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ABSTRACT: Characteristics and predictability of drought in the midwestern United States, spanning the from the Great

Plains to the Ohio Valley, at local and regional scales are examined during 1916–2015. Given vast differences in hydro-

climatic variability across the Midwest, drought is evaluated in four regions identified using a hierarchical clustering al-

gorithm applied to an integrated drought index based on soil moisture, snow water equivalent, and 3-month runoff from

land surface models forced by observed analyses. Highlighting the regions containing the Ohio Valley (OV) and Northern

Great Plains (NGP), the OV demonstrates a preference for subannual droughts, the timing of which can lead to prevalent

dry epochs, while the NGP demonstrates a preference for annual-to-multiannual droughts. Regional drought variations are

closely related to precipitation, resulting in a higher likelihood of drought onset or demise during wet seasons: March–

November in the NGP and all year in the OV, with a preference for March–May and September–November. Due to the

distinct dry season in theNGP, there is a higher likelihood of longer drought persistence, as theNGP is 4 timesmore likely to

experience drought lasting at least one year compared to the OV. While drought variability in all regions and seasons is

related to atmospheric wave trains spanning the Pacific–North American sector, longer-lead predictability is limited to the

OV in December–February because it is the only region/season related to slow-varying sea surface temperatures consistent

with El Niño–Southern Oscillation. The wave trains in all other regions appear to be generated in the atmosphere, high-

lighting the importance of internal atmospheric variability in shaping Midwest drought.

SIGNIFICANCE STATEMENT: The midwestern United States, spanning from the Great Plains to the Ohio Valley,

has endured many costly and life-altering droughts. A drought in 2012 led to an estimated $34.5 billion in direct eco-

nomic losses. This study aims to build a more complete understanding of drought in regions of theMidwest that could be

used in drought early warning efforts. Drought is evaluated in four midwestern regions of coherent hydroclimatic

variability. The regions were identified by applying a method that groups similar objects to an integrated drought index

that includes soil moisture, snow water equivalent, and 3-month runoff from land surface models during 1916–2015.

Highlighting the regions containing the Ohio Valley (OV) and Northern Great Plains (NGP), droughts in the NGP

generally last longer than in the OV. Droughts in the NGP only begin and end during the warm and wet season while

droughts in the OV can begin and end during any time of year. El Niño–Southern Oscillation (ENSO), a slow varying

phenomenon of the Earth system, may be used as a source of predictability for drought onset and demise in the OV

during winter. However, circulation patterns internal to the atmosphere play a key role in shaping drought in all other

seasons and regions of the Midwest.

KEYWORDS: Drought; Climate variability; ENSO; Trends

1. Introduction

Drought is a natural and recurring feature of midwestern

United States hydroclimate (Diaz 1983; Englehart and Douglas

2003) and has meaningful effects on the region’s socioeconomic

well-being. The definition of the midwestern United States,

referred to as the Midwest and shown in Fig. 1a, is taken from

the U.S. Census Bureau (2021). Kentucky is also included

because it is part of the Midwest Drought Early Warning

System (National Integrated Drought Information System

2021). As part of the ‘‘Corn Belt’’ in the United States (U.S.

Department of Agriculture National Agricultural Statistics

Service 2019) and one of the most agriculturally productive

areas in the world (Oppedahl 2018; U.S. Department of

Agriculture Midwest Climate Hub 2021), the Midwest pro-

duces less for consumption and export during drought (Mishra

and Cherkauer 2010; Lobell et al. 2014). During the 2012

drought, for example, the United States lost about one

quarter of its corn and sorghum production (Rippey 2015).

Also, rivers are an important mode of transportation in the

Midwest, and because drought lowers water levels in key

rivers like the Mississippi, Illinois, and Ohio, barges must

transport lighter loads to not run aground (State of Illinois

Department of Natural Resources 2013). This impacts com-

modity transportation costs and puts downward pressure on

crop prices paid to producers. Drought can also affect human

health by reducing drinking water quality and promoting theCorresponding author: Andrew Hoell, andrew.hoell@noaa.gov

NOVEMBER 2021 HOELL ET AL . 3087

DOI: 10.1175/JHM-D-21-0052.1

� 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by U.S. Department Of Commerce, Boulder Labs Library | Unauthenticated | Downloaded 11/09/21 07:16 PM UTC

mailto:andrew.hoell@noaa.gov
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


spread of disease by pests such as mosquitoes (Centers for

Disease Control and Prevention 2020).

A holistic understanding of the characteristics and pre-

dictability of Midwest drought would equip forecasters and

planners with the knowledge to better anticipate and prepare

for future events. However, studies that have attempted to

generalize drought characteristics have not specifically fo-

cused on theMidwest (Fig. 1), but rather on continental-scale

features spanning the United States or North America. The

earliest studies on continental-scale drought characteristics

focused on spatial and temporal drought signatures. Drought

was found to persist for longer in the interior of the United

States than along the coasts (e.g., Klugman 1978; Walsh et al.

1982; Karl and Koscielny 1982; Karl 1983; Diaz 1983; Soulé
1992; Mo and Schemm 2008). However, despite the general-

ization of longer drought persistence over parts of the central

United States, Oladipo (1986) found that drought is largely

spatially incoherent over the region and individual drought

events rarely affect the entire region at the same time. Early

studies on drought onset and demise found that they tend to

occur during climatological rainy seasons (Diaz 1983), and

portions of those seasons when the heaviest precipitation is

most likely (Karl et al. 1987). Moreover, Mo (2011) found

that for much of the United States, drought onset generally

takes longer than drought demise because precipitation def-

icits must accumulate for drought onset whereas just a few

rain events can usher drought demise. This generalization,

however, does not apply to a class of droughts called flash

droughts, whose onsets happen over the course of sub-

seasonal time scales amid a myriad of simultaneous weather

and climate extremes, including below-average precipitation,

warmer-than-average temperatures, and above-average at-

mospheric moisture demand (Otkin et al. 2018; Pendergrass

et al. 2020).

Likewise, studies on drought predictability have largely

focused on synoptic to continental-scale patterns and the

roles played by the Pacific, and to a lesser degree, the Atlantic

Oceans. Early studies established the relationship between

sea surface temperature (SST) anomalies and United States

drought through statistical associations (e.g., Namias 1983).

Tropical Pacific SST anomalies associated with ElNiño–Southern
Oscillation (ENSO) are related to precipitation across theUnited

States (e.g., Ropelewski and Halpert 1986) and have there-

fore been linked to drought (e.g., Kahya and Dracup 1993;

FIG. 1. (a) The U.S. Midwest, defined by the U.S. Census Bureau, and Kentucky. (b) 1916–2015 calendar

year average precipitation. (c)–(f) Boxplots of monthly precipitation during 1916–2015 for the grid box

containing each location. For the boxplots, whiskers denote the interdecile range, boxes the interquartile

range, and the horizontal line the median.
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Piechota and Dracup 1996; Rajagopalan et al. 2000; Ryu et al.

2010).While many widespreadU.S. droughts occurred during

the cold phase of ENSO, La Niña (Mo and Lettenmaier

2018), Englehart and Douglas (2003) note that ‘‘past drought

episodes have not been strongly or simply tied to the ENSO

signal.’’ More recently, studies have examined the predict-

ability of drought in initialized forecast systems like the North

American Multimodel Ensemble (Kirtman et al. 2014). Over

the United States, Mo et al. (2012) and Mo and Lyon (2015)

found that models that realistically simulated drought cap-

tured a realistic ENSO response. Globally, Yuan and Wood

(2013) found that fewer than 30% of global droughts were

detected by forecast models, and that the misses were over

regions with low potential predictability due to a weak rela-

tionship to ENSO.

It is also important to note that aspects of individual signif-

icant drought events have been examined in some depth.

However, while the lessons learned from these case studies

contribute to our collective knowledge of drought charac-

teristics and predictability, they may lack the generality

necessary to be applied to develop comprehensive drought

early warning. Notable events affecting the Midwest, among

other regions, that have garnered considerable attention in-

clude events in the 1930s (e.g., Schubert et al. 2004; Seager

et al. 2008), 1950s (e.g., Barlow et al. 2001), 1988 (e.g.,

Trenberth et al. 1988; Chen and Newman 1998), 2000 (e.g.,

Seager 2007), and 2012 (e.g., Mallya et al. 2013; Kam et al.

2014; Hoerling et al. 2014), the most recent of which led to

economic losses that were estimated at $34.5 billion (NOAA/

National Centers for Environmental Information 2021).

Here, we examine the characteristics and predictability of

drought in the Midwest at local and regional scales (Fig. 1).

We adapt the methodology of Mo and Lettenmaier (2018),

which quantified drought using an integrated drought index

(IDI) derived from four land surface model simulations

forced by estimates of the time varying meteorology spanning

1916–2015. This IDI is based on total moisture storage, which

itself is defined as the sum of column integrated soil moisture

and snow water equivalent, and 3-month runoff. We chose to

use this IDI for our study because it includes different facets

of drought that are important in the Midwest: agricultural

(Wang et al. 2016; Eeswaran et al. 2021), snow (Huning and

AghaKouchak 2020), and hydrological (Wang et al. 2011;

Poshtiri and Pal 2016).

Our objective is to build a more complete understanding

of drought over the Midwest that may be used for effective

early warning. In line with past studies (e.g., Oladipo 1986),

we find that hydroclimate varies greatly across the Midwest,

which suggests that examinations of drought in this region

should adopt a local to subregional perspective. We adopt

such a perspective, and for the first time, separate the

Midwest into four spatially coherent regions of hydro-

climatic variability based on a hierarchical cluster analysis

of the IDI. We then probe the characteristics and predict-

ability of drought within the four regions by examining the

intensity, persistence, and variability of the IDI and iden-

tifying related large-scale oceanic and atmospheric condi-

tions that may serve as sources of predictability for drought

events. Specifically, we investigate when regional droughts

begin, how long they last, how quickly drought severity can

vary, and whether physical factors like ENSO and related

atmospheric circulations are associated with drought, po-

tentially rendering them more predictable.

An outline of the article is as follows. In section 2, we describe

the methods and tools employed. In section 3, we describe the

results, beginningwith an assessment of hydroclimatic variations

across the Midwest and ending with an examination of the

characteristics of drought in regions of the Midwest identified

through a cluster analysis of the IDI. In section 4 we provide a

summary and in section 5 discuss the conclusions.

2. Methods and tools

a. Land surface models

Four land surface models are analyzed monthly on the same

fixed 0.58 3 0.58 latitude–longitude grid during 1916–2015.

They areVIC version 4.0.6 (Liang et al. 1994), Noah version 2.7

(Ek et al. 2003), SAC-SMA (Burnash et al. 1973), and

Catchment (Koster et al. 2000; Ducharne et al. 2000). We

summarize key aspects of the land surface models relevant to

our experimental design and refer readers to Mo and

Lettenmaier (2018) and references therein for further details

on themodels, their differences, and the persistence time scales

of variables. All four land surface models were forced using the

same estimates of the time-varying meteorology: daily pre-

cipitation, wind speed, average temperature, water vapor

pressure, and downward solar and longwave radiation.

Precipitation and maximum and minimum temperature forc-

ing grids were computed from station data (Wang et al. 2009).

Wind speed after 1950 was based on the NCEP–NCAR

Reanalysis version 1 (Kalnay et al. 1996). Wind speed before

1950 was based on seasonal averages, which was shown to have

little effect on the hydrologic variables (Livneh et al. 2013).

Daily average temperature, vapor pressure, and downward

solar and longwave radiation were derived from daily precip-

itation and maximum and minimum temperature, as described

by Bohn et al. (2013).

b. Integrated drought index (IDI)

We quantify drought, or hydroclimate more generally, using

an IDI derived from the four historical land surface model

simulations. Our IDI is based on the same two quantities asMo

and Lettenmaier (2018): 1) total moisture storage at the sur-

face, which is the sum of column integrated soil moisture and

snow water equivalent, and 2) 3-month runoff. Our reasons for

including these land surface quantities are threefold. First, an

IDI that includes soil moisture, snow water equivalent, and

runoff integrates the effects of different facets of drought

that are important in theMidwest. It is important to note that

an IDI can be constructed using different hydroclimatic

variables relevant to different regions; for example, Shah and

Mishra (2020) constructed an IDI based on precipitation,

soil moisture, and runoff for monitoring drought in India.

Second, century-long land surface model simulations allow us

to better identify robust drought characteristics than if we were
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to use in situ data or other land data assimilation systems that

may be spatially incomplete and/or span shorter time periods.

Third, utilizing output from several land surface models limits

the effects of biases introduced by a single model.

Though our IDI is also based on total moisture storage and

3-month runoff, the way in which it is calculated differs fromMo

and Lettenmaier (2018). Our IDI employs only standardized

departures whereas the IDI of Mo and Lettenmaier (2018)

transforms some variables to a uniform distribution (Table 1).

We use standardized departures to better capture the vari-

ability than is possible using uniform distributions. The com-

putation of our IDI follows a four-step process. First, monthly

total moisture storage standardized departures were calculated

for each of the four models. Second, for each month, 3-month

standardized runoff departures were calculated for each of the

four models. Third, the unweighted monthly mean of the four

standardized total moisture and four standardized runoff in-

dices was calculated. Finally, standardized departures of the

unweightedmonthly means were calculated. The calculation of

monthly standardized anomalies follows Shukla and Wood

(2008), which employed the framework developed by McKee

et al. (1993). Variables are fitted to a gamma distribution,

followed by a transformation to a normal distribution with a

mean of zero and a unit variance. A 1916–2015 monthly ref-

erence was used.

c. Drought characteristics and predictability

We examine the characteristics and predictability of Midwest

drought at local and regional scales during 1916–2015. For the

local scale, we examine drought characteristics for each grid

box to assess spatial variations of hydroclimate across theMidwest.

For the regional scale, we examine drought characteristics over

TABLE 1. A comparison of how our IDI compares to that of Mo and Lettenmaier (2018).

Step Our IDI Mo and Lettenmaier (2018)

1 Standardize monthly total moisture storage in each of

the four models

Compute monthly total moisture storage percentiles in

each of the four models

2 Standardize 3-month runoff in each of the four models Compute 3-month standardized runoff percentiles in

each of the four models

3 Calculate the unweighted monthly mean of the eight

total moisture and runoff indices

Calculate the unweighted monthly mean of the eight

total moisture and runoff indices

4 Standardized the unweighted monthly grand mean Transform the unweighted monthly grand mean to a

uniform cumulative probability distribution

FIG. 2. (a)–(d) Monthly IDI correlation between all grid boxes and the grid box containing each location. (e) Histogram of monthly IDI

correlations between any two grid boxes in the domain shown in (a)–(d).
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four coherent areas of hydroclimatic variability identified

using a hierarchical clustering algorithm applied to the

monthly IDI for all grid boxes. We employ Ward’s method

(Ward 1963), which reduces the sum of the squared distance

between a cluster and each grid box in the Midwest. We

select four clusters to balance our desire to generalize

drought behaviors in the Midwest and to identify regions

that are representative of the IDI variability of component

grid boxes. The IDI for each region is quantified by calcu-

lating the average IDI of all grid boxes within them. We

apply the perspective of Mo (2011) to identify drought

events based on the regional IDI, whereby a drought event is

defined as the time from which IDI falls below 20.8 stan-

dardized departures (onset) to when the IDI exceeds 20.2

standardized departures (demise), which ensures complete

recovery. IDI variability for each of the identified four re-

gions are related to SST and 300-hPa meridional wind

anomalies during 1916–2015 to better establish a predictive

understanding of regional hydroclimatic drivers in the

Midwest. Monthly SST anomalies are from the Extended

Reconstructed SST version 5 dataset (Huang et al. 2017),

and monthly 300 hPa meridional wind anomalies are from the

Twentieth Century Reanalysis version 3 (Slivinski et al. 2019).

We end our analysis in 2015 because it is the final year of the

Twentieth Century Reanalysis version 3.

3. Results

a. Local hydroclimatic variability

To establish a baseline from which to probe drought char-

acteristics across the Midwest, we begin with an analysis of

spatiotemporal precipitation variability at the gridbox scale. A

strong gradient in calendar year average precipitation is ob-

served along a west to east oriented axis extending from the

Northern Great Plains to the Ohio River Valley (Fig. 1b). The

location of the strongest change in annual average precipitation

falls between the 95th and 100th west meridians, considered the

dividing line between the humid eastern and the semiarid west-

ern United States (Seager et al. 2018). Areas in Ohio, Indiana,

Illinois, and Missouri on average receive in excess of 1000mm

of precipitation each calendar year while areas in the Dakotas,

Nebraska, and Kansas receive between 500 and 700mm.

Calendar year average precipitation totals are related to dif-

ferences in the precipitation seasonal cycle across the Midwest

(boxplots in Fig. 1). Areas with a shorter wet season/longer

dry season observe less annual average rainfall than areas

FIG. 3. Correlation of monthly IDI and (a)–(d) snow water equivalent, (e)–(h) soil moisture, and (i)–(j) runoff grouped by season.

Correlations are significant at p , 0.05.
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that experience rainfall that is more evenly distributed across

the calendar year. The western and northwestern areas of

the Midwest, as represented by Bismarck, North Dakota,

experience a single wet season spanning May–September,

reaching a maximum in June. Also, the variability of pre-

cipitation, measured by the interquartile range and extremes

relative to themedian, are largest inMarch–May and September–

November and smallest during the height of the wet season. A

transition to less pronounced and shorter dry seasons occurs as

one moves south and east in the Midwest. Lincoln, Nebraska,

has a dry season during December–February, but receives

appreciable rainfall on average during the other nine months,

with a peak spanning late spring to early fall. Columbus,

Ohio, representing southeastern areas of the Midwest United

States, does not have pronounced wet and dry seasons. Even

though the largest monthly precipitation totals in Columbus

occur on average in spring and summer, appreciable precip-

itation is still observed in fall and winter.

Motivated by changes in the precipitation annual cycle

across the Midwest, we assess the spatial scales of drought

variability in the region by examiningmonthly IDI correlations

between grid boxes (Fig. 2). In line with Oladipo (1986), we

find that drought variations among most grid boxes in the re-

gion are not closely related, which affirms that drought in the

Midwest generally occurs at local-to-regional spatial scales.

Examples of the spatial drought patterns related to the IDI for

four grid boxes are presented in Figs. 2a–d. The correlations

show that drought is related to a small area surrounding each

grid box, and that drought variability can be dissimilar even for

locations that share similar hydroclimates (i.e., Milwaukee,

Wisconsin, and Columbus, Ohio). More generally, a histogram

of monthly IDI cross correlations among all grid boxes in the

Midwest (Fig. 2d) further reinforces that the coherence of

drought variations in the Midwest is generally marginal. The

most likely cross correlation is about 0.3 and just 25% of the

grid boxes are correlated at 0.6 or greater.

Based on the complexity of local precipitation and IDI

variations across the Midwest, we apply a more nuanced ap-

proach to investigating drought than simply relying on area

averages of the IDI over the entire region. Our approach

FIG. 4. Correlation of monthly IDI change and precipitation anomaly grouped by season. Correlations are sig-

nificant at p , 0.05.
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includes examining drought drivers at local scales (i.e., each

grid box) and examining drought over coherent regions of IDI

variability identified from a hierarchical cluster analysis. We

examine local drivers of the IDI in the remainder of this

section and the characteristics and predictability of drought

over the identified subregions in the following section.

We begin our examination of local drought drivers in

the Midwest by investigating the contribution of the IDI’s

component variables—soil moisture, snow water equivalent,

and 3-month runoff—to its variability during 3-month sea-

sons (Fig. 3). The contributions are quantified via correlations

calculated from monthly data grouped by 3-month season:

December–February, March–May, June–August, and September–

November. Soil moisture and runoff overwhelmingly drive

the IDI during all seasons; especially in June–August and

September–November as their correlations with the IDI ex-

ceed 0.9 regionwide. This is expected, since Mo and

Lettenmaier (2018) also indicated that total moisture storage,

which is entirely due to soil moisture in the warm seasons, and

3-month runoff share the same time scales in the land surface

models used. Snowwater equivalent plays a role in driving the

IDI during the cold seasons while soil moisture and runoff

play slightly less of a role. Statistically significant correlations

between snow water equivalent and the IDI are found over

most of the region in December–February andMarch–May in

the eastern Plains and Great Lakes region north of 428N.

We now turn our attention to probing variables related to

IDI variability that are forecast on an operational basis,

namely, precipitation and 2-m temperature, to provide fur-

ther insight into our predictive understanding of Midwest

drought. We note that other factors like evapotranspiration

(e.g., Kim and Rhee 2016), soil type and plant biology (e.g.,

Xia et al. 2014) play an important role in shaping drought, but

we focus here on quantities that are forecast on a regular basis

by operational prediction centers like the NOAA Climate

Prediction Center.1 For all seasons, the magnitude of the

FIG. 5. Correlation of monthly IDI change and 2-m temperature anomaly grouped by season. Correlations are

significant at p , 0.05.

1 https://www.cpc.ncep.noaa.gov/products/predictions/30day/.
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correlations between IDI and precipitation (Fig. 4) dwarf those

between IDI and temperature (Fig. 5), indicating the primacy of

precipitation in driving drought as measured by this IDI in the

Midwest. Precipitation and IDI correlations generally exceed 0.5

during all seasons and most areas of the region, while temper-

ature and IDI correlations are only statistically significant in

June–August. The contribution of temperature to IDI variations

in June–August is especially relevant to rapid drought devel-

opment, as above average temperatures increase atmospheric

evaporative demand and deplete land surface moisture. The

only area and season inwhich this generalization does not hold is

in the Northern Plains area of the Midwest in December–

February, likely because this is a climatological dry season

and a time of year in which the ground can be frozen.

Correlations between precipitation and IDI are generally con-

sistent during thewarm seasons, though they are slightly lower in

the March–May and September–November seasons than in

June–August. A possible reason for these interseasonal differ-

ences is the lower (higher) precipitation variability relative to

the median during the summer (shoulder) season(s) (Fig. 1).

We conclude our analysis of local drought drivers by con-

sidering the persistence of the IDI though an examination of

its serial correlation at 1-, 3-, 6-, and 9-month lags (Fig. 6). As

expected, an e-folding decay in the magnitude of the IDI

autocorrelations is apparent throughout the Midwest (e.g.,

Kumar et al. 2019). Nonetheless, the magnitude of the IDI

autocorrelation at a 3-month lag throughout the region is on

par with the correlation between IDI and precipitation during

most seasons (cf. Figs. 6 and 4), which suggests that the per-

sistence of the IDI generally makes it a good predictor of

itself a few months into the future. Also noteworthy is that

the magnitude of the autocorrelation at all lags varies spa-

tially, with higher values in the Great Plains compared to

areas in the Ohio Valley. This indicates that drought is more

persistent in the semiarid regions with a distinct seasonal

precipitation cycle than in the more humid climates in which

appreciable precipitation is observed during all months of

the year.

b. Regional drought characteristics and predictability

Given the large spatial variations of hydroclimate in the

Midwest (Figs. 1 and 2), a hierarchical cluster analysis based on

Ward’s method was applied to the monthly IDI in each grid

box to identify regions of coherent drought variability (Fig. 7).

FIG. 6. Serial IDI correlation at (a) 1-, (b) 3-, (c) 6-, and (d) 9-month lags.
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We select four clusters to balance our desire to generalize

drought behaviors in the Midwest and to identify regions that

are representative of the IDI variability of component grid

boxes. The four identified clusters span approximately the

quadrants of the Midwest: the Northern Great Plains in the

northwest, the Great Lakes in the northeast, the Central

Great Plains in the southwest, and the Ohio Valley in the

southeast (Fig. 7a). The clustering dendrogram, indicating

which grid boxes belong to each of the four clusters and how

they may be further divided into more clusters, is shown in

Fig. 7b. Correlations between the average IDI of all grid

boxes within the clusters and each grid box indicate that the

four regions generally represent the IDI variability within

them (Figs. 7c–f). Greater than three quarters of the grid

points in each region are correlated with the region average at

more than 0.7.

Figure 8, time series of the average IDI of all grid boxes in

each of the four regions during 1916–2015, illustrates intrica-

cies of regional drought within the Midwest and highlights

considerable hydroclimatic differences between each region.

Though annual droughts are a feature in all four regions, the

variability of IDI, persistence of low IDI, the clustering of low

and high IDI episodes in the same decade, and multidecadal

IDI variability are largely different. Nonetheless, there are

seven epochs in which all four regions experienced low IDI

simultaneously, and these epochs correspond to a subset of

the 16 ‘‘Great Droughts’’ identified by Mo and Lettenmaier

(2018). These epochs include 1917/18, 1925, 1933/34, 1939/40,

1963/64, 1988, and 2012/13.

Salient features of IDI variability in each of the four regions

are as follows. Note that the 12-month running average IDI is

shown in Fig. 8 to further highlight key aspects of drought

variability and that 12-month running average IDI based in

each of the land surface models is also shown to demonstrate

potential uncertainties. The intermodel differences are not

large, but notable enough in some epochs to appreciate the

uncertainty as a potential limitation of the study. In the

Northern Great Plains (Fig. 8a), aside from semiregular an-

nual hydroclimatic variability between 1940 and 1970, the

Dust Bowl spanning 1934–41 and the wet epochs of the 1980s,

1990s, and early 2010s stand out as the most prominent fea-

tures in the IDI time series. Other noteworthy droughts in the

NorthernGreat Plains included 1958–63, 1977, the late 1980s,

and 2012.

Despite its proximity to the Northern Great Plains, the

Great Lakes experienced rather different hydroclimatic vari-

ability during 1916–2015 (Fig. 8b), further highlighting the

value of separating the Midwest into smaller regions for

the purpose of studying drought. Not only was the timing of

positive and negative regional IDI values different between

FIG. 7. (a) Four regions identified by applying Ward’s clustering method on monthly IDI during 1916–2015 over the plotted domain.

(b) Hierarchical clustering dendrogram associated with (a). Correlation of grid box average IDI over the (c) Northern Great Plains,

(d) Great Lakes, (e) Central Great Plains, and (f) Ohio Valley regions and IDI for each grid box.
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the Northern Great Plains and the Great Lakes, the persistence

of such values differed as well. The Great Lakes did not expe-

rience the Dust Bowl with such vigor; in fact, drought was only

felt in 1931 and 1933. The epoch in which drought was most

prevalent spanned the mid and late 1950s, and even during that

time there were indications of brief drought relief as IDI ap-

proached and even exceeded zero. Other noteworthy droughts

in the Great Lakes region occurred in the mid-1960s and 1977.

Regional average IDI variability over the Central Great

Plains (Fig. 8c) shares considerable commonality with the

Northern Great Plains, owing to their geographical location,

and similarities in their hydroclimates as indicated by the

precipitation annual cycle (Fig. 1) and the serial autocorrela-

tion of IDI (Fig. 6). The Dust Bowl stands out prominently in

the IDI time series spanning the 1930s and early 1940s. This

region also experienced a significant prolonged drought span-

ning 1952–57. Though single-year droughts have occurred

since 1980 (e.g., 1981, 1988, 2000, 2012), the IDI was predom-

inantly above average, and considerably so, after 1980.

Ohio Valley hydroclimate had the least in common with the

other regions in the Midwest during 1916–2015 (Fig. 8d). Not

only was the timing of above and below average IDI differ-

ent from the other regions, the variability of the IDI was con-

siderably larger than each of the other regions as well. The 1930s

and early 1940s were generally a dry time in the Ohio Valley, as

indicated by annual droughts in 1931, 1934, and 1941; however,

between those droughts above average IDI conditions occurred,

which sets this region apart from each of the others. Like the

Central Great Plains and Great Lakes, the mid-1950s and mid

1960s were also a dry time in the region. Since 1970, there have

been a few single-year droughts, namely, 1977, 1988, 2000, and

2012, but otherwise a wetter climate relative to the past prevailed,

as the 1970s, 1990s and 2000s saw persistently high IDI values.

We now probe the characteristics of regional droughts in the

Midwest during 1916–2015 based on a collection of events

identified using the method of Mo (2011), whereby droughts

begin when the regional average IDI falls below 20.8 and

persist until the regional average exceeds 20.2. Figure 9, the

frequency of drought persistence in each of the four Midwest

regions, illustrates that the likelihood of drought duration de-

pends on location. Droughts last considerably longer in the

Great Plains than they do in the Great Lakes or Ohio Valley.

The likelihood of drought lasting for at least one month in each

region based on the drought definition we adopted is approx-

imately 20%–22%, which is generally consistent with the

drought definition used by theU.S. DroughtMonitor (Svoboda

et al. 2002). An e-fold decay in the frequency of drought as a

function of persistence is noted for each region, though the

FIG. 8. Time series of gridbox average IDI in standardized departures over the (a) Northern Great Plains,

(b) Great Lakes, (c) Central Plains, and (d) Ohio Valley regions of the midwestern United States. Shown is the

monthly IDI (orange bars), the 12-month running average IDI (black line), and the 12-month running average IDI

constructed from each of the four land surface models to demonstrate uncertainty among them.
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magnitude of the decay varies from one region to the next. For

example, the Northern Great Plains was 4 times more likely to

experience a drought lasting at least 12 months than the Ohio

Valley. This is consistent with the larger magnitude serial

correlation of the local IDI shown in Fig. 6, which is linked to

the climatological precipitation seasonal cycles, in which much

of the Northern Great Plains experiences a single wet season

while the Ohio Valley receives precipitation during all calen-

dar months (Fig. 1).

The collection of drought events based on our definition

indicates preferred seasons of drought onset and demise in

each region of the Midwest (Fig. 10). The preferred seasons of

onset and demise generally follow the precipitation seasonal

cycle, whereby droughts tend to begin and end during wet

seasons, and particularly during times in those wet seasons

when the precipitation variability relative to the median is ei-

ther largest or smallest (Fig. 1). For the Northern Great Plains,

droughts overwhelmingly begin and end outside of winter,

which is on average the dry time of year. Drought onset is most

likely to occur in September–November and March–May, the

times of year in which the precipitation variability is largest

compared to themedian, with a dip in the frequency of onset in

June–August, the wettest 3-month season with relatively low

precipitation variability. Drought demise is most likely to oc-

cur during the wetter seasons, and in particular during June–

August and September–November. The frequency of drought

onset and demise in the Central Great Plains is quite similar to

that of the NorthernGreat Plains. This is not a surprising result

given similarities between the two hydroclimates.

Drought onset and demise in the Great Lakes and Ohio

Valley regions of the Midwest occur more equitably across

the seasons than was observed over the Great Plains regions.

For the Great Lakes region, drought onset and demise occur

nearly as frequently in December–February, March–May,

June–August, but increase greatly in September–November.

The higher frequency of onset and demise in September–

November relative to the other seasons can be attributed to

the precipitation seasonal cycle, which is quite variable rel-

ative to the mean. For the Ohio Valley region, owing to a

relatively flat precipitation seasonal cycle, we see little dif-

ference in the frequency of drought onset and demise across

the seasons. However, there are slight increases in March–

May and September–November. March–May is the wettest

3-month season, and there is considerable precipitation vari-

ability, while September–November is the driest of the 3-month

seasons, which too experiences considerable precipitation vari-

ability relative to the other seasons.

A key consideration of drought in the Midwest is how

quickly they can emerge, an event known as flash or rapid onset

droughts (Otkin et al. 2018; Pendergrass et al. 2020), given

recent experiences like the 2012 event. Instances of rapid

changes in the regional IDI time series from one month to the

next are apparent (Fig. 8), and we probe the likelihood of these

changes using histograms of monthly changes grouped by

season (Fig. 11). Note that flash onset droughts can occur in as

little as a few weeks so that monthly IDI changes may not fully

capture the speed at which this class of droughts emerges.

Indicated hereby is a distinct seasonality and regionality to

the speed of IDI changes. September–November and June–

August stand out as the seasons in which the largest month-to-

month changes in IDI occur, then followed by March–May.

Large positive changes during these seasons are related to

abundant precipitation that can fall while large negative

changes during these seasons are related to the lack of

FIG. 9. Cumulative histogram of drought persistence.
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precipitation and considerable evapotranspiration that can

occur during warm seasons. The smallest changes in IDI occur

in December–February over all regions except the Ohio

Valley, likely a result of it being the cold and/or dry season in

those three regions. In the Ohio Valley, larger changes in IDI

in December–February are possible because appreciable pre-

cipitation is still observed this time of year and the ground may

not be frozen throughout.

Toward establishing a predictive understanding of the causes

of Midwest hydroclimatic variability, we relate monthly changes

in regional average IDI to SST and 300-hPa meridional wind

anomalies. Relationships with meridional wind anomalies help

to diagnose how the atmospheric circulation shapes drought,

while SST anomalies, especially those over the Pacific Ocean,

may serve as a key source of longer-lead predictability for

drought because of their slow variations and established effects

on global climate (e.g., Dai and Wigley 2000; Kiladis and Diaz

1989). Since a key mode of Pacific SST variability, El Niño–
SouthernOscillation, is related to temperature and precipitation

over the United States (e.g., Ropelewski and Halpert 1986;

Kellner and Niyogi 2015), it is expected to play a role in changes

in drought variability in at least some regions of the Midwest.

Regressions of monthly changes in IDI onto SST anomalies

grouped by 3-month seasons yield few relationships between

regional drought and coherent SST patterns representing

predictable modes of climate variability (Fig. 12). Only the

OhioValley is significantly related to SST patterns (Deser et al.

2010; Messié and Chavez 2011) associated with ENSO. This is

apparent in December–February (Fig. 12a), given the negative

regressions over the tropical central Pacific Ocean, and less so

in June–August (Fig. 12c), as indicated by some semblance of

SSTs related to ENSO in the subtropical and extratropical

North Pacific Ocean. This wintertime relationship makes sense

because precipitation in the Ohio Valley, where appreciable

precipitation is measured during this season, is generally below

average during El Niño events and above average during

La Niña events (Kellner and Niyogi 2015). Otherwise, no sig-

nificant relationships are found between IDI over theNorthern

Great Plains (Fig. 12, bottom row), Central Great Plains, and

Great Lakes regions (not shown for brevity), and SST related

to coherent or predictable modes of climate variability. The

results suggest that the lead-dependent predictability of drought

over these regions and seasons is limited since slow-varying

predictors in the climate system (e.g., SSTs) do not apply.

FIG. 10. Fraction of drought onset and recovery in each region by season.
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Regressions of monthly IDI changes on to 300-hPa meridi-

onal wind anomalies grouped by 3-month season (Fig. 13) in-

dicate that regional droughts are related to clearly defined

wave trains, or alternating areas of anomalous northerly and

southerly winds, across the Northern Hemisphere. Except for

the Ohio Valley in December–February, the wave trains for

the combination of regions and seasons are not related to SSTs

(cf. Figs. 12a and 13a), and are therefore linked to variability

internal to the atmosphere. For the Ohio Valley in December–

February (Fig. 13a), the circulation pattern closely resembles

that commonly associated with ENSO (e.g., Horel andWallace

1981; Rasmusson and Wallace 1983), with a wave train ema-

nating from the western tropical Pacific and arcing over North

America. By contrast, the wave trains related to Northern

Great Plains (Fig. 13, bottom row), Central Great Plains, and

Great Lakes regions (not shown for brevity) are clearly de-

fined, but are confined to the midlatitudes. This indicates that

the wave trains during these seasons are related to variability

internal to the atmosphere, similar to the finding of Seager

et al. (2020) relevant to the Southern Plains. The results suggest

that the wave trains are unlikely to be predictable at lead times

longer than a week or two, given the current predictability

limits of the atmospheric wave trains related to drought in

initialized forecast systems (DeAngelis et al. 2020).

The abundance of regional droughts in the 1930s and 1950s

and the relative scarcity of regional drought after the 1990s

(Fig. 8) motivate us to probe decadal drought occurrence

across the Midwest, as measured by the fraction of time spent

below 20.8 IDI during nine nonoverlapping 10-yr periods

spanning the twentieth and twenty-first centuries (Fig. 14).

Indicated hereby are notable decadal variations in drought

prevalence over the Midwest, and that the drought-prevalent

decades generally occurred early in our period of record, in line

with Mishra and Cherkauer (2010). Drought was especially

prevalent in the 1930s and 1950s, as large portions of the

Midwest experienced an IDI less than 20.8, approximately

2–4 times as often as during the 1990s and 2000s.

Significant increases in annual precipitation from 1920–79 to

1980–2009 (Fig. 14; see also Ford 2014; Pryor et al. 2009) explain

the observed decrease in drought prevalence in the Midwest

during the late twentieth and early twenty-first centuries

(Figs. 8 and 14). Comparing a recent 30-yr period to a prior

60-yr period is a common technique for identifying differences

within precipitation time series (e.g., Peterson et al. 2013;

FIG. 11. Histograms smoothed by a kernel density estimator of monthly IDI change in standardized departures

grouped by season.
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Easterling et al. 2017). Widespread statistically significant in-

creases in annual precipitation were observed over more than

80%of the region (Fig. 15). Increases in annual precipitation of

up to 15%occurred over the climatologically driest areas of the

Midwest, notably the Great Plains and the Upper Midwest.

The climatologically wetter areas in the lower Midwest, Ohio

Valley, and Great Lakes regions have experienced more

modest annual precipitation increases of up to 9% in the recent

30-yr period compared to the prior 60 years.

4. Summary and conclusions

We examined characteristics and predictability of Midwest

drought at local and regional scales using a monthly integrated

drought index (IDI) derived from four land surface models

forced by observed analyses during 1916–2015. This IDI, con-

structed using soil moisture, runoff, and snowwater equivalent,

was employed so that many facets of drought important to the

Midwest may be considered: agricultural, hydrological, and

snow. At local scales, we found large spatial variations of hy-

droclimate, which inspired us to apply a hierarchical cluster

analysis to the IDI to identify regions of coherent drought

variability. We investigated characteristics of drought over

four regions—theNorthernGreat Plains, Great Lakes, Central

Great Plains, and Ohio Valley—and found that the duration of

droughts, when they began and ended, and how they varied in

time differed between the regions. Likewise, we investigated

the predictability of drought over the four regions by relating

the regionally averaged IDI to SSTs and aspects of the large-

scale atmospheric circulation to determine features of the cli-

mate system that may be used to anticipate drought.

The spatial scales of hydroclimatic variability are small

compared to the size of the Midwest, which indicates that

drought should be examined locally or by individual regions in

FIG. 13. Regression of monthly average IDI over the (a)–(d) Ohio Valley and (e)–(h) Northern Great Plains regions and 300-hPa me-

ridional wind grouped by season. Shading indicates regressions significant at p , 0.05.

FIG. 12. Regression of monthly average IDI over the (a)–(d) Ohio Valley and (e)–(h) NorthernGreat Plains regions and SSTs grouped by

season. Shading indicates regressions significant at p , 0.05.
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which hydroclimatic variations are coherent. This conclusion

was based on the monthly correlations between the IDI in four

grid boxes and IDI in all other grid boxes in the Midwest

(Fig. 2). We found that the IDI is related to a small area sur-

rounding each grid box, and that drought variability can be

dissimilar even for locations that are in relatively close

proximity.

Focusing locally, we conclude that of the three variables

examined, soil moisture and runoff overwhelmingly drive

drought during all seasons based on the IDI we employed

(Fig. 3). Correlations between the IDI and soil moisture and

runoff exceed 0.8 during all seasons regionwide, and 0.9 during

the warm seasons. Snow water equivalent plays a secondary

role during the cool seasons of December–February and

March–May in the eastern Great Plains and Great Lakes re-

gion. Regarding precipitation and temperature, which are

forecast by operational prediction centers and are considered

in drought outlooks, we conclude that for all seasons the

magnitude of the correlations between IDI and precipitation

dwarf those between IDI and temperature, indicating the pri-

macy of precipitation in driving drought as measured by this

IDI in the Midwest (cf. Figs. 4 and 5). Significant relationships

between temperature and IDI are found only during June–

August, but the correlations between the two variables is

nonetheless marginal.

Balancing our desire to generalize drought in the Midwest

and to identify regions of coherent hydroclimatic variability,

we separated the Midwest into four regions based on an ob-

jective hierarchical clustering method applied to the IDI

(Fig. 7). The four regions we identified include the Northern

Great Plains, Great Lakes, Central Great Plains, Ohio Valley.

These regions are representative of the area within them, as

greater than three quarters of the grid points in each region are

correlated with the region average at more than 0.7. We

identified differences in the drought characteristics between

each of the four regions based on time series of regionally

FIG. 14. Fraction of each decade that monthly IDI was below 20.8 standardized departures.
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averaged IDI. We found that the variability of IDI, clustering

of low and high IDI episodes in the same decades, and multi-

decadal IDI variability are largely different between each region

(Fig. 8). We further probed the differences in drought charac-

teristics—notably onset, demise, and persistence—between each

region based on a collection of events, whereby droughts begin

when the regional average IDI falls below20.8 and persist until

the regional average exceeds 20.2. Droughts last longer in the

Great Plains regions than they do in the Great Lakes and Ohio

Valley regions (Fig. 9). For example, the Northern Great Plains

was 4 times more likely than the Ohio Valley to experience a

drought lasting at least 12 months. A distinct seasonality is also

noted in drought onset and demise over the Midwest. The pre-

cipitation seasonal cycle is the proximate cause of differences in

drought length, onset, and demise (Fig. 10). The Great Plains

regions experience a single wet season, leading to fewer op-

portunities for drought amelioration, than the Ohio Valley. The

preferred seasons of onset and demise generally follow the

precipitation seasonal cycle, both in terms of mean precipitation

and variability around the mean. Our analyses of regional

drought reaffirm decreases in drought prevalence (Figs. 8 and

14) noted in other studies (e.g., Mo and Lettenmaier 2018). We

conclude that the decrease in drought during 1916–2015 are

related to statistically significant increases in precipitation

throughout the Midwest, with the largest increases observed in

the Great Plains.

The relationships between regional IDI and SSTs and

300-hPa meridional winds were diagnosed to establish whether

slow-varying behaviors in the climate system could be used to

anticipate future droughts. We conclude that only the Ohio

Valley is related to slow-varying SSTs consistent with ENSO

during December–February (Fig. 12), indicating that longer-

lead predictability is limited to only this region and season by

virtue of the persistence of ENSO during this time of the year.

IDI variations in all other seasons and regions are related to

atmospheric wave trains spanning the Pacific–North American

region, highlighting the importance of internal atmospheric

variability in shaping Midwest drought (Fig. 13).

5. Discussion

The overarching objective of our study was to further

establish a predictive understanding of drought in the Midwest

at spatial scales useful to drought early warning efforts. We set

out to identify drought behaviors in coherent regions of

hydroclimatic variability that may be used to anticipate future

droughts, including their key characteristics and relationships

with behaviors elsewhere in the Earth system that may be used

as drought predictors. Our study uses outputs from four land

surface models to quantify drought. While the land surface

models are constrained by estimates of observed conditions

during 1916–2015, it must be noted that a limitation of our study

is that none simulate the land surface perfectly. Nonetheless, the

use of four models should mute biases introduced by a single

model and it does not appear that each of the models are sys-

tematically different since they in large part capture the same

regional drought variability (Fig. 8).

Accurate drought predictions are notoriously difficult, es-

pecially with regard to drought development (see NOAA

Climate Prediction Center’s forecast skill2). ENSO is a primary

predictor of regional climates across the globe, so we focused

on its explanatory power of IDI variability in the Midwest re-

gions we identified. We found just one region and season in

which ENSO plays a key role, that being the region containing

the Ohio Valley during winter. We did, however, find that at-

mospheric wave trains are related to regional hydroclimates in

the Midwest, which indicates some systematic cause of drought.

The current predictability limits of the atmospheric wave trains

related to drought in initialized forecast systems is approxi-

mately two weeks (DeAngelis et al. 2020), which poses a

challenge for subseasonal to seasonal forecasting. However,

recent studies have highlighted Midwest drought prediction

skill stemming from other large-scale teleconnections, such

as that from the Pacific–North American pattern (PNA) and

soil moisture initial states (DeAngelis et al. 2020; Shin et al.

2020; Zhuang et al. 2021), which should serve as a source of

optimism.

A noteworthy feature of regional hydroclimates within the

Midwest is the decreasing prevalence of drought during our

period of record. The decreasing drought prevalence is related

to a wetter epoch in 1980–2009 relative to 1920–79. It must be

noted that this is not a formal attribution of a secular trend to a

wetter climate as a result of anthropogenic influences. Decadal

drought variations have been shown to be a natural component

of the climate system in theMidwest, and specifically the Great

Plains (e.g., Schubert et al. 2004), so while the timing of dry and

wet epochs at the beginning and end of our period of record may

be suggestive of a trend towardwetter conditions, thismay be due

to variability as a result of the natural phasing of wet and dry

FIG. 15. Calendar year average precipitation difference between

1980–2009 and 1920–79. Stippling indicates differences significant

at p , 0.05 based on a bootstrapping approach.

2 https://www.cpc.ncep.noaa.gov/products/expert_assessment/

sdo_verification/med-pct-area.png.
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epochs. Further testing with ensembles of climate model simu-

lations fromwhich the contributions of natural decadal variations

and anthropogenic influences would need to be used to parse

this out.

The observed wetting trend over the Midwest, though re-

ducing the frequency of droughts, has presented the region

with other challenges. These challenges include an increase in

the frequency of abrupt transitions between flooding and

drought, as evidenced by record flooding in 2011, followed by a

billion-dollar drought disaster in 2012, which was followed by

wetness in 2013 (Ford et al. 2021). Further study on the pre-

dictability, variability, and long-term changes in drought and

the transition from drought to flooding are essential for a re-

gion vulnerable to hydroclimatic extremes.
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