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ABSTRACT

An observing system simulation experiment is used to examine the impact of assimilating water vapor–

sensitive satellite infrared brightness temperatures and Doppler radar reflectivity and radial velocity observa-

tions on the analysis accuracy of a cool season extratropical cyclone. Assimilation experiments are performed

for four different combinations of satellite, radar, and conventional observations using an ensemble Kalman

filter assimilation system. Comparison with the high-resolution ‘‘truth’’ simulation indicates that the joint

assimilation of satellite and radar observations reduces errors in cloud properties compared to the case in

which only conventional observations are assimilated. The satellite observations provide the most impact in

the mid- to upper troposphere, whereas the radar data also improve the cloud analysis near the surface and

aloft as a result of their greater vertical resolution and larger overall sample size. Errors in the wind field are

also significantly reduced when radar radial velocity observations were assimilated. Overall, assimilating both

satellite and radar data creates the most accurate model analysis, which indicates that both observation types

provide independent and complimentary information and illustrates the potential for these datasets for im-

proving mesoscale model analyses and ensuing forecasts.

1. Introduction

Correctly analyzing clouds and cloud cover within

numerical weather prediction (NWP) models is vital to

producing accurate forecasts of high-impact weather

events (e.g., Polkinghorne and Vukicevic 2011). Cloud

processes are inherently nonlinear with complex inter-

actions occurring between various cloud microphysical

species. Many advances in cloud microphysical param-

eterization schemes have been made in recent years, but

the full benefit of these changes can only be realized if

the initial cloud analysis is also improved through as-

similation of either direct or indirect observations of

cloud properties. Several potential data sources exist,

but none can provide the complete answer alone.

Observations of cloud properties from surface-based

disdrometers, aircraft, and surface or satellite-based li-

dars represent the most direct measurements, but they

are not optimal for large-scale data assimilation since

they provide observations for very limited spatial and

temporal coverage. Satellite radiances represent the

most numerous and widely available observations of the
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atmosphere and are a critical component of most global

and regional assimilation systems. Satellite sensors

sample outgoing top-of-the-atmosphere radiation in the

form of visible, infrared, and microwave radiances,

producing detailed information about the atmospheric

state, such as moisture, temperature, wind, and cloud

properties. Many prior studies have shown that forecast

skill is improved when satellite-derived water vapor and

temperature profile retrievals or infrared and micro-

wave radiances are assimilated using a radiative transfer

model (RTM) (e.g., Derber andWu 1998; McNally et al.

2000; Bouttier and Kelly 2001; Chevallier et al. 2004;

McNally et al. 2006; Le Marshall et al. 2006; McCarty

et al. 2009; Collard and McNally 2009). Additional

studies have also shown that assimilation of cloudy

infrared observations in both ensemble and varia-

tional assimilation systems improves the 3D cloud

structure and forecast skill in cloud-resolving and global

circulation models (Vukicevic et al. 2004, 2006; Reale

et al. 2008; Otkin 2010, 2012a,b; Stengel et al. 2010;

Seaman et al. 2010).

Networks of surface radars provide another source

of cloud information. In the contiguous United States

(CONUS), a network of approximately 140 Weather

Surveillance Radar-1988 Dopplers (WSR-88Ds) pro-

vide high-resolution 3D volume scans of reflectivity and

radial velocity (Crum and Alberty 1993) in precipitating

areas. Various cloud microphysical properties, such as

phase, particle size, and number concentration can be

inferred from the reflectivity data. During the past de-

cade, many studies have examined the potential for as-

similating these data into storm-scale NWP models to

improve the representation of precipitation (often con-

vective) within the model analysis (e.g., Weygandt et al.

2002; Snyder and Zhang 2003; Zhang et al. 2004; Aksoy

et al. 2009, 2010; Dowell et al. 2011).

Many of these studies employ high-resolution (,5 km)

grids that explicitly resolve the precipitation features

using variational techniques (e.g., Gao et al. 1999, 2004;

Weygandt et al. 2002;Gao and Stensrud 2012).Additional

studies have focused on using an ensemble approach that

has the advantage of providing a flow-dependent back-

ground covariance (Snyder and Zhang 2003; Zhang et al.

2004; Aksoy et al. 2009, 2010; Dowell et al. 2011;

Yussouf and Stensrud 2012). Most prior research has

focused on assimilating radial velocity measurements to

improve the accuracy of the wind fields while also em-

ploying reflectivity data to generate an accurate micro-

physical representation of convection (e.g., Aksoy et al.

2009, 2010). Assimilating reflectivity has proven more

difficult because of large uncertainties on the relationship

between reflectivity and various cloud microphysical pa-

rameters as well as how best to handle precipitation-free

areas. Using an ensemble-based approach to assimilate

these data has been shown to reliably handle these un-

certainties (e.g., Caya et al. 2005). Since radar reflectivity

is a measure of precipitation characteristics much like

cloudy satellite radiances are a measure of cloud prop-

erties, similar challenges when assimilating each into

NWP models apply to both.

Satellite radiances and radar reflectivity represent two

fundamentally different observation types. Infrared ra-

diances are sensitive to temperature and moisture in

clear-sky regions while also providing information about

cloud microphysical properties in cloudy regions. Radar

reflectivity is most sensitive to large precipitation-sized

hydrometers in the cloud interior, with radial velocity

observations providing information on their motion.

Although radar data have higher spatial and temporal

resolutions than satellite observations, satellites provide

information where surface radars are not present such as

over the oceans and in clear skies. In addition, non-

precipitating cloud hydrometeors are often too small to

return appreciable radar reflectively, while satellite radi-

ances are generally sensitive to these small cloud particles.

Since both sensors provide complementary information,

assimilating both into NWP models should prove ad-

vantageous. However, the potential gains possible from

combining these datasets remain largely unexplored.

To assess this potential, this study uses an observing

system simulation experiment (OSSE) to explore the

use of both satellite radiances andWSR-88D reflectivity

and radial velocity data for assimilation onto a meso-

scale model grid for a case study that occurred on 24

December 2009. This event corresponds to a significant

winter storm in the southern plains and severe convec-

tion over the Mississippi Valley. Using an OSSE allows

us to examine the potential for future satellite obser-

vations such as those from the Advanced Baseline Im-

ager (ABI) on board the Geostationary Operational

Environmental Satellite-R (GOES-R) satellite (Schmit

et al. 2005) to improve NWP model forecasts. To take

advantage of the high temporal resolution of these ob-

servations (;5min), an ensemble Kalman filter (EnKF)

approach is used (Kalman 1960). The primary advan-

tage of this approach is that it provides a flow-dependent

and dynamically evolving estimate of the background

error covariance (Evensen 1994). This is especially

important for both satellite and radar data as they can

vary significantly with space and time (Heemink et al.

2001).

This study represents one of the first attempts at

assessing the synergistic qualities of assimilating both

satellite radiances and radar reflectivity and radial ve-

locity in a mesoscale environment. It continues recent

work by Otkin (2012b) that examined the potential
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impact of the three water vapor–sensitive infrared bands

on theABI to improve forecasts of a high-impact weather

event. Section 2 provides a description of the event and the

high-resolution truth simulation. Section 3 discusses the

simulated observation types with section 4 outlining

the assimilation configuration. The characteristics of the

assimilated observations are provided in section 5 with

section 6 describing observation diagnostics during the

assimilation period.

Comparisons of truth data with experiments that as-

similate conventional, satellite, and/or radar observations

(Table 1) are provided in section 7. Conclusions follow in

section 8.

2. Truth simulation

A truth simulation depicting the evolution of a strong

midlatitude cyclone and associated areas of precipitation

across the central United States on 24 December 2009 is

generated using version 3.3 of the Advanced Research

WeatherResearch and ForecastingModel (WRF-ARW)

(Skamarock et al. 2008), hereafter labeled as ‘‘truth.’’

Global 0.58 FNL (final) analyses from NCEP are used to

initialize and provide boundary conditions for the sim-

ulation starting at 0000 UTC 23 December 2009 on an

11003 750 gridpoint domain covering CONUSwith 6-km

horizontal grid spacing and 52 vertical levels (Fig. 1),

which is integrated over the next 48 h and output at

5-min intervals. The vertical grid spacing decreases from

,100m in the lowest km to ;700m near the model top

at 10 hPa. The truth simulation uses the WRF single-

moment 6-class mixed-phase microphysics scheme

(WSM6), the Yonsei University planetary boundary

layer scheme (Hong et al. 2006), the Kain–Fritsch cu-

mulus parameterization scheme (Kain and Fritsch 1993;

Kain 2004), and the Rapid Radiative Transfer Model

(RRTM) longwave and shortwave radiation schemes

(Iacono et al. 2008) to parameterize subgrid-scale

FIG. 1. 1) Truth simulation, 2) forecast model, and 3) verification domains used in this study.

All domains have a horizontal resolution of 15 km with 52 vertical levels. Locations of the 13

WSR-88Ds are located within the verification domain.

TABLE 1. Observation types assimilated into each experiment.

Expt Observation types

CONV Conventional observations only

(ASOS, ACARS, raob)

SAT Conventional 1 6.95-mm ABI

clear and cloudy radiances

RAD Conventional 1 radar reflectivity

and radial velocity

RADSAT Conventional 1 radar 1 satellite
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processes. The Noah land surface model is used to

compute surface heat and moisture fluxes. The truth

simulation is used as the comparison dataset to evaluate

the skill of each experiment during the assimilation pe-

riod.

Atmospheric conditions from the truth simulation are

displayed in Fig. 2. This event is characterized by a sig-

nificantwinter storm in the southern plains that deposited

over 15 cm of snow in many locations. At 1200 UTC,

ongoing liquid precipitation transitions to snow as a re-

sult of strong cold air advection (Fig. 2a). Farther east in

Louisiana and Arkansas, much warmer conditions exist

with southerly winds advecting warm, moist air from the

Gulf of Mexico, leading to strong convective activity. In

both regions, the 850-hPa relative humidity often exceeds

90% indicating that ample moisture is present for sig-

nificant precipitation to occur (Fig. 2b). The large-scale

forcing for this system is provided by a deep 500-hPa

trough across the central United States producing strong

northwesterly flow from Canada all the way into central

Texas (Fig. 2c). The high moisture content and strong

large-scale forcing led to substantial cloud cover within

and ahead of the trough, as shown by the high cloud

water path values (.1.0 kgm22) (Fig. 2d). The wide

FIG. 2. Truth simulation at 1200 UTC 24 Dec 2009 for (a) 2-m temperature, (b) 850-hPa relative humidity, (c) 500-hPa heights and wind

speed, and (d) cloud water path.
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variety of weather conditions present during this event

provides a unique opportunity to examine the relative

impacts of satellite and radar data assimilation.

3. Simulated observations

a. Conventional

Simulated observations are generated from truth for

a variety of observation types representing conventional,

satellite, and radar data. Conventional observations,

considered to be those most commonly assimilated into

NWP models, include those from Automated Surface

Observing System (ASOS), Aircraft Communications

Addressing and Reporting System (ACARS), and ra-

diosonde instruments. For each ASOS location, 10-m

wind speed and direction, 2-m temperature and hu-

midity, and surface pressure observations are generated

from the truth simulation at 5-min intervals. Similarly,

vertical profiles of temperature, humidity, and wind

speed and direction are created for each radiosonde

location at standard launch times of 0000 and 1200UTC.

Finally, simulated ACARS temperature and wind ob-

servations are generated along real flight tracks reported

in the Meteorological Assimilation Data Ingest Files

(MADIS). Observation measurement errors for each

observation are drawn from uncorrelated Gaussian error

distributions that are based on a given sensor’s accuracy.

b. Satellite

Simulated infrared radiances are computed using the

Successive Order of Interaction (SOI) forward radiative

transfer model developed by Heidinger et al. (2006) and

are converted to brightness temperatures (TB) using

a mathematical transformation. The SOI model uses the

CompactOPTRAN code from the Community Radia-

tive Transfer Model (CRTM; Han et al. 1995) to com-

pute gas optical depths for eachmodel layer. Absorption

and scattering properties, such as the full scattering

phase function, single scatter albedo, and extinction ef-

ficiency, for each frozen hydrometeor species (i.e., ice,

snow, and graupel) are obtained from Baum et al.

(2005). Lorenz–Mie calculations use a lookup table ap-

proach for the liquid species (i.e., cloud water and

rainwater). Visible cloud optical depths are calculated

for each microphysical species based on Han et al.

(1995) and Heymsfield et al. (2003), and then converted

into infrared cloud optical depths by scaling the visible

optical depths by the ratio of the extinction efficiencies.

Cloud-top pressure is not treated as an individual pa-

rameter. The surface emissivity for each ABI infrared

band is obtained from the global emissivity database for

land grid points (Seaman et al. 2010). For water points,

the CRTM Infrared Sea Surface Emissivity Model com-

putes the surface emissivity. WRF data used by the SOI

model to compute simulated TB include the water vapor

mixing ratio, atmospheric temperature, surface skin

temperature, 10-m wind speed, and the mixing ratios for

each hydrometeor species predicted by the microphysics

parameterization scheme. Previous studies have shown

that the SOI model computes accurate infrared TB for

both clear- and cloudy-sky conditions (Otkin and

Greenwald 2008; Otkin et al. 2009).

Simulated ABI 6.95-mm TB are generated using the

SOI forward radiative transfer model. This band is

sensitive to water vapor content in the middle and upper

troposphere with the peak of the vertical weighting

function occurring near 6 km for clear-sky conditions

(Fig. 3a). This value varies somewhat as a function of

total water vapor content and cloud height. A weighting

function profile specifies the relative contribution from

each atmospheric layer to the radiation emitted to space

and thereby determines those regions of the atmosphere

that are sensed at a given wavelength. The ABI obser-

vations are computed on the 6-km truth grid, which are

then averaged to a 30-km resolution prior to assimi-

lation. Averaged observations are only used if all of

the grid points within each averaging area are either

clear or cloudy. Binary cloud fraction was used to avoid

representativeness issues associated with a partly

cloudy scene. Cloudy grid points are defined as those

whose cloud optical thickness (COT) for any of the

predicted microphysical species greater than zero. The

observation error for the 6.95-mm TB is set to 5K for

both clear-sky and cloudy-sky observations account-

ing for uncertainties in the RTM forward operator as

well as those associated with model and representa-

tiveness errors. This error value was chosen based on

prior results from sensitivity tests performed for this

case study (Otkin 2012b). For verification purposes,

simulated 6.95-mm TB are generated from the truth and

ensemble mean experiment analysis fields at 15-km

resolution.

c. Radar

Synthetic WSR-88D reflectivity and radial velocity

observations are generated from the truth simulation for

13 radar locations in the south-central United States

(Table 2) at 5-min intervals from 1100 to 1200 UTC

24 December 2009 using the radar simulator program

contained within the Data Assimilation Research

Testbed (DART) software (Anderson et al. 2009).

Observations are obtained up to a height of 15 km using

the volume coverage pattern (VCP) 21 WSR-88D scan

strategy commonly employed during convective epi-

sodes with a 68 azimuthal increment (Fig. 3b) (Crum
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and Alberty 1993). Simulated radar gate length is set at

15km, with the closest and farthest gates at 3 and 240km,

respectively. The entire radar volume is simulated at 5-min

intervals; thus, each represents one snapshot of the entire

3D distribution of precipitation in the atmosphere. The

radar simulator computes reflectivity and precipitation fall

speed, which is needed to calculate the radial velocity,

based on parameters consistent with the Lin (Lin et al.

1983) microphysics scheme. To account for typical ob-

servations errors, the error for reflectivity and radial

velocity are set to 5 dBZ and 2m s21, respectively.

4. Model configurations and verification

A 48-member WRF ensemble with perturbed initial

and lateral boundary conditions is created using the

methodology described by Torn et al. (2006). Initial and

boundary conditions are taken from Global Forecast

System (GFS) analysis fields with perturbations applied

at 6-h intervals starting at 0000 UTC 23 December 2009.

The assimilation experiments employed the same ver-

tical resolution (52 levels) as the truth simulation, but

were performed over a smaller spatial domain contain-

ing 15-km horizontal grid spacing (272 3 216 grid

points) (Fig. 1). As with the truth simulation, the WRF

experiments use the WSM6 mixed-phase microphysics

scheme, the Yonsei University planetary boundary layer

scheme (Hong et al. 2006), the Kain–Fritsch cumulus

parameterization scheme (Kain and Fritsch 1993; Kain

2004), the RRTM longwave and shortwave radiation

schemes (Iacono et al. 2008), and the Noah land surface

model. The control variables used during each assimila-

tion cycle include temperature, specific humidity, zonal

and meridional wind, condensational heating, and cloud

microphysical variables at each model level (Table 3).

FIG. 3. (a) Simulated GOES-R ABI 6.95-mm vertical weighting function for clear-sky radiances as a function of

height. (b) WSR-88D VCP-21 elevation scans as a function of height and range from a radar.

TABLE 2. WSR-88D locations and elevations (AGL) where

simulated radar reflectivity and radial velocity data are generated

from the truth simulation.

Location Name Lon (8W) Lat (8N) Elev (m)

Fredrick, OK KFDR 98.9764 34.3622 364

Little Rock, AR KLZK 92.2622 34.8364 193

Amarillo, TX KAMA 101.709 35.2333 1113

Lubbock, TX KLBB 101.814 33.6542 1013

Dyess AFB, TX KDYX 99.2544 32.5383 477

Fort Worth, TX KFWS 97.3031 32.5731 228

Twin Lakes, OK KTLX 97.2778 35.3331 384

Vance AFB, OK KVNX 98.1278 36.7408 379

Tulsa, OK KINX 95.5647 36.1750 224

Fort Smith, AR KSRX 94.3617 35.2906 215

Shreveport, LA KSHV 93.8414 32.4508 113

Springfield, MO KSGF 93.4006 37.2353 414

Fort Polk, LA KPOE 92.9758 31.1556 139
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The ensemble is allowed to freely evolve starting at

0000 UTC 23 December and continues until 0900 UTC

24 December. No observations are assimilated during

this time, thereby providing an initial analysis for the

assimilation experiments that is sufficiently different

from truth. Beginning at 0900 UTC, simulated conven-

tional temperature, wind, and surface pressure observa-

tions are assimilated at 5-min intervals until 1100 UTC

24 December using a horizontal (vertical) covariance

localization half radius of 300 (6) km with a fifth-order

correlation function following Gaspari and Cohn (1999).

For humidity observations, the horizontal localization

radius is set to 250km to account for the smaller spatial

scale of the moisture structures. The assimilation of con-

ventional observations during this time period ensures

that the ensemble covariances are realistic at the begin-

ning of the assimilation experiments starting at 1100UTC.

It is necessary to ensure that the 1100 UTC ensemble

mean initial conditions differ sufficiently from truth be-

fore proceeding with these experiments. Figure 4 shows

the differences (ensemble mean 2 truth) for 500-hPa

temperature (T500), water vapor mixing ratio (QV500),

total cloudwater path (QA500), and 850-hPa cloudwater

path (QA850). The total cloud water path (QALL) is

defined as the summation of cloud liquid water, cloud ice,

graupel, snow, and rain mixing ratio variables from the

model analysis (Otkin 2010). This variable is created to

provide a measure of the effects of assimilating both

satellite and radar data on the bulk characteristics

of cloud properties. It is clear that significant differ-

ences exist between the initial condition and truth.

The 1100UTC ensemblemean analysis has a large warm

bias exceeding 2K in the northwestern quadrant of the

verification domain with a similar, but slightly smaller in

magnitude, cold bias in the southwest (Fig. 4a). Farther

east, another region of warm biases exists from eastern

Texas northward through central Arkansas. Several

differences in the water vapor analyses are also ap-

parent with moist biases on the order of 1 g kg21 being

present in central Texas and Oklahoma as well as over

most of Arkansas (Fig. 4b). Dry biases exist in between

and in the far eastern portions of the domain. Similar

differences exist in the QALL fields at 500 hPa with

a large area of greater cloud water content (thicker

clouds) in the analysis compared to truth located in cen-

tral Arkansas (Fig. 4c). Farther east, the analysis appears

to have less cloud cover indicating a displacement in the

convection with the truth and analysis fields at this time.

Additional differences are present farther west in Okla-

homa and central Texas. These differences are also ap-

parent at lower in the atmosphere at 850hPa where they

are present over a large portion of the domain (Fig. 4d).

The differences between the truth and analysis fields

indicate that the experiment design is sufficient for as-

sessing the impact of assimilating simulated remote

sensing observations.

Beginning at 1100 UTC, four assimilation experi-

ments are initiated, with observations assimilated every

5min until 1200 UTC. The assimilation frequency was

chosen based on results from previous studies that in-

dicated that approximately 1 h of data are required to

accurately reproduce precipitation features within a

model analysis (e.g., Snyder and Zhang 2003; Caya et al.

2005; Xue et al. 2006). The first experiment represents

the control case (CONV) in which only conventional

observations are assimilated (Table 1). The selection

of this experiment as the ‘‘control’’ is based on several

factors. For example, the need to assimilate conven-

tional variables between 0900 and 1100 UTC suggests

that continuing to assimilate these variables would be

desirable. Furthermore, conventional observations are

going to be part of any operational system; thus, it is

important to show that the remote sensing observations

show increased skill over using conventional observations

alone. The following experiments assimilate simulated

ABI 6.95-mm TB across the entire domain (SAT) and

WSR-88D reflectivity and radial velocity from 13 radar

locations across the southern plains (RAD), in addition

to conventional observations. The horizontal localiza-

tion radii are set to 50 and 25 km, respectively, for the

satellite and radar observations (Table 2). Vertical

TABLE 3. List of control variables used during the assimilation

experiments. The terms ‘‘2M’’ and ‘‘10M’’ refer to 2m and 10m

above ground level, respectively.

Variable name

1. U_WIND_COMPONENT

2. V_WIND_COMPONENT

3. U10M_WIND_COMPONENT

4. V10M_WIND_COMPONENT

5. VERTICAL_VELOCITY

6. GEOPOTENTIAL_HEIGHT

7. POTENTIAL_TEMPERATURE

8. POTENTIAL_TEMPERATURE_2M

9. TEMPERATURE_2M

10. PRESSURE

11. SURFACE_PRESSURE

12. SKIN_TEMPERATURE

13. VAPOR_MIXING_RATIO

14. VAPOR_MIXING_RATIO_2M

15. CLOUD_LIQUID_WATER

16. RAINWATER_MIXING_RATIO

17. CLOUD_ICE

18. SNOW_MIXING_RATIO

19. GRAUPEL_MIXING_RATIO

20. SOIL_TEMPERATURE

21. SOIL_MOISTURE

22. CONDENSATIONAL_HEATING
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localization does not apply to the satellite observations

given that they are sensitive to broad layers of the

atmosphere (Otkin 2012a). Assimilating the full CONUS-

wide complement of radars proved too resource intensive,

so the subset of radars corresponding to areas of pre-

cipitation are selected for assimilation. To differentiate the

effects of assimilating radar reflectivity versus radial ve-

locity, each is also assimilated separately in individual

experiments. The final experiment (RADSAT) combines

both the satellite and all radar data with the conventional

observations to assess the combined impacts of assimi-

lating all observation types.

The accuracy of each experiment is evaluated by

comparing the ensemble mean analysis after the final

assimilation cycle at 1200 UTC with the corresponding

truth simulation. The truth analyses are coarsened to

15-km resolution using a simple average of the 6-km

data for comparison with the assimilation results. The

validation focuses on a subset of the CONUS domain

that includes the regionwhere radar data are assimilated

(Fig. 1) since the radar data should have little impact on

the model analysis outside of this region. Satellite data

are assimilated over the full domain; thus, improve-

ments made by these observations outside the sub-

domain used for validation are not fully accounted for.

Although this reduces the apparent impact of the sat-

ellite observations, this is acceptable since our goal is to

compare the relative impacts of assimilating radar and

FIG. 4. Difference between 1100 UTC ensemble mean initial conditions and corresponding truth analysis for (a) 500-hPa temperature

(T500), (b) water vapor mixing ratio (QV500), (c) total cloud water content (QA500), and (d) 850-hPa total cloud water content

(QA850). Shaded areas indicate where the experiment is warmer (or too moist) than the truth and contour lines indicate where it is

colder (or too dry).
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satellite data where both exist. Simple statistics such as

bias (experiment 2 truth) and root-mean-square error

difference (RMSD) are computed between truth and

ensemble mean analysis fields such as temperature,

water vapor, and wind speed and direction. Skill scores,

including probability of detection (POD), false alarm

rate (FAR), and the Heidke skill score (HSS), are also

computed (Wilks 2006).

5. Assimilation statistics

A total of approximately 2.05 million observations are

assimilated during the RADSAT experiment over the

entire domain, which decreases to 1.86 million when

only the verification domain is considered (Table 4).

Conventional observations represent the lowest pro-

portion of observations assimilated, accounting for

only 0.45% and 0.71% of the total for experiment and

verification domains, respectively. The distribution of

conventional observations assimilated between 1100

and 1200 UTC within the verification domain is shown

in Fig. 5a. Radiosonde and surface observations are

relatively sparse, with a slightly larger number of

ACARS observations present. However, the ACARS

observations are primarily limited to a few individual

flight tracks or centered around major airports. Com-

pared to conventional observations, many more satel-

lite and radar observations are assimilated during this

period (Table 4; Fig. 5b). Simulated satellite TB (av-

eraged to 30-km horizontal resolution) account for

1.0% of the observations being assimilated into the

RADSAT experiment in the verification domain, but

account for 59% of the data in the SAT experiment

when no radar observations are assimilated. Approxi-

mately 80% of the satellite observations assimilated

within the verification domain are classified as cloudy.

Radar reflectivity and radial velocity observations are

by far the most numerous observation type assimilated,

accounting for ;92% and 98% of the observations for

experiment and verification domains, respectively. This

is due to the high vertical and horizontal resolution of

the radar observations and the inclusion of two radar

variables (radial velocity and reflectivity). The much

larger number of radar observations assimilated in the

RAD and RADSAT experiments compared to those

from satellite data strongly suggests that the radar data

will have a much larger impact on the model analysis.

This increases the difficultly in comparing the relative

impact of the radar and satellite observations; however,

thinning the radar data to a comparable resolution pro-

duces an unrealistic dataset. It should also be noted that

the impact of observations is not solely a function of their

number, but also the number of model grid points that

they update. The larger radius of the satellite data allows

it to update a greater number in the horizontal, but radar

data has the potential to affect many more model levels.

Since these experiments are designed to mimic observa-

tions generated under real-world conditions, the higher

resolution of radar data products compared to currently

available satellite products is unavoidable. Further re-

search is under way to create and test higher-resolution

satellite observations to reduce the gap between radar

and satellite sample sizes.

6. Assimilation characteristics

a. Observation diagnostics

To assess the viability of assimilating simulated satellite

and radar data into thesemodel experiments, observation-

space diagnostics (e.g., Dowell et al. 2011) including

bias, RMSD error, and ensemble spread (SPRD) are

calculated for 6.95-mm TB, radar reflectivity, and radial

velocity between 1100 and 1200 UTC at each 5-min as-

similation cycle for all assimilated observations over the

entire experiment domain. For reference, the observation

error is not included as part of the ensemble spread var-

iable and RMSD calculations include biases present. The

latter is consistent with previous methodology by Dowell

et al. (2011) and Yussouf and Stensrud (2012) among

others to determine the effectiveness of ensemble as-

similation process. Results are shown for the RADSAT

experiment that assimilates all three observation types.

Error and spread for satellite and radar observations

individually within SAT and RAD are similar. Roughly

TABLE 4. Number of assimilated observations in the RADSAT

experiment for the entire model domain N2 and within the verifi-

cation domain N3 only. Numbers correspond to the domain labels

in Fig. 1.

Observation type N2 N3

SIM_RAWIN_U_WIND_COMPONENT 1355 283

SIM_RAWIN_V_WIND_COMPONENT 1337 279

SIM_RAWIN_TEMPERATURE 1410 288

SIM_RAWIN_VAPOR_MIXING_RATIO 1420 289

SIM_SFC_U_WIND_COMPONENT 10 153 1820

SIM_SFC_V_WIND_COMPONENT 10 153 1820

SIM_SFC_TEMPERATURE 10 137 1820

SIM_SFC_VAPOR_MIXING_RATIO 10 153 1820

SIM_SFC_SURFACE_PRESSURE 8553 1775

SIM_ACARS_U_WIND_COMPONENT 6714 986

SIM_ACARS_V_WIND_COMPONENT 6711 985

SIM_ACARS_TEMPERATURE 6712 987

DOPPLER_RADIAL_VELOCITY 937 772 935 882

RADAR_REFLECTIVITY 897 884 895 998

ABI_BAND09_INFRARED_ TB 148 677 18 658

TOTAL 2059 141 1 863 690

OCTOBER 2013 JONE S ET AL . 3281



11 000 satellite observations are assimilated during each

cycle with an initial RMSD of 3.0K, SPRD of 2.4K, and

a bias of20.4 at 1100 UTC prior to the first assimilation

(Fig. 6a). These values drop to 2.1, 1.8, and20.4K in the

posterior analysis at the same time. The classical saw-

tooth pattern follows in each assimilation cycle with

a general decrease in RMSD and SPRDoccurring out to

1130 UTC. After this time, RMSD ranges between 1.3

and 1.5K with SPRD ranging between 1.2 and 1.4K. Bias

remains slightly negative near20.25K. The ratio between

the ensemble spread and RMSD stabilizes after a few

assimilation cycles to a value of approximately 0.85.

The assimilation characteristics of radar reflectivity

and radial velocity are similar to those present for sat-

ellite TB. At 850 hPa, RMSD for reflectivity rapidly

decreases from 7.9 dBZ in the 1100 UTC prior fields to

1.7 dBZ in the posterior fields by 1120 UTC (Fig. 6b).

The number of observations slowly increases as a

function of time from 5300 to 6200 as the prior and

posterior reflectivity become more similar, thereby re-

ducing the number of rejected observations. (Note that

radar reflectivity data are being assimilated throughout

the atmospheric column, not just the 850-hPa level

shown here for reference.) Bias ranges between 0.0 and

0.5 dBZ with SPRD being somewhat lower than RMSD

throughout the assimilation period. Assimilating radial

velocity has the greatest impact early in the assimilation

cycle quickly reducing prior and posterior RMSD from

4.0 and 1.7ms21 to 1.7 and 1.4ms21 by 1120UTC (Fig. 6c).

SPRD is lower ranging from 0.7m s21 in prior fields to

0.4m s21 in posterior fields while bias converges to

slightly below zero after the initial assimilation cycle.

The diagnostics for radar data at other levels are con-

sistent with the 850-hPa data shown here except that the

number of observations being assimilated decreases as

a function of height. The somewhat lower SPRD com-

pared to RMSD for the radar reflectivity and radial

velocity observations indicates that the ensemble spread

is underdispersive; however, no ensemble divergence is

observed during the assimilation. The effects of assimi-

lating these data on model state variables such as tem-

perature, humidity, and wind velocity are examined

below for each assimilation cycle and experiment.

b. Bias and RMSD between 1100 and 1200 UTC

Bias and RMSD are calculated between the truth and

experiment output at each assimilation cycle within the

verification domain to assess the effects of assimilating

radar and satellite data as a function of time for 500-hPa

temperature (T500), water vapor mixing ratio (QV500),

zonal and meridional wind components (U500, V500),

and total cloud water content (QA500). RMSD for T500

begins at 1.2K with a corresponding positive bias of

0.37K for the CONV experiment with only a slight de-

crease out to 1155 UTC (Fig. 7a). SAT generally lowers

the bias and RMSD by up to 0.2K compared to CONV,

with the improvement increasing with time. The bias and

RMSDare also reduced during theRADexperiment, but

FIG. 5. Location of assimilated (a) conventional and (b) satellite and radar observations on 1200UTC 24May. Rings indicate 240-km radii

from each WSR-88D location representing the maximum range for which radar data are simulated and assimilated.
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the effects are generally smaller than SAT. In RADSAT,

the error characteristics are similar toRADand generally

lie between SAT and RAD with respect to RMSD. A

significant reduction in both bias and RMSD occurs at

1200 UTC due to the assimilation of vertical tempera-

ture profiles from simulated radiosonde observations.

The assimilation of simulated radiosonde observations

at 1200 UTC decreases both bias and RMSDmore than

assimilating either the satellite and radar observations

despite the limited radiosonde observation sample size.

Larger differences between model experiments are

apparent in themoisture, wind, and cloudwater fields. The

CONV experiment produces a bias and RMSD of 20.08

and 0.5 gkg21 at 1100 UTC whose magnitude slowly de-

creases as a function of time (Fig. 7b). Both satellite and

radar data reduce RMSD compared to CONV, with the

RADSAT experiment consistently characterized by the

lowest RMSD for all assimilation cycles. Bias for RAD

and RADSAT closely follow CONV with SAT having

a slightly larger dry bias by 1200 UTC. The effects of the

radiosonde assimilation are still noticeable at 1200 UTC,

but are much less significant than for temperature in-

dicating that both the radar and satellite data are pro-

viding valuable information that augments conventional

observations.

The effects of assimilating satellite data on the wind

fields is comparatively small while the effect of assimi-

lating radar data, primarily radial velocity observations, is

quite large (Fig. 7c). For U500, RMSD exceeds 4.0m s21

at all cycles in CONV with SAT being almost identical.

However, SAT introduces negative zonal biases of in-

creasing magnitude that changes its sign from negative

to positive with the difference exceeding 1.0m s21 after

1130UTC. TheRADandRADSAT experiments reduce

RMSD by up to 2.0m s21 compared to CONV primarily

through the assimilation of radial velocity. An experi-

ment assimilating only radar reflectivity generates wind

velocity errors similar to those shown for CONV (not

shown). The error characteristics for V500 are similar ex-

cept that the magnitude of bias and RMSD are somewhat

larger and SAT appears to perform slightly worse than

CONV after 1140 UTC (Fig. 7d).

The final variable considered is QA500, which repre-

sents the summation of all liquid and frozen cloudmixing

ratio variables at 500 hPa (Fig. 7e). Assimilating con-

ventional observations has minimal effect on QA500,

with a nearly constant RMSD and bias during the as-

similation period. Compared to the CONVcase, the SAT

experiment reduces RMSDup to 0.05g kg21 with smaller

improvements occurring in the bias. Much larger im-

provements occur in theRMSDand bias during theRAD

experiment with RMSD dropping nearly 0.2 g kg21 from

its initial 1100 UTC value. RADSAT consistently pro-

duces the lowestRMSD for assimilation cycleswith a bias

similar to that of RAD, which indicates that both remote

sensing datasets provide independent and complemen-

tary information.

7. Analysis verification at 1200 UTC

a. Conventional variables

Model output from each experiment at 1200 UTC is

compared with the corresponding truth simulation to

FIG. 6. Bias, RMSD, and SPRD for (a) 6.95-mm TB, (b) 850-hPa

radar reflectivity, and (c) 850-hPa radar radial velocity for prior and

posterior analysis fields at 5-min intervals between 1100 and 1200

UTC. For all panels, ‘‘number’’ refers to the number of observations

assimilated during each cycle.
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determine how assimilating various combinations of con-

ventional, satellite, and radar observations affect the

analysis accuracy. We compare temperature, water va-

por mixing ratio, and wind speed. Figure 8 shows the

difference in 500-hPa temperature between truth and each

experiment. TheCONVexperiment contains warmbiases

in several regions, includingArkansas, east Texas, and the

Texas Panhandle, with cold biases located elsewhere. The

temperature field is not significantly improved in SAT

(Fig. 8b), with the general location and magnitude of the

warm and cold bias regions remaining similar to CONV.

In contrast to SAT, the temperature difference field is

noticeably different when radar observations are assimi-

lated during the RAD experiment (Fig. 8c). However,

these differences are small and do not result in improved

bias and RMSD values compared to CONV (Fig. 8a).

FIG. 7. Time series of bias (B) and RMSD (R) for each experiment between 1100 and 1200 UTC at 5-min intervals following the

assimilation of observations at each cycle for (a) 500-hPa temperature (T500), (b) water vapormixing ratio (QV500), (c) zonal wind speed

(U500), (d) meridional wind speed (V500), and (e) total cloud water (QA500).
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Differences between truth and experiment tempera-

ture fields are not confined to the 500-hPa level, but are

present throughout the entire troposphere. All experi-

ments have a warm bias below 800 hPa with SAT being

slightly warmer than the other experiments (Fig. 9a).

This is followed by a cold bias layer located between 750

and 550 hPa with SAT slightly cooler than the other

experiments with alternating cold and warm biases in

the upper troposphere. Above 800 hPa, the magnitude

of the biases is less than60.5K. RMSD errors decrease

with height up to 500 hPa before increasing at higher

levels. For most levels, SAT has the largest RMSD,

with CONV, RAD, and RADSAT all being similar

with each containing smaller errors at certain levels.

Recall that sounding data provide much of the temper-

ature information in CONV and the other experiments

at this time; thus, only relatively small differences are

apparent.

FIG. 8. (a)–(d) The 500-hPa temperature difference at 1200 UTC 24 Dec 2009 betweenmodel analysis and the truth simulation for each

experiment (experiment2 truth). Shaded areas indicate where the experiment is warmer than the truth and contour lines indicate where it

is colder. WSR-88D locations are also shown in (a).
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Comparing the 500-hPawater vapormixing ratio from

each experiment indicates that assimilating satellite data

has a greater impact on the moisture fields compared to

temperature. The difference in mixing ratio between

CONV and truth is generally smaller (,0.5 g kg21) in

the western half of the domain with somewhat larger

differences to the east (Fig. 10a). Assimilating satellite

data reduces the magnitude of the differences especially

in the eastern portion of the domain (Fig. 10b). Al-

though the bias increases in SAT, the RMSD decreases

from 0.43 to 0.39 g kg21. Radar data assimilation also

improves the moisture analysis with the spatial extent of

the moist and dry bias regions becoming smaller with

a further reduction in the RMSD to 0.34 g kg21 (Figs. 9b

and 10c). The combination of radar and satellite data

assimilation in RADSAT produces the most accurate

analysis (Fig. 10d), with a 25% reduction in the RMSD

compared to CONV (Fig. 9b). All experiments show

a moist bias of up to 0.2 g kg21 between the surface and

700 hPa with a smaller dry bias above (Fig. 9b). SAT

reduces the magnitude of the bias in this lower layer,

but also increases RMSD slightly compared to CONV.

Above 700hPa, SAT lowersRMSDcompared toCONV.

The RAD experiment consistently reduces RMSD com-

pared to CONV from 900hPa up to at least 400hPa above

which moisture concentrations are small. RADSAT

FIG. 9. Vertical profiles of bias (B) andRMSD (R) for (a) temperature, (b) water vapormixing ratio, and (c) zonal and (d)meridional wind

components computed between truth and each experiment at 1200 UTC.
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performs similarly to RAD though slightly lower RMSD

values are evident atmost levels.Most of the improvement

in water vapor mixing ratio error can be attributed to

assimilating radar reflectivity rather than radial velocity

because it is more strongly correlated to atmospheric

moisture content.

For wind speed and direction at 500 hPa, the CONV

analysis is characterized by large areas with differences.
65ms21 (Fig. 11a). The biases in UWIND and VWIND

are relatively low at 20.6 and 0.2ms21 with correspond-

ing RMSDs of 3.9 and 4.7ms21, respectively (Figs. 9c,d).

SAT appears to increase zonal wind speed in portions

of central Texas and western Oklahoma compared to

CONV causing a negative bias in UWIND (20.6m s21)

to switch to a positive bias (0.3m s21; Fig. 11b). RMSD

increases slightly to 4.0m s21, indicating that assimilat-

ing satellite data alone does not improve the zonal wind

field (Fig. 9c). Assimilating radar data, specifically radial

velocity data, has a much larger impact on the wind field

analysis as evident by visual inspection (Fig. 11c). The

magnitude of the differences in wind speed greatly de-

creases and becomes less than 62m s21 where radar

FIG. 10. As in Fig. 8, but for 500-hPa water vapor mixing ratio.
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observations are assimilated. The resulting biases are

small with a large reduction in RMSD representing

a .40% improvement compared to CONV. RADSAT

results are quite similar to the RAD experiment, with

a RMSD of 2.1ms21 (Figs. 9c,d and 11d). The differences

between truth and experiment wind components differ

somewhat as a function of height, but the RAD and

RADSAT experiments consistently have the smallest er-

rors (Figs. 9c,d). One interesting difference between SAT

and CONV is the change in bias for both wind compo-

nents. The bias in UWIND takes on an almost sinusoidal

shape being 21.0m s21 at 750 hPa while increasing to

0.4m s21 at 550 hPa before being 21.0m s21 again at

300 hPa (Fig. 9c). The vertical profile of bias for the

other experiments varies much less with height. Over-

all, these results show that the radar observations pri-

marily in the form of radial velocity have a much larger

impact than the satellite observations on the wind

analysis.

b. Cloud variables

1) QALL

While assimilating both radar and/or satellite data can

positively affect the analysis of temperature, humidity,

and wind fields, the key metric as to the success of these

experiments is how each represents the more complex

cloud-related variables compared to the truth simula-

tion. Vertical error distributions for each individual

mixing ratio variables are then analyzed to assess which

contributes most to improvements observed in the total

cloud water content, previously defined as QALL.

These errors are calculated for all grid points whether or

not a cloud is present.

FIG. 11. As in Fig. 8, but for total wind speed between each experiment and truth.
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At 500 hPa, differences between QALL are confined

to two large areas. The first lies in the central portion of

the domain in Oklahoma and Texas with CONV over-

estimating QALL along a north–south line near 998W
while underestimating QALL just to the east (Fig. 12a).

In the warm sector in the eastern portion of the domain,

a larger area of overestimation exists in southern Missouri

and central Arkansas, sometimes exceeding 2.5 g kg21.

CONVunderestimates QALL along theMississippi River

with a RMSD of 0.34 g kg21 (Fig. 12a). Assimilating

satellite data has amuch larger impact in theQALLfield

at 500 hPa than at 850 hPa (Fig. 12b). The positive bias in

QALL in western Oklahoma is nearly eliminated with

a large reduction in positive bias also apparent in Ar-

kansas, though the distribution and magnitude of the

negative biases changes little. The RAD experiment

performs even better, eliminating nearly all of the posi-

tive and negative biases in QALL except in the far

FIG. 12. (a)–(d) Difference in total cloud water (QALL) at 500 hPa at 1200 UTC 24 Dec 2009 between each experiment and the truth

simulation. Gray to black indicates that the experiment has higher QALL, hence greater cloud cover, than truth. Whites and hatched

indicate the opposite. Also shown in (a) is a black line representing the location of cold sector cross section shown in Fig. 14.
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eastern portion of the domain where there are no radar

observations (Fig. 12c). The combination of radar and

satellite data in RADSAT produces even better results

(Fig. 12d). Similar results are present at 300hPa, but with

SAT having a larger improvement relative to CONV as

compared to 500hPa. The improved performance of the

satellite observations in the middle and upper tropo-

sphere reflects their greater sensitivity to cloud top

properties, with only indirect information about the

lower portion of the cloud field limiting their impact at

lower levels.

2) VERTICAL ERROR PROFILES

To better understand the mechanisms behind these

improvements, it is important to determine which cloud

hydrometeor species exerts the greatest impact on

QALL errors. Figure 12a shows bias and RMSD for

QALL for each experiment as a function of height. All

experiments generally have a low bias, rarely exceeding

60.05 g kg21 with small differences between each ex-

periment. Much larger differences are apparent for

RMSD, especially in the midtroposphere. CONV has

the highest RMSD at all levels ranging from 0.2 g kg21

at 950 hPa to 0.36 g kg21 at 600 hPa before decreasing

again at higher levels. The SAT experiment reduces

RMSDprimarily above 700hPa,withRADandRADSAT

experiments significantly reducing RMSD at all levels.

RADSAT also consistently has the lowest RMSD be-

tween 700 and 500 hPa.

For cloud liquid water (QCLOUD), CONV and SAT

have almost identical RMSD profiles indicating that the

6.95-mm TB have little impact (Fig. 13b). However, ra-

dar reflectivity is directly related to cloud water in the

lower troposphere and has a much larger impact on the

cloud mixing ratio errors. The magnitude and vertical

distribution of errors for cloud rain (QRAIN) is similar

to that for QCLOUD and approaches zero above

600 hPa (Fig. 13c). As with QCLOUD, the RAD and

RADSAT experiments contain the smallest errors,

which are about half of the corresponding CONV

values.

For graupel (QGRAUP), biases are again near zero at

most levels for all experiments with RMSD errors

maximized at the 650-hPa level (Fig. 13d). At this level,

RMSDforCONVis0.23gkg21,which reduces to0.20gkg21

in SAT and to near 0.10 g kg21 in RAD and RADSAT.

Radar data again have the greatest impact, though a

consistent improvement from the satellite data is also

apparent, especially above 700 hPa. Cloud ice mixing

ratio (QICE) is highest in the upper troposphere near

FIG. 13. Vertical profile of bias (B) andRMSD (R) for (a) QALL, (b) QCLOUD, (c) QRAIN, (d) QGRAUP, (e) QICE, and (f) QSNOW

calculated over the verification domain for each experiment at 1200 UTC 24 Dec 2009.
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;400 hPa (not shown) where the largest RMSD also

occurs for each experiment (Fig. 13e). As for the previous

cloud species, CONV consistently has the largest RMSD

with RAD and RADSAT containing the smallest. The

SAT experiment also reduces RMSD above 600hPa, but

has little effect below this layer. Finally, large differences

are present in snow mixing ratio (QSNOW) with the

maximumRMSDreduction occurring at 500hPa (Fig. 13f).

Both SAT and RAD reduce midtropospheric RMSD

compared to CONV with radar data having the larger

impact.

In summary, CONV has the highest RMSD values for

all hydrometeor types followed by the SAT, RAD, and

RADSAT cases. Assimilating radar reflectivity data

accounts for much of the improvement in the RADSAT

case, but the satellite TB observations also provide useful

information, as indicated by the reduction inRMSD from

SAT compared to CONV in the mid- and upper tropo-

sphere. Assimilating radar data has a large impact on the

liquid and frozen hydrometeors while the impact of sat-

ellite data is generally limited to the frozen species in the

mid- and upper troposphere where the 6.95-mm band is

most sensitive.

3) COLD-SECTOR CROSS SECTION

To visualize the effects of assimilating radar and sat-

ellite data on the vertical cloud distribution, a vertical

cross section of QCLOUD, QICE, and temperature tran-

secting the area of winter precipitation across northern

Texas and southern Oklahoma is shown in Fig. 14 (refer

to Fig. 13a for cross-section location). Truth QICE con-

centrations .0.2 g kg21 exist between 550 and 700hPa

west of 988W, and near 400 hPa east of 988W (Fig. 14a).

QCLOUD is greatest at and below the freezing level,

with local maxima near 96.78 and 98.18W (Fig. 14a). The

freezing level decreases from 800 hPa east of 988W to

near the surface farther west, which is consistent with

snowfall observations at this time. The depiction of

these features is much different in CONV (Fig. 14b). For

instance, CONV generates a large area of cloud ice be-

tween 600 and 400hPa west of 988W that is not present in

truth. Farther east, midtropospheric QICE concentra-

tions are near zero compared to the much higher values

generated in truth. QCLOUD also differs significantly

with CONV only showing a single layer of liquid water

near 800 hPa with values rarely exceeding 0.2 g kg21.

Temperature profiles are similar though CONV appears

colder in the 900–700-hPa layer west of 988 and some-

what warmer farther east.

Assimilating remote sensing observations sub-

stantially improves the vertical representation of QICE

andQCLOUD. The SATexperiment eliminates themid-

and upper-tropospheric QICE west of 98.58W present

in CONV (Fig. 14c). The distribution of QICE below

600 hPa also better matches truth, though many small-

scale differences remain. The SAT experiment also

resolves the dual-maximum structure in QCLOUD

present in the truth simulation though it is too far west in

its location. The large improvement in the QICE anal-

ysis is consistent with the improvement in QICE RMSD

shown in Fig. 12e above 500hPawhereas the improvement

inQCLOUD ismore limited, consistent with Fig. 12b. The

temperature fields in SAT are similar to those generated

by CONV.

Assimilating radar reflectivity and radial velocity data

in RAD generates a much different result than either

CONV or SAT. High values of QICE are present be-

tween 700 and 400 hPa from the western edge of the

cross section eastward to 978W (Fig. 14d). Several areas

of localizedmaxima are present with those east of 98.58W
agreeing well with those in truth. However, RAD retains

themid- and upper-troposphericQICEwest of 998Wthat

is also present in CONV, but not SAT. Nearer the sur-

face, the magnitude of QCLOUD increases compared to

either CONVor SAT; however, RAD fails to capture the

higher values east of 96.58W below 700hPa that are

present in truth. The temperature profile is also different

showing several small-scale features west of 988W that

are not present in truth, though the overall freezing level

location is correct. The combined RADSAT experiment

maintains improvementsmade during theRADand SAT

experiments, and thus generates the most accurate rep-

resentation of this cross section (Fig. 14e). For instance,

RADSAT does not contain the erroneous mid- and

upper-tropospheric QICE present in CONV and SAT

west of 998W, but does have the higher values to the east.

The location and magnitude of the maximum QICE

concentrations are also more similar to truth. Overall,

the greatest increase in skill along this cross section oc-

curs when both satellite and radar data are assimilated.

c. Satellite 6.95-mm TB

To assess the impact of assimilating satellite and radar

data on their respective analysis fields, we compare sim-

ulated ensemble mean satellite TB and radar reflectivity

from each experiment with the corresponding truth sim-

ulation. In addition to calculating bias and RMSD sta-

tistics for each experiment, skill scores including POD,

FAR, and HSS are also computed using a threshold of

TB , 230K. If both the truth and experiment analysis

generate a pixel where TB , 230K, then this is considered

a ‘‘hit.’’ If the experiment generates a pixel withTB, 230K

and this threshold is not exceeded in truth, then it is con-

sidered a false detection. Finally, if neither truth nor the

experiment exceeds this threshold, then it is considered

a correct null forecast. The goal is to generate an analysis
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where ‘‘hits’’ are maximized, resulting in a high POD, but

false detections are limited, thereby resulting in a lowFAR.

The HSS takes both into account to generate a statistic in-

dicating theoverall skill of the experiment at forecastingTB.

Truth 6.95-mm TB indicate the presence of high at-

mospheric moisture content in the eastern portion of the

domain roughly along the 918W meridian where TB ,
230K (Fig. 15a). In Oklahoma,TB are warmer, indicating

less midtropospheric moisture, which is consistent with

the lower altitude of these clouds. Several finer details are

also visible, such as linear banding features in Oklahoma

and individual convective cells farther east. The CONV

FIG. 14. Vertical profile of cloud liquid water content mixing ratio (shaded), cloud ice content (gray-

shaded contours without values), and temperature (gray-shaded contours with values) from west to east

between 1008 and 968W along the 348N parallel covering an area of winter precipitation. The location is

shown in Fig. 12a and labeled as COLD. Profiles from the (a) truth simulation, (b) CONV, (c) SAT,

(d) RAD, and (e) RADSAT experiments are shown.
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experiment generates a similarTB simulation overall, but

either misses or incorrectly analyzes several important

details (Fig. 15b), such as generating much colder TB

(,220K) associated with the convection in the eastern

portion of the domain (Fig. 15b). In northwest Okla-

homa, CONV generates a region of very cold TB that

does not exist in the truth simulation. Finally, much

of the finer-scale detail apparent in the truth simula-

tion is lost in the CONV experiment. The excessively

cold TB in the eastern portion of the domain result in

an overall cold bias of 22.3K with a corresponding

RMSD of 6K (Table 5). The magnitude and dis-

placement errors result in a low POD of 0.4 with

a correspondingly high FAR of 0.64 resulting in a HSS

of 0.37 (Table 6).

The SAT experiment generates a much better repre-

sentation of 6.95-mm TB compared to CONV (Fig. 15c).

The erroneously cold (,220K)TB in the eastern portion

FIG. 15. Simulated GOES-R ABI 6.95-mm TB (K) for the truth simulation and each experiment at

1200 UTC 24 Dec 2009.

OCTOBER 2013 JONE S ET AL . 3293



of the domain have been eliminated and the location of

colder TB shifts farther east in much better agreement to

the truth simulation. To the west, the area of colder TB

in northwestern Oklahoma is no longer present while

several of the smaller-scale features in this region are

correctly analyzed. Since the 6.95-mm TB from truth are

being assimilated in SAT, it is expected that they would

have a large impact on the corresponding analysis. The

objective statistics support the visual interpretation and

show a large reduction in bias and RMSD to 20.8 and

2.1K, respectively (Table 5). Similarly, POD increases

to 0.66 with an even larger decrease in FAR to 0.22

(Table 6). Corresponding skill is similarly improvedwith

a HSS of 0.71.

Assimilating radar data also produces a significant

impact to the 6.95-mm TB analysis (Fig. 15d). Com-

pared to CONV, the RAD experiment exhibits a simi-

lar cold bias, but does not have the large regionwithTB,
220K. The overall bias is similar to CONV (22.0K);

however, the RMSD decreases, but is still nearly twice

as high as the SAT case (Table 5). Similarly, the im-

provement in skill scores between CONV and RAD are

only about 50% of those seen for the SAT experiment

(Table 6). Given that the radar data are not directly

related to satellite TB, the increase in skill is less than

that observed during the SAT case. Still, the fact that

assimilating radar data alone increases skill in simulated

satellite TB is very encouraging, and depicts their in-

fluence on the cloud field. The assimilation of both radar

and satellite data in RADSAT slightly reduces bias and

RMSD compared to the SAT experiment (Fig. 15e).

Visually, RADSAT captures the details of the TB dis-

tribution in central Oklahoma better than the other

experiments and better depicts the finer-scale patterns

in the TB field throughout the entire domain. The cor-

responding objective skill scores are nearly the same or

slightly worse than the SAT experiment (Table 6).

d. Radar reflectivity

A similar comparison is conducted using simulated

radar reflectivity data as a function of height to deter-

mine the relative impacts of the observations on the

radar reflectivity analysis. Skill scores are computed in

the same manner as employed for the satellite date, but

now using a threshold of 25 dBZ. At 2 km, the truth

simulation generates a large area of .20-dBZ reflec-

tivity in western Oklahoma and northwestern Texas

associated with an area of snowfall (Fig. 16a). Higher

reflectivity values are present along the eastern edge of

the snowfall region with the highest values located in the

deeper convection within the eastern portion of the do-

main. Reflectivity at 6 km is generally lower, especially in

central Oklahoma and north Texas where much of the

precipitation is stratiform and confined to lower altitudes

(Fig. 18a). The line of convection is still apparent farther

east, though reflectivity values are generally lower than at

2 km since most of the hydrometers at this level are some

form of ice, which generally returns lower reflectivity

values.

The CONV experiment produces too much precip-

itation throughout the entire domain and is too far west

with the line of convection in Arkansas and Louisiana

(Fig. 16b). The areas of reflectivity . 25 dBZ are much

larger than truth, especially in the southern portion

of the domain. These errors are evident in high bias

(13.6 dBZ) and RMSD (27.2 dBZ) values (Fig. 17a,

Table 6). Skill scores are also poor with a POD of 0.21,

a FAR of 0.72, and a HSS value of 0.24. The SAT ex-

periment reduces the coverage of higher reflectivity

values in several locations, most notably in west central

Texas and in northeastern Oklahoma (Fig. 16c). How-

ever, it also remains too aggressive with the intensity and

coverage of precipitation. The bias, RMSD, and skill

scores are only marginally improved, with the greatest

improvement being a reduction in FAR to 0.59 (Fig. 17).

Recall that 6.95-mm TB are not very sensitive to the lower

troposphere; thus, any improvement at 2 km in SAT is

likely to be small. TheRAD experiment, however, more

accurately reproduces the finer-scale detail in the re-

flectivity fields than either CONV or SAT (Fig. 16d).

This is evident in both the winter precipitation in central

Oklahoma and the convection regions farther east. RAD

also correctly analyzes the small convective feature in far

northeastern Oklahoma and southwestern Missouri not

TABLE 5. Bias and RMSD between each experiment and truth at

1200 UTC for simulated ABI 6.95-mm TB.

ABI 6.95-mm TB CONV SAT RAD RADSAT

BIAS 2.30 20.81 21.97 20.74

RMSD 6.02 2.10 4.15 1.85

TABLE 6. Probability of detection (POD), false alarm rate (FAR),

and Heidke skill score (HSS) for simulated GOES-R band-9 TB ,
230-K reflectivity between the truth simulation and individual

experiment output at 1200 UTC. Similar statistics for 2 and 6 km

AGL simulated radar reflectivity .25 dBZ are also shown. Values

in italics represent the best skill for a particular variable and

experiment.

6.95-mm TB 2-km Reflectivity 6-km Reflectivity

Expt POD FAR HSS POD FAR HSS POD FAR HSS

CONV 0.40 0.64 0.37 0.21 0.72 0.24 0.07 0.85 0.10

SAT 0.66 0.22 0.71 0.23 0.59 0.29 0.11 0.60 0.17

RAD 0.58 0.44 0.57 0.42 0.49 0.46 0.31 0.51 0.38

RADSAT 0.67 0.27 0.70 0.43 0.47 0.47 0.31 0.50 0.40
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evident in the CONV or SAT experiments. Still, RAD

overestimates the intensity and coverage of precipita-

tion, with a positive bias of 8.9 dBZ. Overall RMSD is

reduced to 19.7 dBZ with modest improvements across

all skill scores. RADSAT generates a 2-km reflectivity

field that is visually similar to that from the RAD exper-

iment (Fig. 16e). The objective statistics show that it is

the most skillful experiment with the lowest bias and

RMSD (8.6 and 19.1 dBZ), and the highest POD and

HSS (0.43 and 0.47).

Between 2 and 6 km, POD for CONV and SAT are

nearly identical while SAT continues to reduce FAR

relative to CONV (Figs. 17b,c). Conversely, both RAD

and RADSAT clearly outperform CONV and SAT

between the surface and 6 kmAGL. In both cases, POD

and HSS are nearly double their CONV counterparts;

FIG. 16. SimulatedWSR-88D2-km radar reflectivity above ground level (AGL) at 1200UTC for the truth

simulation and each experiment.
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while FAR is reduced by half (Fig. 17). At 6km, CONV

has the largest bias and RMSD consistent with an analysis

that again overestimates the precipitation at this level,

especially in western Oklahoma (Fig. 18b). Overall skill is

poor with a POD of 0.07 and a very high FAR of 0.85 with

HSS being 0.10 (Table 6). SAT improves the 6-km re-

flectivity analysis much more than occurred at 2km (Fig.

18c, Table 6), with skill scores showing a similar im-

provement (Table 6). Reflectivity in western Oklahoma is

reduced and much finer detail in the structure of re-

flectivity is now apparent farther east. Above 6km, POD

and FAR calculated from SAT increase significantly

compared to CONV; and begin to perform similarly to the

RAD experiment (Fig. 17). This improvement reflects

the much greater sensitivity of 6.95-mm TB near this

atmospheric layer compared to lower in the atmosphere.

The reflectivity structures present in the truth simulation

are well represented in RAD at 6km (Fig. 18d). Bias de-

creases to near zero with RMSD lowered to 9.5dBZ.

Corresponding POD and FAR are 0.31 and 0.51, respec-

tively, much improved over the CONV experiment

(Table 6). The RADSAT experiment again produces the

most skillful reflectivity analysis. A small negative bias is

present (20.27dBZ), but RMSD is lowered to 8.4 dBZ,

FIG. 17. Vertical profiles of (a) bias (B) and RMSD (R) for radar reflectivity relative to truth, (b) POD, (c) FAR, and

(d) HSS for reflectivity .25 dBZ as a function of height from each experiment at 1200 UTC.
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or less than half of the original CONV value (Fig. 18e).

RADSAT also produces the best skill scores with a POD

of 0.31, a FAR of 0.46, and a HSS of 0.40. These scores

represent over a 100% improvement compared to the

CONV experiment. These results indicate that satellite

data provide valuable information when analyzing ra-

dar reflectivity even when reflectivity data are also as-

similated, with the greatest impact from satellite data

occurring above 5 km.

8. Conclusions

Assimilating water vapor–sensitive infrared 6.95-mm

TB in combination withWSR-88D reflectivity and radial

velocity often proved superior to assimilating either

satellite or radar data alone. Radar data are most ef-

fective at improving low- and midtropospheric cloud

liquid water as well as wind velocity throughout the

troposphere, while satellite TB generally improved the

FIG. 18. As in Fig. 16, but for 6-km AGL simulated radar reflectivity.
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mid- and upper-tropospheric moisture and cloud ice

concentrations. In essence, radar data are most effective

in the lower troposphere while the potential for satel-

lite data lie in the upper troposphere. Both datasets

provide independent, complementary information that

combine to give a better representation of the atmo-

spheric state than is possible when used individually.

For most atmospheric variables, assimilating radar

data appear to have a greater positive impact than as-

similating satellite data. This is partially a result of the

design of this experiment focusing on the region where

radar data are being assimilated. Also, the number of

radar reflectivity and radial velocity observations is far

greater than the number of satellite TB observations.

Recall that the radar data provided high-resolution 3D

data whereas the satellite data only provide single TBs

that represent a broad layer of the atmospheric column.

Still, the importance of assimilating satellite data is ap-

parent given that the combined RADSAT experiment

typically had smaller errors than when the radar obser-

vations were assimilated separately.

Ongoing research will examine the 0–3-h forecast

period to determine which observations had the greatest

impact on subsequent forecasts. In addition, future re-

search will also refine techniques to extract the greatest

amount of information from a combined radar-satellite

dataset to provide a path toward operational assimila-

tion of these important observations. Several challenges

became apparent during the course of this research

opening up many possibilities for future research. The

modest impacts of satellite observations indicates the

need for additional infrared satellite channels to gain

better sensitivity of the lower- and midtropospheric

water vapor content. The sensitivity of model micro-

physics also needs to be examined as both datasets affect

liquid and frozen hydrometeor species differently de-

pending on the microphysics option selected. Finally,

the lack of a vertical covariance localization could be

introducing an unwanted error; thus, future research will

need to determine potential vertical localization radii

as a function of conditions, channel, and cloud cover to

maximize the potential for satellite data in ensemble

data assimilation systems.
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