matches the observed 8.4–10.35mm BT difference for this

case study for both warm- and cold-CI clouds, further evalua-

tion assessing the sensitivity of the CI processes with land

surface models and planetary boundary layer schemes will

be needed.

5. Discussion and conclusions

In this study, the characteristics of simulated convection

leading to CI from different bulk cloud microphysics schemes

FIG. 14. Evolution of mean in cloud tendency profiles of ice, snow, graupel, cloud water, and rainwater mixing ratios from 5min before

CI until 10min after CI was observed. Profiles are shown for the (top) Thompson and (bottom) Morrison simulations. The growth

categories are shown for warm-CI clouds (dotted lines), best-matched cases cold-CI clouds (solid lines), and growth cold-CI clouds

(dashed line).
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are assessed using version 3.9.1.1 of theWRFModel. The study

examined the evolution of cloud objects associated with CI

for a case study from 20 May 2018 where weakly forced con-

vection occurred over parts of Mississippi and Alabama that

eventually lead to multiple reports of high wind and hail.

Evaluating in this environment provides analysis where mi-

crophysics are the primary driver in pushing convection toward

heavily precipitating convection. Three model sensitivity ex-

periments employing 500m horizontal grid spacing were

completed where all model components were identical except

for the cloud microphysics scheme. GOES-16 ABI infrared

BTs were simulated for each model experiment using the

CRTM and then directly compared toGOES-16 observed BTs

using a lag-composite analysis, where time zero was defined as

the time CI was detected. CI for the model and observations is

defined as the first time a 35 dBZ radar echo occurred in the

cloud column. Three BT-derived fields commonly used in CI

nowcasting applications were compared between the models

and observations to understand changes in cloud-top height,

cloud growth rate, and hydrometeor phases over time.

In general, the WRF simulations were able to capture the

general trend in cloud growth rates and cloud-top area over

time when maximum cooling occurred near the time CI was

detected. The simulations contain a larger spread of 10.35mm

BTs after the detection of CI. Furthermore, the number of

clouds reaching CI is too frequent in all simulations due to a

large number of convective cases reaching CI and then quickly

decaying afterward. This pattern was most pronounced when

using theMorrison scheme. For the Thompson scheme, around

35% of CI cases sustain 20min or less after CI, whereas this

increases to 42% in the Morrison scheme. Too-frequent

convection could lead to issues when forecasting CI due to

the prevalence of convection formation in raining outflow

boundaries in the southeastern United States (Goggins et al.

2010). Delays in rain hydrometeor formation occur in the

WDM6 bulk microphysics scheme, which led to a delay in the

detection of CI compared to the GOES-16 observations. This

then caused a cold bias in the simulated 10.35mm BTs . 20K

throughout the CI process when this scheme was used. Lagging

the WDM6 BT time series by 30min improved comparisons

with the 10.35mm cloud-top BTs, but cloud growth rates no

longer exhibited the maximum growth at CI, likely due to the

absence of ice growth at these time steps and thus lacking the

upper-level latent heating needed to support cloud growth.

Evaluating the simulated clouds using BTs demonstrates

the benefits of using high-resolution satellite observations to

examine cloud processes using model simulations. It also

provides a platform to deconstruct cloud properties leading to

trends in CI properties. When partitioning the results into

warm-CI and cold-CI clouds the simulated CI cases produce a

range of 10.35mm cloud-top BTs more akin to the GOES-16

observations. Although differences in microphysical processes

are evident, comparison of the tendencies in mixing ratio

profiles from these two microphysics schemes reveals agree-

ment in the tendency of in-cloud mixing rations related to

convection initiation and cloud growth. Cold-CI clouds are

characterized by an increase in cloud water at lower levels near

the time of CI that is then lofted to the upper portion of the

cloud, whereas warm-CI clouds contain less cloud water at CI.

Increased cloud water in the upper levels contributes to an

increase in graupel formation near cloud top, which corre-

sponds to the times of maximum growth and helps confirm that

ice formation is a necessary component in CI and cloud growth

leading to longer lasting storms. This also indicates that sus-

tained condensation in the lower levels of the cloud is neces-

sary to provide sustained sources of cloud water to be lofted

into the upper portion of the convective clouds.

Using the 8.4–10.35mmBT differences, observed changes in

GOES-16 cloud-top phase in CI events yield a positive BT

difference trend that plateaus shortly after CI. The observed

GOES-16 BT does not reach full cloud-top glaciation (BT

differences remain , 0), but the positive trend provides evi-

dence of the onset of ice and larger hydrometers at the cloud

top. The CI cases from the Thompson microphysics scheme

yield a similar result, whereas the Morrison and WDM6

schemes are too efficient at creating cloud ice particles (spe-

cifically graupel) and a glaciated cloud top (8.4–10.35mm BT

difference switches to positive). Inspection of in-cloud mixing

ratio profiles reveals that the Thompson scheme more readily

converts cloud water to precipitation, whereas the Morrison

scheme is able to loft more cloud water to higher levels, leading

to increased graupel formation. When comparing cold-CI and

warm-CI clouds, the cold bias from the Morrison scheme re-

mains providing further evidence that it is producing too much

graupel near the cloud top.

The application of observation-based CI techniques present

a novel methodology to evaluate high-resolution models with

satellite data and examine the processes leading to CI devel-

opment. The results from this study illustrate that the model

simulations are able represent cloud evolution, but warm-CI

clouds are too frequent. Previous radar-based studies that

demonstrate cloud tops with lower ice contents, such as those

observed in the GOES-16 ABI BT signatures (Fig. 8), contain

weaker updrafts (e.g., Matthee et al. 2014; Senf and Deneke

2017), which suggests radar reflectivity due to warm rain. The

lower-level condensational growth and warm rain processes

are important for CI as early rainwater partitioning in bulk

microphysics can impact downstream graupel production.

Further, small rain hydrometeors have been found in WDM6

using dual-polarized radar comparisons (e.g., Johnson et al.

2016; Lei et al. 2020), which affects timing of CI detection. Bao

et al. (2019) illustrate that differences in autoconversion pa-

rameterizations early in warm rain development can lead to

downstream differences in graupel production. The delay in

rain formation in the WDM6 simulation and the increased

graupel formation when using the Morrison scheme suggests

that insight into differences within autoconversion parame-

terizations could help sort differences in cloud evolution.

Further analysis comparing simulated cloud growth with

clouds best matching GOES-16 observations could help refine

which autoconversion rates are accurate in the cloud micro-

physics schemes. The Thompson scheme most accurately de-

scribes the ice mixing ratios reaching cloud top at the time of

CI, but all of the parameterization schemes generally produce

cloud tops that are too warm early in development, thereby

leading to higher growth rates before CI.
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This is a single case study so additional case studies using

satellite BTs and objected-based methods to evaluate the

characteristics of CI may be necessary to reinforce these

findings. Before CI was detected, IR BTs at cloud top were

similar between warm-CI and cold-CI clouds in the WRF

Model simulations. This suggests that information content

from cloud-top properties alone, such as ones utilized in

geostationary-based CI forecasting, may be insufficient

when forecasting CI during the early stages of cloud devel-

opment when the convection is weakly forced. Additional

simulations shedding light on other factors controlling the

growth of simulated convection will be useful to aid in un-

derstanding the conditions optimal for CI growth in weakly

forced cases. Future studies could concentrate on how the

use of land surface models and planetary boundary layer

schemes impact convective growth, updraft characteristics,

and latent heating leading to CI. Finally, utilizing observa-

tions from ground-based active sensors that provide high-

resolution vertical profiles of hydrometeors and updrafts

will be key in constraining model-based evaluations of

convection. Such modeling studies are planned as well as

observational analysis evaluating convective evolution us-

ing data from the Atmospheric Radiation Measurement

(ARM) program matched to observed GOES-16 CI cases.
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