
1.  Introduction
Gross primary productivity (GPP) is a critical flux in the global carbon cycle because it represents the CO2 that is 
drawn down from the atmosphere by ecosystems through gross photosynthesis. Remotely sensed observations of 

Abstract  Gross primary productivity (GPP) is the largest flux in the global carbon cycle and satellite-based 
GPP estimates have long been used to study the trends and interannual variability of GPP. With recent updates 
to geostationary satellites, we can now explore the diurnal variability of GPP at a comparable spatial resolution 
to polar-orbiting satellites and at temporal frequencies comparable to eddy covariance (EC) tower sites. We 
used observations from the Advanced Baseline Imager on the Geostationary Operational Environmental 
Satellite-R series (GOES-R) to test the ability of subdaily satellite data to capture the shifts in the diurnal 
course of GPP at an oak savanna EC site in California, USA that is subject to seasonal soil moisture declines. 
We compared three methods to estimate GPP: (a) a light-use efficiency model, (b) a linear relationship between 
the product of near-infrared reflectance of vegetation and photosynthetically active radiation (LIN-NIRvP) and 
EC tower GPP, and (c) a light response curve (LRC-NIRvP) between NIRvP and EC GPP. The LRC-NIRvP 
achieved the lowest mean absolute error for winter (2 µmol CO2 m −2 s −1), spring (2.51 µmol CO2 m −2 s −1), 
summer (1.43 µmol CO2 m −2 s −1), and fall (1.35 µmol CO2 m −2 s −1). The ecosystem experienced the largest 
shift in daily peak GPP in relation to the peak of incoming solar radiation toward the morning hours during 
the dry summers. The LRC-NIRvP and the light-use efficiency model were in agreement with these patterns 
of a shift in peak daily GPP toward the morning hours during summer. Our results can help develop diurnal 
estimates of GPP from geostationary satellites that are sensitive to fluctuating environmental conditions during 
the day.

Plain Language Summary  Gross primary productivity (GPP) quantifies the drawdown of 
atmospheric CO2 through ecosystem-scale photosynthesis. Large-scale estimates of GPP are a crucial 
component of carbon cycle science and can be estimated using satellites. Motivated by the recent advances 
in the spectral coverage and spatial resolution of geostationary (“weather”) satellites, we demonstrate how 
the Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite-R series 
can provide satellite-based, half-hourly GPP estimates at the Tonzi Ranch Ameriflux eddy covariance site in 
California, USA. We found that a light response curve is able to achieve the best agreement between ABI-based 
estimates of GPP and GPP partitioned from gas exchange measurements at the eddy covariance site. Previous 
research has demonstrated that the diurnal peak of GPP shifts increasingly toward the morning at Tonzi Ranch 
as the year progresses into the dry season. We found that ABI can capture this characteristic seasonal shift 
of peak diurnal GPP, which highlights its ability to measure ecosystem dynamics in addition to the weather 
patterns that help cause them.

KHAN ET AL.

© 2022 The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial License, 
which permits use, distribution and 
reproduction in any medium, provided the 
original work is properly cited and is not 
used for commercial purposes.

The Diurnal Dynamics of Gross Primary Productivity Using 
Observations From the Advanced Baseline Imager on the 
Geostationary Operational Environmental Satellite-R Series at 
an Oak Savanna Ecosystem
A. M. Khan1,2 , P. C. Stoy1,2,3 , J. Joiner4 , D. Baldocchi5 , J. Verfaillie5 , M. Chen2 , and 
J. A. Otkin6 

1Nelson Institute for Environmental Studies, University of Wisconsin–Madison, Madison, WI, USA, 2Department of 
Forest and Wildlife Ecology, University of Wisconsin–Madison, Madison, WI, USA, 3Department of Biological Systems 
Engineering, University of Wisconsin–Madison, Madison, WI, USA, 4National Aeronautics and Space Administration 
(NASA) Goddard Space Flight Center (GSFC), Greenbelt, MD, USA, 5Ecosystem Science Division, Department of 
Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA, 6Space Science and 
Engineering Center, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, 
WI, USA

Key Points:
•	 �The Geostationary Operational 

Environmental Satellite-R Series can 
estimate gross primary productivity 
every half hour

•	 �A light response curve provides 
the best agreement with gross 
primary productivity estimated at an 
Ameriflux oak savanna site

•	 �Diurnal satellite-based estimates of 
gross primary productivity follow the 
shift toward the mornings during the 
dry summers at the site

Correspondence to:
A. M. Khan,
amkhan7@wisc.edu

Citation:
Khan, A. M., Stoy, P. C., Joiner, J., 
Baldocchi, D., Verfaillie, J., Chen, M., & 
Otkin, J. A. (2022). The diurnal dynamics 
of gross primary productivity using 
observations from the Advanced Baseline 
Imager on the Geostationary Operational 
Environmental Satellite-R Series at 
an oak savanna ecosystem. Journal of 
Geophysical Research: Biogeosciences, 
127, e2021JG006701. https://doi.
org/10.1029/2021JG006701

Received 3 NOV 2021
Accepted 8 MAR 2022

10.1029/2021JG006701
RESEARCH ARTICLE

1 of 28

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-2078-7942
https://orcid.org/0000-0002-6053-6232
https://orcid.org/0000-0003-4278-1020
https://orcid.org/0000-0003-3496-4919
https://orcid.org/0000-0002-7009-8942
https://orcid.org/0000-0001-6311-7124
https://orcid.org/0000-0003-4034-7845
https://doi.org/10.1029/2021JG006701
https://doi.org/10.1029/2021JG006701
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021JG006701&domain=pdf&date_stamp=2022-03-23


Journal of Geophysical Research: Biogeosciences

KHAN ET AL.

10.1029/2021JG006701

2 of 28

the Earth have provided critical inputs for global carbon cycle studies, provided observation-based GPP estimates 
for comparisons with Earth System Models and terrestrial carbon cycle models, and have revolutionized our 
understanding of the carbon cycle (Anav et al., 2015; Chen et al., 2017; Cramer et al., 1999; Field et al., 1995; 
Jung et  al.,  2020; Keenan et  al.,  2012; O’Sullivan et  al.,  2020; Prince & Goward, 1995; Ruimy et  al.,  1996; 
Running et al., 2004; Xiao et al., 2019; Zhang et al., 2016; Zscheischler et al., 2014). The diurnal to interannual 
variability of GPP is determined by limiting resources, climate, weather conditions, disturbance, phenology, 
and extreme events (Beer et al., 2010; Gu et al., 2002; Kannenberg et al., 2020; Randazzo et al., 2020; Roby 
et al., 2020; Stoy et al., 2005; Zscheischler et al., 2014). However, with existing polar-orbiting satellites we have 
been largely limited to studying the multiday to interannual variability of GPP rather than its dynamic response 
to environmental variability across the course of a day. With recent advances in the spectral coverage and spatial 
resolution of geostationary imagers commonly used for weather monitoring, we argue that we can estimate GPP 
from space-based observations at subdaily temporal frequencies (Khan et al., 2021; Xiao et al., 2021). This opens 
up new opportunities to study the diurnal cycles of GPP and its response to environmental conditions in near 
real time (Khan et al., 2021; Xiao et al., 2021). Our ability to develop diurnal estimates of carbon fluxes that can 
respond to changing environmental conditions will allow us to provide space-based GPP estimates for compar-
isons between GPP estimates, scaling up ground estimates at eddy covariance towers, and model ensemble esti-
mates at a comparatively higher temporal frequency.

To start estimating GPP at a subdaily temporal resolution from space-based observations, we can look toward 
various formulations of GPP's response to environmental conditions such as incoming solar radiation. The devel-
opment of space-based GPP estimates has largely relied on relationships between the fraction of photosyntheti-
cally active radiation (PAR) absorbed by plants (fAPAR) and vegetation indices and light-use efficiency (LUE) 
models that can convert absorbed PAR (APAR) to net primary production (NPP) or GPP (Anderson et al., 2000; 
Cramer et al., 1999; Field et al., 1995; Joiner et al., 2018; Mahadevan et al., 2008; Running et al., 2004; Xiao 
et  al.,  2019; Yuan et  al.,  2014). Vegetation indices developed from remotely sensed reflectance in visible to 
near-infrared wavelengths, such as the Normalized Difference Vegetation Index or the Enhanced Vegeta-
tion Index, have served as indicators of fAPAR and are often used to estimate APAR in LUE models (Joiner 
et al., 2018; Mahadevan et al., 2008; Running et al., 2004; Xiao et al., 2019; Yuan et al., 2007). Based on the idea 
that the near-infrared radiation reflected by plants is proportional to the PAR absorbed by plants, the near-in-
frared reflectance of vegetation (NIRv) has shown strong linear relationships with GPP and can be correlated 
with fAPAR (Badgley et al., 2017, 2019; Baldocchi et al., 2020; Wu et al., 2020). Furthermore, a radiance based 
(NIRv) was also correlated with GPP and APAR across agricultural sites and tropical forest canopies (Merrick 
et al., 2021; Wu et al., 2020). On the ground, temperature-respiration relationships and light response curves 
calculated from solar radiation incident on the surface are widely used to partition Net Ecosystem Exchange 
(NEE) from eddy covariance towers into GPP and ecosystem respiration (Reco; Lasslop et al., 2010; Reichstein 
et al., 2012; Stoy et al., 2006). In terms of capturing the impact of environmental variability, this is mainly accom-
plished by developing environmental stressors from vapor pressure deficit (VPD), air temperature, land surface 
temperature (LST), and other variables that can capture moisture or temperature stress on GPP (Field et al., 1995; 
Joiner & Yoshida, 2020; Lasslop et al., 2010; Li et al., 2021; Running et al., 2004; Yuan et al., 2007).

The models used to estimate GPP from space-based observations have demonstrated a bias during times of 
soil moisture stress (Sims et al., 2014; Stocker et al., 2019). However, models that can couple transpiration and 
carbon uptake have shown success in capturing the response of carbon uptake to soil moisture stress (Anderson 
et al., 2000). Subdaily observations from the Advanced Baseline Imager (ABI) on the Geostationary Operational 
Environmental Satellite-R Series (GOES-R) provide an ideal set of observations to test whether space-based 
GPP estimates capture the effects of water limitation on GPP. This is because the diurnal course of carbon uptake 
and water loss shift in a distinct way that can be indicative of soil moisture deficits due to stomatal regulation of 
water loss (Baldocchi, 1997; Schulze & Hall, 1982; Tuzet et al., 2003). With ongoing projections of increasing 
drought conditions and heat stress, a key priority for space-based GPP estimates is to capture the impact of water 
stress. The proper investigation of diurnal water-use efficiency requires that diurnal relationships between GPP 
and water fluxes are appropriately captured (Nelson et al., 2018) and this should extend to diurnal space-based 
GPP estimates as well (Xiao et al., 2021).

As we begin to leverage the wealth of subdaily temporal information available from the ABI which has similar 
spectral sensitivity to MODIS and Landsat (Schmit & Gunshor, 2020), we need to assess how the diurnal patterns 
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of ecosystem carbon uptake estimated from remote sensing compare with our current understanding of diurnal 
patterns in ecosystem carbon uptake. Stomatal regulation through adjustments in stomatal conductance is the 
dominant mechanism by which carbon uptake and water loss are coupled in plants (Cowan & Farquhar, 1977). 
There are various physiological and environmental signals that exert a control on stomatal conductance such 
as CO2 concentrations inside the leaf, sugar accumulation, leaf and guard cell water potential, VPD, and PAR 
(Grossiord et al., 2020; Jalakas et al., 2021; Lawson, 2009; Matthews et al., 2017; Meinzer et al., 2017; Novick 
et  al.,  2016). PAR and VPD have been recognized as the dominant environmental drivers of NEE and GPP 
at diurnal scales if soil moisture, temperature, and vegetation phenology do not limit photosynthesis (Stoy 
et al., 2005). However, during times of soil moisture stress, the diurnal course of stomatal conductance, carbon 
uptake, and water loss do not always follow the symmetric course of solar radiation due to additional controls on 
stomatal conductance (Schulze & Hall, 1982). Diurnal asymmetry in ecosystem fluxes of carbon and water have 
been identified across various climates and plant functional types resulting in differences in these fluxes between 
the morning and afternoon and a shift in peak GPP to morning hours (Anderson et al., 2008; Baldocchi, 1997; 
Bucci et al., 2019; Lasslop et al., 2010; Lin et al., 2019; Konings, Yu et al., 2017; Matheny et al., 2014; Nelson 
et al., 2018; Wilson et al., 2003). The diurnal shift of peak GPP and evapotranspiration (ET) has been shown to 
vary closely with moisture availability because the increased VPD during the afternoons in the face of low soil 
moisture can result in stomatal closure during the afternoon (Matthews et al., 2017; Nelson et al., 2018; Schulze 
& Hall, 1982). If geostationary satellites can capture these dynamics, we can strengthen our basis for estimating 
subdaily GPP from space.

Here, we provide diurnal estimates of GPP at a 30-min temporal resolution using 5-min mulitspectral data from 
the ABI on board the GOES-R and other subdaily products from the GOES-R ABI along with estimates of GPP 
from the Tonzi Ranch (US-Ton) Ameriflux eddy covariance tower in California, USA. During the dry summers, 
the Tonzi Ranch woody savanna experiences declines in precipitation and soil moisture characteristic of its 
Mediterranean climate. The oak canopy at Tonzi Ranch is able to remain photosynthetically active during the 
dry summers through regulation of water loss and access to deep ground water resources (Baldocchi et al., 2004; 
Miller et al., 2010). However, canopy photosynthesis at the Tonzi Ranch and other Mediterranean ecosystems 
can be impacted by soil moisture stress during the dry summers, and soil moisture stress could be one of many 
reasons why dry season diurnal asymmetry in GPP has been observed in Mediterranean ecosystems in the past 
(Keenan et al., 2009; Tang et al., 2005). This provides an ideal case study to test the ability of widely used GPP 
estimation methods and ABI-based estimates of APAR to ask: How well can diurnal estimates of GPP based 
on radiation inputs from ABI capture diurnal and seasonal patterns in GPP at a site experiencing seasonal soil 
moisture deficits? We analyze the diurnal peaks of GPP and latent heat flux (LE) to test whether ABI-based GPP 
estimates can capture the shifting diurnal patterns of CO2 uptake and water loss that can be indicative of soil 
moisture stress at this site. We also focus our discussion on opportunities to extend GPP estimation using ABI to 
other ecosystems including key uncertainties that need to be addressed to advance our ability to monitor GPP in 
near real time.

2.  Materials and Methods
2.1.  Study Site

Our study site is an oak savanna Ameriflux eddy covariance site located at the Tonzi Ranch at the foothills of 
the Sierra Nevada mountain range near Ione, CA (38.4309°N, −120.9660°W, 177 m asl). The annual mean air 
temperature from 1926 to 2016 near the site was reported as 16.6°C and the average annual precipitation was 
reported as 546 mm (Ma et al., 2020). The rainy season can last from October to April and is characterized by 
lower levels of incoming solar radiation, net radiation, VPD, and lower diurnal variation in temperatures (i.e., the 
difference between daily maximum and minimum temperatures; Baldocchi et al., 2004; Xu & Baldocchi, 2003). 
The site experiences clear days, the highest levels of incoming solar radiation, and very little to no precipitation 
during the summer months (Baldocchi et al., 2004; Xu & Baldocchi, 2003). The site also experiences the highest 
VPD during the year along with rapidly declining soil moisture during the summer (Baldocchi et al., 2004, 2021; 
Xu & Baldocchi,  2003). Diurnal variation in temperature also increases during the summer months (Xu & 
Baldocchi, 2003). The oak savanna has been reported as a carbon sink over 15 years (2001–2015) with a mean 
annual GPP (±standard deviation) of 1,056 gCm −2 yr −1 ± 145 gCm −2 yr −1 and NEE of −110 gCm −2 yr −1 ± 5
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7 gCm −2 yr −1 during that time (Ma et al., 2016). A mean annual ET (±standard deviation) of 419 ± 85 mm has 
been reported at the site (Ma et al., 2020).

For our study, we characterized the seasons experienced at our site according to Ma et al. (2016) as: winter (Janu-
ary-March), spring (April-June), summer (July-September), and fall (October-December). Breaking the year into 
these distinct groups helped us to identify times when photosynthetically active vegetation, soil moisture, poten-
tial ET, and precipitation have distinguishable impacts on gas exchange and provides meaningful break points to 
identify the different diurnal GPP patterns throughout the year (Ma et al., 2016; Ryu et al., 2008). For example, 
during July to September, ET has shown a weak relationship with solar radiation at a nearby Mediterranean 
grassland indicating that the lack of available soil moisture classifies these months as a water-limited time of 
the year (Ryu et al., 2008). On the other hand, the nearby ecosystem enters an energy limited phase during the 
rainy season of December to April when ET has a positive relationship with solar radiation (Ryu et al., 2008). 
Furthermore, breaking the year into these seasons has also shown that the spring months contribute the largest 
portion of annual GPP (60–80% of annual) and Reco (50–70% of annual) at this site during a 15-year time period 
(Ma et al., 2016). Below, we further discuss how the photosynthetically active vegetation during any given season 
impacts gas exchange at the Tonzi Ranch.

The trees at the Tonzi Ranch have a mean stem biomass of 440.43 kg ± 739.6 kg (standard deviation; Baldocchi 
et al., 2021). Blue oak trees (Quercus douglassi) make up the deciduous overstory of the oak savanna while the 
understory consists of C3 annual grasses and herbs (Baldocchi et al., 2004; Ma et al., 2020). The tree canopy 
is dormant during the rainy winter and leaves out during the spring and has been reported to reach full photo-
synthetic capacity around Day 137 (Xu & Baldocchi, 2003). The rainy season provides soil moisture for the 
trees which is drawn down gradually through transpiration into the summer months (Baldocchi et al., 2004; Ma 
et al., 2016). The tree canopy is able to maintain photosynthesis and transpiration during the dry season through 
the ability to regulate water loss and access of some roots to ground water (Baldocchi et al., 2004). The trees 
lose their leaves in late autumn and the understory grasses germinate after the first rainfall of autumn (Baldocchi 
et al., 2004; Ma et al., 2016). The understory grows throughout the winter and spring, but dies before the dry 
summer months (Baldocchi et  al.,  2004; Ma et  al.,  2020). Both GPP and evapotranspiration peak during the 
spring after the trees become photosynthetically active (Baldocchi et al., 2021; Ma et al., 2016, 2020). The soil 
is an Auburn very rocky silty loam with 37.5–48% sand, 42–45% silt, and 10–17.5% clay depending on under 
canopy or open space areas (Baldocchi et al., 2004).

2.2.  Data

2.2.1.  ABI

We used the GOES-R ABI Level 1b top-of-atmosphere (TOA) radiances (ABI-L1b-RadC) from GOES-16 and 
GOES-17. ABI-L1b-RadC is delivered at a 5-min temporal resolution over the conterminous United States 
(CONUS). The spatial resolution of the near-infrared (NIR) band (central wavelength: 0.86  μm) is 1  km at 
nadir and the spatial resolution of the red band (central wavelength: 0.64 μm) is 0.5 km at nadir (Schmit & 
Gunshor, 2020). The red band TOA radiance was aggregated to the 1 km at nadir scale using the median TOA 
radiance. ABI-L1b-RadC is available on Amazon Web Services and was accessed with S3Fs, a python module 
for accessing Amazon S3 buckets with ABI data. The TOA radiances (Ltoa) were converted to TOA reflectance 
factors (ρftoa) as described in the GOES-R Product Definition and User's Guide (PUG; NASA, 2019):

𝜌𝜌𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜅𝜅𝜅𝜅𝑡𝑡𝑡𝑡𝑡𝑡� (1)

𝜅𝜅 =

𝜋𝜋𝜋𝜋2

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠

� (2)

where d is the Earth-Sun distance (Astronomical Units) and Esun is the solar irradiance for a given band 
(Wm −2 μm −1; NASA, 2019). κ, d, and Esun are provided in the product metadata for each band (NASA, 2019). 
The 5-min ABI Level 2 Clear Sky Mask for CONUS (ABI-L2-ACMC) was used to identify clear observations. 
ABI-L2-ACMC and the hourly Downward Shortwave Radiation (DSR; ABI-L2-DSRC; NASA,  2018) were 
downloaded through the National Oceanic and Atmospheric Administration's Comprehensive Large Array-Data 
Stewardship System (CLASS). At the coordinates of the Tonzi Ranch, we extracted the TOA reflectance factors 
for the NIR band and the red band calculated from ABI-L1b-RadC along with DSR values from ABI-L2-DSRC 
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and clear/cloudy flags from ABI-L2-ACMC. Quality flags provided in the 
metadata of ABI-L1b-RadC and the clear sky flag from ABI-L2-ACMC were 
used to identify clear and good quality observations from ABI-L1b-RadC to 
estimate surface reflectance. Table 1 shows the number of good quality clear 
observations from ABI-L1b-RadC and ABI-L2-DSRC for each season.

The surface bidirectional reflectance was estimated from TOA bidirectional 
reflectance factors from ABI using the radiative transfer equations of Qin 
et al. (2001) as previously used by He et al. (2019) to estimate surface reflec-
tance from ABI TOA data. Similar to previous efforts with ABI and MODIS 
data (He et al., 2012, 2019), we used The Second Simulation of a Satellite 
Signal in the Solar Spectrum (6S) radiative transfer model with the python-
based Py6S (Wilson, 2013) to estimate the following atmospheric parameters 
with the assumption of a Lambertian ground reflectance: path reflectance, 
spherical albedo, atmospheric transmittance, direct fraction of incoming 
radiation, diffuse fraction of incoming radiation, and spectral irradiance. The 
surface anisotropy of reflected radiation was characterized by the Ross-Thick 

volumetric kernel, Kvol, and the Li-Sparse geometric kernel, Kgeo (Wanner et al., 1995). The Bidirectional Reflec-
tance Distribution Function (BRDF) was estimated as:

�(��, ��, ��) = ���� + ���� ����(��, ��, ��) + ���� ����(��, ��, ��)� (3)

where θs is the solar zenith angle (SZA), θv is the view zenith angle (VZA), and ϕr is the relative azimuth angle. 
We estimated fiso, fvol, and fgeo through minimizing a least squares cost function between the TOA reflectance 
factor calculated from GOES-16 and GOES-17 ABI radiances and the TOA reflectance factor estimated by the 
radiative transfer model of Qin et al. (2001). The BRDF coefficients were estimated using observations collected 
at a SZA less than 70° for each day when there were at least 10 observations available during the day for the red 
and NIR ABI bands. For each day, the VZA from GOES-16 and GOES-17 along with diurnally varying SZA 
at 5-min intervals was used to fit the BRDF model. We used discrete values of aerosol optical depth at 550 nm 
(AOD) as explained in He et al.  (2019) with different aerosol types (biomass burning, continental, maritime, 
urban, and stratospheric) to estimate atmospheric parameters from 6S. The AOD and aerosol type combination 
that resulted in the smallest least squares cost function between observed and estimated TOA reflectance was 
used as the values for AOD and aerosol type for the day. To approximate surface reflectance at nadir viewing, we 
calculated the geometric and volumetric kernels at each SZA value during the day with a fixed VZA of 0°. Then, 
we used the BRDF kernel coefficients (fiso, fvol, fgeo) to estimate the surface reflectance at nadir throughout the day.

2.2.2.  Ameriflux Eddy Covariance Tower

Instrumentation to measure micrometeoriological variables and fluxes were installed on a 23 m tower ∼10 m 
above the tree canopy and a separate set of understory flux measurements were collected 2 m above the ground 
(Baldocchi et  al.,  2021; Ma et  al.,  2001). Wind velocity was measured with a three-dimensional ultrasonic 
anemometer (WindMaster, Gill Instruments) and CO2 and water vapor fluxes were measured at 10–20 times per 
second using an open-path infrared absorption gas analyzer (LI-7500A, LICOR) (Baldocchi et al., 2004, 2021). 
NEE was calculated using the eddy covariance technique and the partitioned GPP and Reco were provided to 
Ameriflux (Baldocchi et al., 2021; Ma et al., 2001). Upward and downward facing quantum sensors (PAR-LITE, 
Kipp & Zonen) and a net radiometer consisting of upward and downward facing pyranometers and pyrgeometers 
(CNR1, Kipp & Zonen; Baldocchi et al., 2021) measure broadband radiation flux densities in photosyntheti-
cally active (400–700 nm), shortwave (305–2,800 nm), and longwave (5,000–50,000 nm) regions. Incident and 
reflected narrow band radiation in the red (central wavelength: 650 nm) and NIR (central wavelength: 810 nm) 
regions was measured with spectral reflectance sensors (SRS-Ni NDVI, Decagon-METER) with a hemispherical 
180° field of view (Baldocchi et al., 2020). Air temperature and relative humidity were measured with a platinum 
resistance temperature detector and humicap (HMP45AC, Vaisala). A set of segmented time domain reflectom-
etry probes (Moisture Point PRB-K, Environmental Sensors Inc.) and Theta probes (ML2x, Delta-D Devices) 
measure volumetric soil moisture content at depths of 5–60 cm (Baldocchi et al., 2021; Chen et al., 2008).

The cumulative daytime footprint around the overstory tower from where 80% of the fluxes originate covers oak 
trees, the understory layer, and open spaces of the savanna (Ma et al., 2020). The footprint fetch is asymmetric 

Season ABI ABI-L1b-RadC ABI-L2-DSRC

Winter 16 18,494 1,233

Winter 17 15,366 1,216

Spring 16 24,761 1,853

Spring 17 25,877 1,867

Summer 16 35,324 1,828

Summer 17 31,798 1,825

Fall 16 32,467 1,108

Fall 17 24,644 1,102

Table 1 
Number of Clear Sky and Good Quality Observations Available From 5-min 
ABI-L1b-RadC and Hourly ABI-L2-DSRC by Season and the ABI on GOES-
16 (16) and GOES-17 (17)



Journal of Geophysical Research: Biogeosciences

KHAN ET AL.

10.1029/2021JG006701

6 of 28

around the tower and varied between 318 and 384 m during the daytime and 648–866 m during nighttime for 
2014–2017 (Chu et al., 2021). The area of the footprint varied between 234,771 and 230,237 m2 during the day 
and 419,838 and 656,611 m 2 at night (Chu et al., 2021). The dominant land cover type is classified as grassland/
herbaceous in the National Landcover Database and makes up a little over 50% of the area that is 1,000–3,000 m 
around the tower (Chu et al., 2021). The site's footprint's representativeness of its surroundings is classified as 
medium at scales of 1,000–3,000 m around the tower during the day (Chu et al., 2021). Since the Tonzi Ranch 
is located on the northwest of the ABI pixel, the daytime footprint of 318–384 m around the tower fits within 
the ABI pixel to the south and to the east, but stretches slightly outside of the ABI pixel in the north and west 
directions from the tower. The majority of the footprint lies in the ABI pixel in which the Tonzi Ranch is located. 
Previous analysis of energy balance closure at the site with a linear regression between net radiation and the 
sum of sensible heat flux, latent heat flux, soil heat flux, and canopy heat storage has resulted in an intercept 
of −10.6 W m −2 and a slope of 1.04 (r 2 = 0.94; Baldocchi et al., 2004). Data collected under heavy rainfall 
(>10 mm) were removed (Baldocchi et al., 2021).

The hourly ABI DSR data were linearly interpolated to the half hour temporal resolution of the Ameriflux data. 
Vegetation indices were calculated from the clear sky, 5-min, nadir-adjusted surface reflectance estimates. The 
midday medians of the vegetation indices for each day were calculated between hour 10 and 14. Finally, we used 
all available daytime data with a solar zenith angle of less than 70° from 2019 to 2020 from ABI and Ameriflux 
for GPP estimation.

2.3.  Estimating GPP

GPP was estimated using a light-use efficiency model (LUE-NDVI), a linear relationship between the prod-
uct of NIRv and PAR (NIRvP) and GPP (LIN-NIRvP), and a light response curve between NIRvP and GPP 
(LRC-NIRvP). The normalized difference vegetation index (NDVI) calculated from ABI surface reflectance was 
used in the LUE-NDVI model (Running et al., 2004). NIRv calculated from ABI surface reflectance was used in 
LIN-NIRvP and the light response curve between NIRvP and GPP (Baldocchi et al., 2020; Dechant et al., 2022). 
The midday median value of NDVI and NIRv was used and incoming PAR drives the diurnal variation in NIRvP 
or NDVIP (Dechant et al., 2022). The LUE-NDVI model was specified as (Running et al., 2004):

GPP = 𝜖𝜖max 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 APAR� (4)

where ϵmax is the maximum canopy LUE (μmol CO2 J −1) under ideal environmental conditions and APAR is 
absorbed photosynthetically active radiation (PAR; W m −2) and is calculated as:

APAR = fAPAR × PAR� (5)

where fAPAR is the fraction of absorbed PAR and is approximated by the daily midday median NDVI. NDVI 
was calculated as:

NDVI =
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅

𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅
� (6)

where ρNIR is the reflectance in the ABI NIR band and ρRed is the reflectance in the ABI red band. PAR was esti-
mated as (Meek et al., 1984; Weiss & Norman, 1985):

PAR = 0.45DSR� (7)

where DSR is the linearly interpolated ABI Downward Shortwave Radiation from ABI-L2-DSRC. We calculated 
Tscale and Wscale according to the MODIS LUE model (Running & Zhao, 2015). Tscale was calculated as (Huang 
et al., 2021; Running & Zhao, 2015):

������ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if ���� ≤ �min

���� − �min

�max − �min
, if �min < ���� < �max

1, if ���� ≥ �max

� (8)
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where Tair (°C) is the air temperature measured at the EC tower. Tmin (°C) is the temperature at which LUE is 
minimum (LUE = 0 μmol CO2 J −1) at any VPD value and Tmax (°C) is the temperature, under ideal VPD, at which 
LUE is maximum (LUE = ϵmax; Running & Zhao, 2015). Wscale was calculated as (Huang et al., 2021; Running 
& Zhao, 2015):

������ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if VPD ≤ VPDmin

VPDmax − VPD
VPDmax − VPDmin

, if VPDmin < VPD < VPDmax

0, if VPD ≥ VPDmax

� (9)

where VPD (hPa) is the vapor pressure deficit from the EC tower. VPDmin (hPa) is the VPD at which LUE is maxi-
mum (LUE = ϵmax) and VPDmax (hPa) is the VPD at which LUE is minimum (LUE = 0µmol CO2 J −1; Running & 
Zhao, 2015). The linear relationship between NIRvP and GPP was approximated as:

GPP = 𝜖𝜖𝑟𝑟𝑟𝑟𝑟𝑟 NIRvP� (10)

where ϵref is the slope between GPP and NIRvP. NIRvP was calculated as (Dechant et al., 2022):

NIRvP = NIRv × PAR� (11)

NIRv was calculated as (Badgley et al., 2017):

NIRv = 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 NDVI� (12)

We estimated the GPP term using a light response curve between EC tower partitioned GPP and ABI NIRvP:

GPP =
𝛼𝛼NIRvP 𝛽𝛽

𝛽𝛽 + 𝛼𝛼NIRvP
� (13)

where α is the canopy LUE before light saturation is reached (μmol CO2 J −1) or the initial slope of the relationship 
between GPP and NIRvP and β is the maximum CO2 uptake rate at the point of light saturation (μmol CO2 m −2 s −1; 
Lasslop et al., 2010; Reichstein et al., 2012). Light response curves can be used to partition NEE into GPP and 
Reco using incoming solar radiation at the surface (Lasslop et al., 2010). In this case, α is directly approximated 
as the initial LUE of the incident light response. When replacing incoming solar radiation with NIRvP, a more 
specific description of α would be the initial amount of CO2 taken up with increases in NIRvP (Figure 1). NIRvP's 
proportionality with APAR is the basis by which an NIRvP-based α could approximate an APAR based α. The 
impact of increasing VPD and the resulting stress on the maximum CO2 uptake rate at light saturation, β, was 
estimated according to Lasslop et al. (2010) (Figure 2):

� =

{

�0 exp(−� (VPD − VPD0)) , if VPD > VPD0

�0, otherwise
� (14)

where k is the sensitivity of the maximum CO2 uptake rate at light saturation, β, to VPD. β0 is the maximum CO2 
uptake rate at light saturation during conditions of ideal VPD (VPD < VPD0). VPD0 was set as 10 hPa (Lasslop 
et al., 2010). Atmospheric VPD from the EC tower was used here.

We estimated ϵmax, Tmin, Tmax, VPDmin, VPDmax, ϵref, α, β0, and k through minimization of a cost function imple-
mented in the Python-based open-source software, SciPy (Virtanen et al., 2020) as:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.5 ×

𝑛𝑛
∑

𝑖𝑖=1

𝜌𝜌𝑖𝑖� (15)

To reduce the influence of outliers, the Huber loss function was used to calculate the vector ρ which is also imple-
mented in the Python-based open-source software, SciPy (Virtanen et al., 2020) as:
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Figure 1.  Eddy covariance tower GPP versus ABI normalized difference vegetation index (NDVI) × photosynthetically active radiation (NDVIP) × the environmental 
stresses developed for the LUE-NDVI model (first column). The black line displays the GPP estimates from the LUE-NDVI model. The response of eddy covariance 
tower GPP to the ABI near-infrared reflectance of vegetation × PAR (NIRvP) (second column). The dashed black line displays the GPP estimates using LIN-NIRvP. 
The solid black line displays the GPP estimates from LRC-NIRvP with β = β0. The response of GPP to the photosynthetic photon flux density measured at the eddy 
covariance tower (third column).
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Figure 2.  The response of GPP to vapor pressure deficit (VPD) (first column). The black lines show the values of β estimated using Equation 14. The air temperature 
(second column) and VPD stress (third column) on ϵmax from the LUE-NDVI model. A value of 1 means there is no stress and 0 means the stress on ϵmax is maximum.
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� =

{

� if � ≤ 1
2
√

� − 1 otherwise
� (16)

where z is a vector of the squared errors between estimated GPP and EC tower GPP for a daytime half hour i in 1, 
…, n during the month for the 2 years of data. We estimated parameters for each month separately using 2 years 
of diurnal observations. Seventy percent of the data for a given month was used for estimating the parameters and 
30% was used to test GPP estimates against EC tower GPP. The data was split into test and training data using the 
python module Scikit-learn (Pedregosa et al., 2011). To test the impact of NEE partitioning, we also estimated all 
parameters using GPP partitioned from two different NEE partitioning approaches in addition to the Ameriflux 
provided GPP (Appendix B).

2.4.  Model Evaluation

We used a robust regression implemented in Python's statsmodels module to fit a linear model between the ABI 
GPP estimates and the EC tower GPP estimates using our test and training data (Seabold & Perktold, 2010). For 
each method used to estimate GPP from ABI inputs, a linear model was fit by gathering the training and test 
data used for each month into one training and test set for the 2 years study period. Furthermore, the training 
and test data used for each month were also pooled into seasonal training and test data for each method. We used 
these seasonal pools of training and test data to calculate the mean absolute error, the normalized mean absolute 
error, and the mean error between ABI GPP estimates and EC tower GPP estimates for each season. These error 
summaries were calculated as:

��������� =
∑�

�=1 ĜPP� − GPP�

�
� (17)

����������������� =
∑�

�=1 |ĜPP� − GPP�|

�
� (18)

���������� ����������������� = �����������������
GPP

� (19)

where 𝐴𝐴 ĜPP𝑖𝑖 is the ABI-based estimate of GPP and GPPi is the EC tower estimate of GPP for a daytime half hour 
i in 1, …, n in a given season. 𝐴𝐴 GPP is the seasonal mean of daytime EC tower estimates of GPP.

A reflectance-based NIRv could be proportional to the fraction of absorbed PAR and NIRvP could be proportional 
to a radiance-based NIRv which has shown proportionality to APAR (Wu et al., 2020). Therefore, the difference 
between NIRvP and incident PAR could be indicative of the differences between incident PAR and APAR. We 
tested if using NIRvP in the light response curve rather than incident PAR contributed to the errors between 𝐴𝐴 ĜPP 
and GPP. We compared the errors from each GPP estimate to the difference between a PPFD (photosynthetic 
photon flux density) based NIRvP and incident PPFD measured at the EC tower as: NIRvPPPFD − PPFD. To 
match the units of tower PPFD, PAR (W m −2) calculated from ABI DSR was converted to PAR in PPFD units 
(μmol Photons m −2 s −1) as (Thimijan & Heins, 1983):

PPFDABI = 4.57𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 𝜇𝜇−1
× PAR� (20)

NIRvPPPFD was calculated as:

NIRvPPPFD = NIRv × PPFDABI� (21)

2.5.  Diurnal Centroids

The diurnal centroid method (Nelson et al., 2018; Wilson et al., 2003) was used to compare diurnal patterns in 
water loss and carbon uptake between ABI estimates of GPP and EC tower estimates. A diurnal centroid for a 
given flux, Cvar, was calculated as (Nelson et al., 2018; Wilson et al., 2003):
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𝐶𝐶var =

∑15

𝑡𝑡=9
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 𝑡𝑡

∑15

𝑡𝑡=9
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡

� (22)

where t is the time in decimal hours from the daylight hours of 9–15 and fluxt is the value of a given flux or other 
variable at time t. We only used days when continuous cloud-free observations were available between these 
hours to calculate the diurnal centroid. Cvar has been used as an indicator of diurnal asymmetry in ecosystem 
fluxes of water and CO2 (Nelson et al., 2018; Wilson et al., 2003). For example, a Cvar less than 12 would indicate 
a shift of the flux toward the morning hours and a Cvar of greater than 12 would indicate a shift of the flux toward 
the afternoon (Wilson et al., 2003). Furthermore, the difference between the diurnal centroids of different fluxes 
was used to study the (mis)alignment of peak fluxes throughout the year (Wilson et al., 2003). To compare the 
departure of peak GPP from diurnal peak solar radiation, we took the difference between the diurnal centroids 
of all GPP estimates from the diurnal centroid of incoming shortwave (SW) radiation measured at the EC tower 
(Nelson et al., 2018).

�GPP∗ = �GPP − �SW��� (23)

The shift of both peak GPP and ET to morning hours could imply declining soil moisture (Wilson et al., 2003). 
To test whether the (mis)alignment of diurnal peak GPP and LE using ABI-based GPP estimates agreed with EC 
tower (mis)alignment of the diurnal peaks of these two fluxes with varying soil moisture throughout the year, 
we also calculated the daily diurnal centroid of EC tower LE. For each GPP estimate, the difference between the 
centroids of GPP and EC tower LE was calculated as:

𝐶𝐶GPP−LE = 𝐶𝐶GPP − 𝐶𝐶LE� (24)

3.  Results
3.1.  Model Evaluation

Estimates of GPP using LRC-NIRvP achieved the lowest mean error, mean absolute error, and normalized mean 
absolute error for the training data during all seasons (Table 2). The lowest training normalized mean absolute 
error (0.28) was achieved during the spring season and the highest (0.46) was during the fall. Among the test 
data, LRC-NIRvP GPP estimates also achieved the lowest mean error, mean absolute error, and normalized mean 
absolute error during all seasons (Table 2). Similar to the training data, the lowest test normalized mean absolute 
error (0.26) was during the spring and the highest test normalized mean absolute error was during the fall (0.46). 
All ABI-based GPP estimates resulted in an underestimate of GPP compared to EC tower GPP during all seasons 
among the training and test data with the exception of winter test data (Table 2).

Diurnal GPP estimates from LRC-NIRvP and LUE-NDVI follow the diurnal course of EC tower estimates of 
GPP more closely compared to the LIN-NIRvP GPP during the spring and summer (Figure 3). LRC-NIRvP GPP 
estimates appear to follow the shift of peak GPP toward the morning hours during the summer. None of the 
ABI-based GPP estimates are able to capture some of the higher diurnal peaks in GPP during all four seasons 
(Figure 3). The LRC-NIRvP GPP estimates also show better agreement with the course of seasonal half-hourly 
means of GPP from EC tower estimates during all seasons during the study period (Figure 4).

The robust regression between GPP estimated with ABI inputs and EC tower GPP revealed a similar diver-
gence from a 1:1 relationship among all three methods and training and test data (Figure 5). At low EC tower 
GPP values, GPP estimates from all three methods were slightly higher and at high EC tower GPP values, GPP 
estimates from all three methods were lower (Figure 5). A robust regression between the daily median GPP esti-
mates resulted in relationships that were closer to the 1:1 line for all three GPP estimates (Figure 5). The errors 
between EC tower GPP and estimates of GPP from the LRC-NIRvP show a tendency of the LRC-NIRvP to under-
estimate EC tower GPP during times of much higher incident PPFD relative to NIRvPPPFD (NIRvPPPFD − PPFD 
< −1,500 μmol Photons m −2 s −1; Figure 6). These patterns are consistent when using both ABI NIRvPPPFD and 
EC tower NIRvPPPFD (Figure 6).
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3.2.  Diurnal Centroids

Data on GPP, LE, and soil water content in the top 15 cm from the EC tower reveal that the soil water content 
in this layer declines rapidly from April to June and the lowest soil water content occurs during July-November 
(Figure 7). CGPP is shifted increasingly earlier in the day matching the rapid decline in soil water content through 
May, June, and July (Figure 7). During times of low soil water content, CLE also shifted to earlier in the day; 
it occurred after 𝐴𝐴 𝐴𝐴SW𝑖𝑖𝑖𝑖

 during the spring and early summer and before 𝐴𝐴 𝐴𝐴SW𝑖𝑖𝑖𝑖
 during the months with the lowest 

soil water content (Figure 7). Since VPD peaks during the afternoon throughout the year, CLE and CGPP became 
increasingly aligned as soil water content decreased (Figure 7). Below we discuss the results for how these diur-
nal patterns in the (mis)alignment of CLE and CGPP compare with our estimates of GPP from the LRC-NIRvP, 
LIN-NIRvP, and LUE-NDVI.

The diurnal centroids of EC tower GPP and GPP estimates from the LRC-NIRvP and LUE-NDVI reveal shifting 
peaks in GPP toward earlier in the day as the ecosystem experiences decreasing soil moisture with the progression 
into the summer months (Figure 7). The EC tower GPP estimates resulted in the largest median CGPP* during the 
summer months (July-September) with the largest shift of peak GPP in September at a median of 0.41 hr before 
the peak of incoming solar radiation. GPP estimates from LRC-NIRvP and LUE-NDVI resulted in the largest 
median CGPP* during the summer months of July and August in agreement with the EC tower (Figure 7).

The lowest median CGPP* from EC tower estimates occurred during December and January when peak GPP 
was aligned with the peak of incoming solar radiation (Figure 7). The lowest median CGPP* according to the 
LRC-NIRvP estimates also occurred during January (Figure  7). The lowest median CGPP* according to the 
LUE-NDVI estimates occurred during November (Figure 7). GPP estimates from LIN-NIRvP resulted in very 
small shifts in peak GPP in relation to incoming shortwave radiation compared to the other GPP estimates 
throughout the year (Figure 7).

Using tower estimates of GPP, the largest median lag between CGPP and CLE occurred in July when CGPP lagged 
0.47  hr before CLE and the smallest median lag occurred in November when median CGPP was aligned with 
median CLE (Figure  7). GPP estimates from LRC-NIRvP and LUE-NDVI resulted in the largest median lag 
between CGPP and CLE during July as well and the smallest median lag during January. Estimates of GPP from 
the LIN-NIRvP resulted in the largest median lag between CGPP and CLE during April and the smallest median lag 
occurred in January (Figure 7).

Training data Test data

Season Model ME MAE NMAE ME MAE NMAE

Winter LIN-NIRvP −1.199 2.686 0.442 −1.114 2.619 0.442

Winter LUE-NDVI −0.843 2.333 0.384 −0.705 2.314 0.390

Winter LRC-NIRvP −0.214 1.840 0.303 −0.011 1.978 0.334

Spring LIN-NIRvP −1.566 3.734 0.400 −1.449 3.815 0.399

Spring LUE-NDVI −1.212 3.230 0.346 −1.138 3.231 0.338

Spring LRC-NIRvP −0.309 2.585 0.277 −0.397 2.511 0.263

Summer LIN-NIRvP −1.269 2.365 0.611 −1.273 2.344 0.613

Summer LUE-NDVI −1.014 2.065 0.534 −1.055 2.076 0.543

Summer LRC-NIRvP −0.168 1.486 0.384 −0.146 1.434 0.375

Fall LIN-NIRvP −0.514 1.646 0.546 −0.382 1.570 0.534

Fall LUE-NDVI −0.429 1.531 0.508 −0.363 1.429 0.485

Fall LRC-NIRvP −0.218 1.378 0.457 −0.164 1.351 0.459

Note. The units for ME and MAE are μmol CO2 m −2 s −1.

Table 2 
Comparison of Mean Error (ME), Mean Absolute Error (MAE), and Normalized MAE (NMAE) Between ABI-Based GPP 
Estimates and Eddy Covariance Tower GPP Estimates
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Figure 3.  Subsets of seasonal time series of estimates of GPP from all methods compared to estimates of GPP from the eddy 
covariance tower. The bottom plot shows 8-day means for all GPP estimates for the study period.
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4.  Discussion
4.1.  Diurnal Environmental Stresses

The impact of environmental stresses on GPP at the Tonzi Ranch results from the seasonality in available 
resources along with the active vegetation type during any given season (grasses versus tree canopy; Baldocchi 
et al., 2004). Below we discuss how the methods we tested were able or unable to capture the seasonal shifts from 
radiation limitation to water limitation on GPP. During the rainy winter, spring, and fall, the Tonzi Ranch receives 
the lowest incoming solar radiation and the oak savanna has some of the lowest amounts of net radiation available 
during this time of the year (Baldocchi et al., 2004). Both the Tonzi Ranch and a nearby Mediterranean grassland 
is energy limited during the winter rainy season when precipitation exceeds evaporative demand and evaporation 
is more sensitive to potential evaporation driven by radiation (Baldocchi et al., 2021; Ryu et al., 2008).

Figure 4.  Seasonal diurnal means of estimates of GPP from all methods and diurnal means of estimates of GPP from the eddy covariance tower. The purple shaded 
region shows ±2 standard error of the mean eddy covariance tower GPP. The data spans from January 2019 to December 2020. The mean diurnal cycle estimated from 
LRC-NIRvP GPP estimates is best able to respond to the increasing diurnal asymmetry in GPP in the summer months. LUE-NDVI GPP estimates result in mean diurnal 
cycles that are able to shift slightly toward morning peaks during the summer. LIN-NIRvP GPP estimates result in symmetric mean diurnal cycles throughout the year.
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The initial light-use efficiency before saturation is reached, α, was lower during the fall, winter and spring months 
compared to summer. We found the slope between GPP and NIRvP in LIN-NIRvP is the highest during the winter 
and fall months. Furthermore, according to the LUE-NDVI model, the air temperature and VPD stress on maxi-
mum LUE was negligible and absorbed radiation tended to be the main control on GPP during the wet winter 
months (Figure 2). Regardless of each method being able to respond to the increasing radiation limitation during 
the rainy season, LRC-NIRvP achieved the highest agreement with EC tower GPP.

As previously discussed, the summer months at the Tonzi Ranch oak savanna are characterized by high incoming 
solar radiation, declining soil moisture, high air temperatures, and high VPD (Baldocchi et al., 2021). This is also 
the case for the nearby Vaira grassland which is water-limited during the summer months when high incoming 
solar radiation increases evaporative demand and evaporation is more sensitive to increases in precipitation (Ryu 
et al., 2008). At the Tonzi Ranch, low soil moisture can limit summertime ET and the stomatal response of the 
oak trees to increasing VPD can serve as an indicator of soil moisture stress (Baldocchi et al., 2021). The best 
agreement was achieved between tower GPP and LRC-NIRvP GPP during the water-limited summer through a 
more accurate specification of the response of GPP to rising VPD during the day. Among the air temperature 
and VPD stressors of the LUE-NDVI model, the VPD stress on maximum light-use efficiency was the dominant 
stress on GPP during the summer.

The linear relationship between EC tower GPP and NIRvP was the least successful in capturing diurnal asym-
metry in GPP because it closely follows the course of solar radiation throughout the day and does not capture 
the impact of increasing diurnal VPD. We found the best agreement between the diurnal centroids of GPP from 
LIN-NIRvP and the diurnal centroids of GPP from the EC tower during December and January. These months 

Figure 5.  Scatter plots of test data and training data with eddy covariance tower estimates of GPP versus GPP estimated from LUE-NDVI (a–d), LIN-NIRvP (e–h), and 
LRC-NIRvP (i–l). The diurnal observations were used for plots labeled as “Diurnal.” The daily medians of diurnal GPP estimates were used in plots labeled as “Daily.” 
The black line shows the 1:1 line. The gray line shows the robust regression line.
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Figure 6.  Errors between estimates of GPP versus difference between NDVIPPPFD and tower incoming photosynthetic photon flux density (PPFD) (a). Errors between 
estimates of GPP and difference between NIRvPPPFD and tower incoming photosynthetic photon flux density (PPFD) (b, c). NDVIPPPFD and NIRvPPPFD calculated from 
eddy covariance tower NIRv, NDVI, and PPFD are used in the right column. NDVIPPPFD and NIRvPPPFD calculated from ABI NIRv, NDVI, and ABI PPFD are used in 
the left column. The units for the x axis are μmol Photons m −2 s −1 and the units for the y axis are μmol CO2 m −2 s −1.
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Figure 7.  Difference in diurnal centroids of GPP estimates and incoming shortwave radiation (SW) measured at the eddy covariance tower (CGPP*) (a). Difference in 
diurnal centroids of GPP estimates and eddy covariance tower latent heat flux (LE) (b). Difference in diurnal centroids of eddy covariance tower GPP and incoming 
SW, eddy covariance tower LE and incoming SW, and eddy covariance tower VPD and incoming SW (c). Volumetric soil water content at a depth of 0–15 cm (d). Box 
plots are ordered in the same order as the legend.
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correspond to the rainy season when radiation can limit GPP and when peak diurnal GPP tended to be aligned 
with incoming solar radiation. This could explain why these are the only months when LIN-NIRvP, which only 
relies on a linear relationship between a potential indicator of absorbed PAR (NIRvP) and GPP, tended to agree 
with the diurnal course of GPP. It has been noted that linearities between GPP proxies and GPP are observed at 
coarse spatiotemporal scales because such scales integrate the structural components and physiological processes 
(the sun-exposed and shaded leaves on a canopy, the impact of light saturation, etc.) at fine spatiotemporal scales 
(Anderson et al., 2000; Magney et al., 2020). Our results suggest that fine temporal scales even when the spatial 
scale is >1 km could be enough to degrade a linear relationship between GPP and NIRvP because the impacts of 
high light and/or other nonlinearities driven by micrometerological variation during the day are not captured by 
linear relationships between GPP and NIRvP.

4.2.  Diurnal Dynamics of GPP in Relation to Soil Moisture and Evapotranspiration

The shift of the peak of GPP toward the morning hours with progression into the summer months that we found 
from the LRC-NIRvP and LUE-NDVI is consistent with reported shifts in the timing of peak photosynthesis at 
the Tonzi Ranch (Tang et al., 2005). The peak of photosynthesis at this site has been reported to shift to 9.5 hr 
in July and 9  hr during the day in September (Tang et  al.,  2005). Summertime understory measurements of 
NEE when the grasses are dead have shown that soil respiration at the Tonzi Ranch peaks during the afternoon 
in phase with soil temperature during the drought months, while soil respiration under tree cover has shown to 
peak later than soil temperature (Tang et al., 2005). Soil respiration under the tree has shown to peak 7–12 hr 
after photosynthesis (Tang et al., 2005). The diurnal variation of soil moisture during the summer months is 
small compared to temperature and photosynthesis which has suggested that both the diurnal variations of tree 
photosynthesis and soil temperature drive the diurnal variation in soil and stem respiration at the Tonzi Ranch 
(Tang et al., 2005). In line with EC tower GPP, the increasing shift of GPP toward the morning hours that we 
found using the light response curve and the LUE model have been previously explained by rising temperatures, 
increasing Reco, increasing VPD in the afternoon, and stomatal closure during the afternoons at the Tonzi Ranch 
(Tang et al., 2005).

Previously, the mean annual integrated GPP (±standard deviation) at Tonzi Ranch has been reported as 1,05
6 gCm −2 yr −1 ± 145 gCm −2 yr −1 over a course of 15 years (Ma et al., 2016), and the mean annual integrated 
ET (±standard deviation) at the site has been reported as 419 ± 85 mm (Ma et al., 2020). Seasonally, the peak 
in surface conductance, GPP, and ET all occur during the rainy spring months after the oak canopy becomes 
photosynthetically active (Baldocchi et al., 2004, 2021; Ma et al., 2020). During this time LE (λET) tended to 
peak after incoming SW resulting in larger differences between the peak of EC tower LE and GPP compared to 
the late summer, fall, and winter months. The light response curve and the LUE model were slightly better at 
capturing the difference. This indicates that the high surface conductance and soil moisture that is characteristic 
of the rainy spring results in the ecosystem being able to respond and maintain LE during high afternoon VPD. 
On the other hand, the Tonzi Ranch savanna experiences the lowest surface conductance and LE during the dry 
summer months (Baldocchi et al., 2004). The oak trees also experience a decline in maximum net photosynthesis, 
maximum carboxylation rate, and maximum electron transport rate as the dry season progresses (Xu & Baldoc-
chi, 2003). With volumetric soil water contents below 15%, the ecosystem begins to experience sharp declines 
in ET/ETequilibrium (Baldocchi et al., 2004). During these months, LE shifts increasingly toward the morning and 
the differences between the peak of EC tower LE and GPP are some of the smallest. Morning shifts in GPP and 
ET have been previously identified in Mediterranean/dry climates (Nelson et al., 2018; Wilson et al., 2003). The 
ability of the oak trees to access deep ground water resources, their ability to reduce leaf area index, and their 
ability to regulate water loss allows them to transpire well into the dry summer months possibly maintaining 
low stomatal conductance or stomatal closure in response to high afternoon VPD (Baldocchi et al., 2004, 2021; 
Tang et al., 2005). We found that the GPP estimates from the light response curve with a VPD stress and the 
LUE-NDVI model were best able to follow the increasing alignment of peak GPP and LE with decreasing soil 
moisture.
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4.3.  Uncertainties and Moving Forward

We found that a light response curve between GPP and NIRvP was able to capture the increasing diurnal asym-
metry in GPP at the Tonzi Ranch. Previous research has suggested that the relationship between daily LUE 
and instantaneous LUE can vary with the time of day during which instantaneous LUE is estimated (Zhang 
et al., 2018). Midday light saturation could result in instantaneous LUE to be different from estimates of daily 
LUE (Zhang et al., 2018). However, the light-saturated part of the light response curve is hard to reach at the 
canopy level because entire canopies include both saturated and unsaturated leaves and space-based sensors 
capture the integrated response of larger areas that include multiple canopies, shaded leaves, and saturated leaves 
(Magney et al., 2020). The increasing saturation in the shape of a light response curve that we found during 
summer can result from high afternoon VPD during conditions of high light and the ecosystem regulating water 
loss during dry conditions through down regulation of transpiration through stomatal regulation rather than the 
sole impact of light saturation.

Our analysis of errors from the GPP estimates revealed that the light response curves tended to underestimate 
GPP compared to EC tower GPP when the differences between incident PPFD and NIRvPPPFD are very high. This 
could mean that LRC-NIRvP is unable to capture the higher EC tower GPP fluxes because of the light saturation 
point in LRC-NIRvP. On the other hand, the error patterns could also arise from the use of NIRvP and the result-
ing underestimation of GPP compared to EC tower GPP when there are large differences in incident PPFD and 
absorbed PPFD. The large differences between NIRvPPPFD and PPFD could occur when the ecosystem receives 
high PPFD, but NIRvPPPFD could be much lower due to seasonal variations in LAI lowering the estimated GPP. 
Since this pattern of errors is replicated with the use of NIRv from tower mounted sensors, the uncertainties asso-
ciated with atmospheric and angular correction of ABI TOA reflectances, the disagreement between ABI DSR 
and tower incoming SW, and the conversion of ABI downwelling shortwave radiation to PPFD do not seem to 
play a major role in these error patterns.

Finally, our atmospheric correction and BRDF correction could have introduced additional uncertainty in NIRvP 
estimates. We found that the diurnal shape of NIRv from our nadir approximation of surface reflectance matched 
the diurnal shape of NIRv from the tower mounted sensors at the Tonzi Ranch. However, we did find that the 
magnitude of NIRv differed between the two sources. This could result from differences in the field of view of 
the sensors, calibration differences between the sensors, the difference between an albedo-based and reflec-
tance-based NIRv, or the specification of the atmosphere by 6S in our atmospheric correction. We also used a 
simple least squares cost function between observed TOA and estimated TOA compared to cost functions that 
have been previously applied to ABI TOA reflectances which could impact atmospheric and angular correction 
(He et al., 2019).

Higher-level surface reflectance products from efforts such as the GeoNEX pipeline will be crucial for large-scale 
estimates of GPP from geostationary satellites (Li et al., 2019). Various gap-filling and smoothing techniques 
need to be tested and developed for very high temporal resolution estimates from geostationary satellites in order 
to start providing integrated GPP at daily to longer timescales. Diurnal gridded estimates of meteorological 
variables from reanalysis datasets are also needed for large-scale GPP estimates from ABI as have been used for 
diurnal space-based GPP estimates (Li et al., 2021). The response of GPP or Reco to land surface temperature 
could potentially be used to develop gridded estimates of GPP (Li et al., 2021) from ABI with ABI LST being 
offered hourly. Here, we have tested the use of ABI LST as opposed to VPD as an environmental stress on the 
maximum CO2 uptake rate of the light response curve (Figure A1). The resulting GPP estimates result in similar 
agreement to EC tower GPP compared to the LRC-NIRvP estimates (Figures A2 and A3).

The approaches of partitioning NEE into GPP and ecosystem respiration can impact both fluxes (Lasslop 
et al., 2010; Stoy et al., 2006) and therefore, future studies that evaluate the use of multiple partitioning approaches 
for estimating GPP from remotely sensed inputs could be insightful. Here, we tested all three ABI-based GPP 
estimates with GPP partitioned using approaches that rely on nighttime data alone and both nighttime and daytime 
data (Appendix B). Using the LRC-NIRvP and LUE-NDVI, we found better agreement between GPP estimates 
and EC tower GPP using the Lasslop et al. (2010) approach that relies on both daytime and nighttime NEE data 
(Figures B1 and B2). The better agreement between LRC-NIRvP GPP estimates and the Lasslop et al. (2010) 
partitioned GPP is obvious since they both rely on the same underlying assumptions for the response of GPP to 
light and the VPD stress on GPP.
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Coupled carbon-water-energy dynamics could in principle be studied by estimating GPP using the Atmosphere-Land 
Exchange Inverse (ALEXI) model which is already used to estimate ET using GOES. In other words, there are opportu-
nities to couple carbon and water fluxes using ABI observations that may improve our understanding of both (Anderson 
et al., 2000, 2008). Finally, it has been suggested that plant strategies for regulating water loss through stomatal regu-
lation in the face of drops in soil water potential can impact how sensitive plant productivity is to VPD or precipitation 
(Konings, Williams, & Gentine, 2017). Ecosystem water regulation strategies can be characterized on a continuum of 
isohydricity to anisohydricity based on both ground-based and space-based measurements (Konings & Gentine, 2017; 
Novick et al., 2019). ABI-based diurnal GPP estimates can help us investigate how quickly ecosystem carbon uptake 
is responding to water stress through diurnal shifts in GPP according to ecosystem water regulation strategies (Nelson 
et al., 2018) and the agreement in these dynamics between ground and space-based estimates.

5.  Conclusion
Diurnal estimates of GPP from geostationary satellites can provide us with observation-based estimates of GPP 
at very high temporal resolutions for studying diurnal dynamics at large scales. They can provide GPP esti-
mates integrated at daily to longer timescales for intercomparison studies and provide near-real time estimates 
of GPP. Half hour space-based estimates are also comparable to the timescale at which ecosystem gas exchange 
measurements from eddy covariance towers are reported. We tested three methods to estimate GPP with 5-min 
inputs from the Advanced Baseline Imager on the GOES-R series in an oak savanna ecosystem that experiences 
seasonal moisture stress and shifts in resource limitations throughout the year. We found that a light response 
curve with a proper VPD stress is in best agreement with ground-based ecosystem gas exchange measurements 
and the increasing diurnal asymmetry in GPP the ecosystem experiences during the dry summer season. We also 
found that GPP estimated with the light response curve is in best agreement with ground estimates during all 
other seasons highlighting the flexibility of the light response curve with proper environmental stresses for diur-
nal estimates. However, we did find that the light saturation point from light response curves underestimated GPP 
compared to GPP partitioned from gas exchange measurements during times of high incoming photosynthetic 
photon flux density. We found that linearities between NIRvP and GPP appear to break down at the diurnal scale 
due to stomatal and nonstomatal responses to changing irradiance and other environmental variables during the 
day. Finally, we found that GPP estimates from light response curves with a VPD stress and light-use efficiency 
models are in best agreement with the diurnal (mis)alignment of GPP and latent heat exchange in response to 
diurnal environmental variation. This agreement can be important for studying diurnal water-use efficiency and 
vegetation responses to environmental stresses. Moving forward to estimating diurnal ABI-based GPP at other 
ecosystems with eddy covariance towers, we find that it is important to test multiple GPP formulations at the 
diurnal scale to understand how seasonal resource availability and environmental conditions impact the diurnal 
GPP estimates. Surface reflectance and angular corrected reflectances could greatly facilitate the development of 
diurnal GPP estimates from remotely sensed inputs at regional to hemispheric scales.

Appendix A:  Land Surface Temperature Stress on Maximum CO2 Uptake Rate in the 
Light Response Curve
To test a LST stress on GPP, the light response curve of Equation 13 was modified with GOES-R ABI LST 
(ABI-L2-LSTC) as an input. Similar to ABI DSR, we linearly interpolated the hourly ABI LST to half hour time 
steps to match the data from eddy covariance tower. Using a light response curve similar to Lasslop et al. (2010), 
GPP was estimated as:

GPP =
𝛼𝛼LST NIRvP 𝛽𝛽LST

𝛽𝛽LST + 𝛼𝛼LST NIRvP
� (A1)

where αLST is the canopy LUE before light saturation is reached (μmol CO2 J −1) or the initial slope of the rela-
tionship between GPP and NIRvP and βLST is the maximum CO2 uptake rate at the point of light saturation (μmol 
CO2 m −2 s −1). The impact of increasing LST and the resulting stress on the maximum CO2 uptake rate at light 
saturation, βLST, was estimated as:

�LST =
�0LST

1 + exp(−� × (LST − LST0))
� (A2)
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where 𝐴𝐴 𝐴𝐴0
LST

 is the maximum CO2 uptake rate at light saturation during conditions of ideal LST. The parame-
ters αLST, 𝐴𝐴 𝐴𝐴0

LST

 , b, and LST0 were optimized using EC tower GPP as described in Equations 15 and 16 from 
Section 2.3.

The lowest training mean error was achieved during the summer (−0.21) and the lowest testing mean error 
was achieved during the fall (−0.16). The lowest training and testing normalized mean absolute error were 
achieved during the spring (0.28; Table A1). The error summaries are some of the lowest among all the meth-
ods and are comparable to LRC-NIRvP (Table 2). Similarly, the robust regression between GPP estimated from 
LRC-NIRvP-LST and EC tower GPP (Figure A3) was similar to the robust regression between GPP estimated 
from the other three methods and EC tower GPP (Figure 5). The diurnal means of GPP from LRC-NIRvP-LST 
were also most in agreement with EC tower GPP and LRC-NIRvP throughout the year (Figure A2). The disagree-
ment between specifying a LST or VPD stress on the maximum CO2 uptake rate was most evident during summer 
from late afternoon to early evening. As LST began to decrease in the early evening hours, LRC-NIRvP-LST GPP 
increased which was not in agreement with GPP partitioned at the EC tower.

Season

Training data Test data

ME MAE NMAE ME MAE NMAE

Winter −0.222 1.867 0.316 −0.190 1.831 0.312

Spring −0.394 2.655 0.284 −0.567 2.658 0.283

Summer −0.210 1.724 0.447 −0.207 1.734 0.456

Fall −0.283 1.366 0.453 −0.157 1.456 0.500

Note. The units for ME and MAE are μmol CO2 m −2 s −1.

Table A1 
Comparison of Mean Error (ME), Mean Absolute Error (MAE), and Normalized MAE (NMAE) Between ABI-Based GPP 
Estimates and Eddy Covriance Tower GPP Estimates

Figure A1.  The response of eddy covariance tower GPP to land surface temperature (LST). The black lines show the values 
of βLST estimated using Equation A2.
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Figure A2.  Seasonal diurnal means of estimates of GPP from all methods and diurnal means of estimates of GPP from the eddy covariance tower. The purple shaded 
region shows ±2 standard error of mean eddy covariance tower GPP. The data spans from January 2019 to December 2020.

Figure A3.  Scatter plots of test data (left) and training data (right) with eddy covariance tower estimates of GPP versus GPP 
estimated from LRC-NIRvP-LST. The black line shows the 1:1 line and the gray line shows the robust regression line.
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Appendix B:  Comparison of NEE Partitioning Approaches
To test the impact of different EC tower NEE partitioning approaches on GPP estimates with ABI inputs, we 
tested optimizing the parameters of LRC-NIRvP, LUE-NDVI, and LIN-NIRvP with two different EC tower 
GPP estimates from partitioning NEE using REddyProc (Wutzler et al., 2018). The first method has no explicit 
assumptions about the response of GPP to light and only uses nighttime data to estimate a temporally varying 
respiration-temperature relationship for vegetation that does not utilize Crassulacean acid metabolism as (Reich-
stein et al., 2005):

����(� ) = ���� exp
[

�0

(

1
���� − �0

− 1
� − �0

)]

� (B1)

where T is air temperature °C, E0 is the temperature sensitivity, T0 is held constant at −46.02°C, and TRef is held 
at 15°C (Reichstein et al., 2005; Wutzler et al., 2018). E0 is estimated using 15-day windows of nighttime data 
and the short-term E0 estimates are aggregated to an annual value (Reichstein et al., 2005; Wutzler et al., 2018). 
Using the annual E0 estimate, the RRef parameter is estimated with 7-day windows that are shifted for 4 days. 
The resulting RRef is assigned to the central time point of the 4 days and linearly interpolated between estimates 
(Reichstein et al., 2005; Wutzler et al., 2018). The Reco and air temperature relationship is extrapolated to daytime 
data to obtain estimates of Reco during the day. Finally, Reco estimates are used to estimate GPP as (Reichstein 
et al., 2005; Wutzler et al., 2018):

GPP = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 − NEE� (B2)

Figure B1.  Scatter plots of test data and training data with eddy covariance tower estimates of GPP using the NEE partitioning approach based on nighttime NEE data 
versus GPP estimated from LUE-NDVI (a–d), LIN-NIRvP (e–h), and LRC-NIRvP (i–l). The diurnal observations were used for plots labeled as “Diurnal.” The daily 
medians of diurnal GPP estimates were used in plots labeled as “Daily.” The black line shows the 1:1 line. The gray line shows the robust regression line.
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The second method includes a daytime light response function for GPP along with the response of Reco to air 
temperature and uses both nighttime data and daytime data to estimate NEE as (Lasslop et al., 2010; Wutzler 
et al., 2018):

NEE =

𝛼𝛼𝛼𝛼𝛼𝛼𝑔𝑔

𝛼𝛼𝛼𝛼𝑔𝑔 + 𝛽𝛽
+ 𝛾𝛾� (B3)

=
����

��� + �
+���� exp

[

�0

(

1
���� − �0

− 1
� − �0

)]

� (B4)

where α is the canopy LUE before light saturation is reached (μmol CO2 J −1) and β is the maximum CO2 uptake 
rate at the point of light saturation (μmol CO2 m −2 s −1), Rg is incoming shortwave radiation at the surface of the 
Earth, and γ (μmol CO2 m −2 s −1) is Reco. The impact of increasing VPD and the resulting stress on the maximum 
CO2 uptake rate at light saturation, β, was estimated according to Lasslop et al. (2010) using Equation 14. T0 
is fixed according to the nighttime partitioning (Wutzler et al., 2018). TRef is fixed within moving windows to 
the median temperature in the window and E0 is estimated from nighttime data for windows shifted by 2 days 
(Wutzler et  al.,  2018). E0 estimates are smoothed and a prior RRef is estimated from nighttime data for each 
window (Wutzler et al., 2018). Finally, the parameters of the light response curve (RRef, α, β0, k) are estimated 
using daytime data for each window (Wutzler et al., 2018).

Both nighttime and daytime partitioning methods resulted in similar relationships with GPP estimates from ABI 
inputs using both diurnal observations and daily medians (Figures B1 and B2). Daytime partitioning resulted in 

Figure B2.  Scatter plots of test data and training data with eddy covariance tower estimates of GPP using the NEE partitioning approach based on nighttime and 
daytime NEE data versus GPP estimated from LUE-NDVI (a–d), LIN-NIRvP (e–h), and LRC-NIRvP (i–l). The diurnal observations were used for plots labeled as 
”Diurnal.”s The daily medians of diurnal GPP estimates were used in plots labeled as ”Daily.” The black line shows the 1:1 line. The gray line shows the robust 
regression line.
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relationships between diurnal EC tower GPP and LRC-NIRvP and LUE-NDVI GPP estimates that were slightly 
closer to a 1:1 line compared to nighttime partitioning (Figures B1 and B2). The slightly better linear relationship 
between GPP estimated from daytime partitioning and from LRC-NIRvP is expected considering that both GPP 
estimates are derived from the same equations as outlined by Lasslop et al. (2010).

Data Availability Statement
The GOES-16/17 ABI Level 1b top-of-atmosphere radiance (ABI-L1b-RadC; NASA, 2019) is available through 
https://registry.opendata.aws/noaa-goes. The GOES-16/17 ABI Level 2 Clear Sky Mask (ABI-L2-ACMC; 
Heidinger & Straka, 2018), Land Surface Temperature (ABI-L2-LSTC; Yu et al., 2012), and Downward Short-
wave Radiation (ABI-L2-DSRC; NASA,  2018) are available through NOAA's Comprehensive Large Array-
Data Stewardship System (CLASS). The Tonzi Ranch Ameriflux data (Ma et al., 2001) are available at https://
ameriflux.lbl.gov/sites/siteinfo/US-Ton. The code to produce the figures will be available at https://github.com/
anmikhan/goes-gpp-tonzi.git upon publication.

References
Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., et al. (2015). Spatiotemporal patterns of terrestrial gross primary production: 

A review. Reviews of Geophysics, 53, 785–818. https://doi.org/10.1002/2015RG000483
Anderson, M. C., Norman, J. M., Kustas, W. P., Houborg, R., Starks, P. J., & Agam, N. (2008). A thermal-based remote sensing technique for 

routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment, 112(12), 
4227–4241. https://doi.org/10.1016/j.rse.2008.07.009

Anderson, M. C., Norman, J. M., Meyers, T. P., & Diak, G. R. (2000). An analytical model for estimating canopy transpiration and carbon 
assimilation fluxes based on canopy light-use efficiency. Agricultural and Forest Meteorology, 101(4), 265–289. https://doi.org/10.1016/
S0168-1923(99)00170-7

Badgley, G., Anderegg, L. D. L., Berry, J. A., & Field, C. B. (2019). Terrestrial gross primary production: Using NIRV to scale from site to globe. 
Global Change Biology, 25, 3731–3740. https://doi.org/10.1111/gcb.14729

Badgley, G., Field, C. B., & Berry, J. A. (2017). Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances, 3(3), 
e1602244. https://doi.org/10.1126/sciadv.1602244

Baldocchi, D. (1997). Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 
summer drought. Plant, Cell and Environment, 20(9), 1108–1122. https://doi.org/10.1046/j.1365-3040.1997.d01-147.x

Baldocchi, D., Ma, S., & Verfaillie, J. (2021). On the inter- and intra-annual variability of ecosystem evapotranspiration and water use efficiency 
of an oak savanna and annual grassland subjected to booms and busts in rainfall. Global Change Biology, 27, 359–375. https://doi.org/10.1111/
gcb.15414

Baldocchi, D., Ryu, Y., Dechant, B., Eichelmann, E., Hemes, K., Ma, S., et al. (2020). Outgoing near infrared radiation from vegetation scales 
with canopy photosynthesis across a spectrum of function, structure, physiological capacity and weather. Journal of Geophysical Research: 
Biogeosciences, 125, e2019JG005534. https://doi.org/10.1029/2019JG005534

Baldocchi, D., Xu, L., & Kiang, N. (2004). How plant functional-type, weather, seasonal drought, and soil physical properties alter water and 
energy fluxes of an oak–grass savanna and an annual grassland. Agricultural and Forest Meteorology, 123(1), 13–39. https://doi.org/10.1016/j.
agrformet.2003.11.006

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., et al. (2010). Terrestrial gross carbon dioxide uptake: Global distribu-
tion and covariation with climate. Science, 329(5993), 834–838. https://doi.org/10.1126/science.1184984

Bucci, S. J., Silletta, L. M. C., Garré, A., Cavallaro, A., Efron, S. T., Arias, N. S., et al. (2019). Functional relationships between hydraulic traits 
and the timing of diurnal depression of photosynthesis. Plant, Cell and Environment, 42(5), 1603–1614. https://doi.org/10.1111/pce.13512

Chen, M., Rafique, R., Asrar, G. R., Bond-Lamberty, B., Ciais, P., Zhao, F., et al. (2017). Regional contribution to variability and trends of global 
gross primary productivity. Environmental Research Letters, 12(10), 105005. https://doi.org/10.1088/1748-9326/aa8978

Chen, X., Rubin, Y., Ma, S., & Baldocchi, D. (2008). Observations and stochastic modeling of soil moisture control on evapotranspiration in a 
Californian oak savanna. Water Resources Research, 44, W08409. https://doi.org/10.1029/2007WR006646

Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., et al. (2021). Representativeness of Eddy-Covariance flux footprints for 
areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 301–302. https://doi.org/10.1016/j.agrformet.2021.108350

Cowan, I., & Farquhar, G. (1977). Stomatal function in relation to leaf metabolism and environment: Stomatal function in the regulation of gas 
exchange. Symposia of the Society for Experimental Biology, 31, 471–505.

Cramer, W., Kicklighter, D. W., Bondeau, A., Iii, B. M., Churkina, G., Nemry, B., et al. (1999). Comparing global models of terrestrial net 
primary productivity (NPP): Overview and key results. Global Change Biology, 5, 1–15. https://doi.org/10.1046/j.1365-2486.1999.00009.x

Dechant, B., Ryu, Y., Badgley, G., Köhler, P., Rascher, U., Migliavacca, M., et al. (2022). Nirvp: A robust structural proxy for sun-induced chloro-
phyll fluorescence and photosynthesis across scales. Remote Sensing of Environment, 268, 112763. https://doi.org/10.1016/j.rse.2021.112763

Field, C. B., Randerson, J. T., & Malmström, C. M. (1995). Global net primary production: Combining ecology and remote sensing. Remote 
Sensing of Environment, 51(1), 74–88. https://doi.org/10.1016/0034-4257(94)00066-V

Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., et al. (2020). Plant responses to rising vapor pres-
sure deficit. New Phytologist, 226(6), 1550–1566. https://doi.org/10.1111/nph.16485

Gu, L., Baldocchi, D., Verma, S. B., Black, T. A., Vesala, T., Falge, E. M., & Dowty, P. R. (2002). Advantages of diffuse radiation for terrestrial 
ecosystem productivity. Journal of Geophysical Research, 107(D6). 4050. https://doi.org/10.1029/2001JD001242

He, T., Liang, S., Wang, D., Wu, H., Yu, Y., & Wang, J. (2012). Estimation of surface albedo and directional reflectance from Moderate Resolution 
Imaging Spectroradiometer (MODIS) observations. Remote Sensing of Environment, 119, 286–300. https://doi.org/10.1016/j.rse.2012.01.004

Acknowledgments
PCS and JAO acknowledge support from 
the U.S. National Science Foundation 
Macrosystems Biology award 2106012. 
DDB acknowledges support from NASA 
ECOSTRESS, the U.S. Department of 
Energy Office of Science, and Ameriflux. 
JJ acknowledges support from NASA 
Arctic-Boreal Vulnerability Experiment 
(ABoVE).

https://registry.opendata.aws/noaa-goes
https://ameriflux.lbl.gov/sites/siteinfo/US-Ton
https://ameriflux.lbl.gov/sites/siteinfo/US-Ton
https://github.com/anmikhan/goes-gpp-tonzi.git
https://github.com/anmikhan/goes-gpp-tonzi.git
https://doi.org/10.1002/2015RG000483
https://doi.org/10.1016/j.rse.2008.07.009
https://doi.org/10.1016/S0168-1923(99)00170-7
https://doi.org/10.1016/S0168-1923(99)00170-7
https://doi.org/10.1111/gcb.14729
https://doi.org/10.1126/sciadv.1602244
https://doi.org/10.1046/j.1365-3040.1997.d01-147.x
https://doi.org/10.1111/gcb.15414
https://doi.org/10.1111/gcb.15414
https://doi.org/10.1029/2019JG005534
https://doi.org/10.1016/j.agrformet.2003.11.006
https://doi.org/10.1016/j.agrformet.2003.11.006
https://doi.org/10.1126/science.1184984
https://doi.org/10.1111/pce.13512
https://doi.org/10.1088/1748-9326/aa8978
https://doi.org/10.1029/2007WR006646
https://doi.org/10.1016/j.agrformet.2021.108350
https://doi.org/10.1046/j.1365-2486.1999.00009.x
https://doi.org/10.1016/j.rse.2021.112763
https://doi.org/10.1016/0034-4257(94)00066-V
https://doi.org/10.1111/nph.16485
https://doi.org/10.1029/2001JD001242
https://doi.org/10.1016/j.rse.2012.01.004


Journal of Geophysical Research: Biogeosciences

KHAN ET AL.

10.1029/2021JG006701

26 of 28

He, T., Zhang, Y., Liang, S., Yu, Y., & Wang, D. (2019). Developing land surface directional reflectance and albedo products from geostation-
ary GOES-R and Himawari data: Theoretical basis, operational implementation, and validation. Remote Sensing, 11(22), 2655. https://doi.
org/10.3390/rs11222655

Heidinger, A., & Straka, W. C. (2018). ABI Cloud Mask [Computer software manual]. Retrieved from https://www.goes-r.gov/products/baseline-
clear-sky-mask.html

Huang, X., Xiao, J., Wang, X., & Ma, M. (2021). Improving the global MODIS GPP model by optimizing parameters with FLUXNET data. 
Agricultural and Forest Meteorology, 300, 108314. https://doi.org/10.1016/j.agrformet.2020.108314

Jalakas, P., Takahashi, Y., Waadt, R., Schroeder, J. I., & Merilo, E. (2021). Molecular mechanisms of stomatal closure in response to rising vapour 
pressure deficit. New Phytologist, 232, 468–475. https://doi.org/10.1111/nph.17592

Joiner, J., & Yoshida, Y. (2020). Satellite-based reflectances capture large fraction of variability in global gross primary production (GPP) at 
weekly time scales. Agricultural and Forest Meteorology, 291, 108092. https://doi.org/10.1016/j.agrformet.2020.108092

Joiner, J., Yoshida, Y., Zhang, Y., Duveiller, G., Jung, M., Lyapustin, A., et al. (2018). Estimation of terrestrial global gross primary production 
(GPP) with satellite data-driven models and eddy covariance flux data. Remote Sensing, 10(9), 1346. https://doi.org/10.3390/rs10091346

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., et al. (2020). Scaling carbon fluxes from eddy covariance sites 
to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences, 17(5), 1343–1365. https://doi.org/10.5194/bg-17-1343-2020

Kannenberg, S. A., Bowling, D. R., & Anderegg, W. R. L. (2020). Hot moments in ecosystem fluxes: High GPP anomalies exert outsized influ-
ence on the carbon cycle and are differentially driven by moisture availability across biomes. Environmental Research Letters, 15(5), 054004. 
https://doi.org/10.1088/1748-9326/ab7b97

Keenan, T. F., Baker, I., Barr, A., Ciais, P., Davis, K., Dietze, M., et al. (2012). Terrestrial biosphere model performance for inter-annual variabil-
ity of land-atmosphere CO2 exchange. Global Change Biology, 18, 1971–1987. https://doi.org/10.1111/j.1365-2486.2012.02678.x

Keenan, T. F., García, R., Friend, A. D., Zaehle, S., Gracia, C., & Sabate, S. (2009). Improved understanding of drought controls on seasonal vari-
ation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling. Biogeosciences, 
6(8), 1423–1444. https://doi.org/10.5194/bg-6-1423-2009

Khan, A. M., Stoy, P. C., Douglas, J. T., Anderson, M., Diak, G., Otkin, J. A., et al. (2021). Reviews and syntheses: Ongoing and emerging 
opportunities to improve environmental science using observations from the advanced baseline imager on the geostationary operational envi-
ronmental satellites. Biogeosciences, 18(13), 4117–4141. https://doi.org/10.5194/bg-18-4117-2021

Konings, A. G., & Gentine, P. (2017). Global variations in ecosystem-scale isohydricity. Global Change Biology, 23, 891–905. https://doi.
org/10.1111/gcb.13389

Konings, A. G., Williams, A. P., & Gentine, P. (2017). Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. 
Nature Geoscience, 10(4), 284–288. https://doi.org/10.1038/ngeo2903

Konings, A. G., Yu, Y., Xu, L., Yang, Y., Schimel, D. S., & Saatchi, S. S. (2017). Active microwave observations of diurnal and seasonal 
variations of canopy water content across the humid African tropical forests. Geophysical Research Letters, 44, 2290–2299. https://doi.
org/10.1002/2016GL072388

Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., et al. (2010). Separation of net ecosystem exchange into assim-
ilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16, 187–208. 
https://doi.org/10.1111/j.1365-2486.2009.02041.x

Lawson, T. (2009). Guard cell photosynthesis and stomatal function. New Phytologist, 181(1), 13–34. https://doi.
org/10.1111/j.1469-8137.2008.02685.x

Li, S., Wang, W., Hashimoto, H., Xiong, J., Vandal, T., Yao, J., et al. (2019). First provisional land surface reflectance product from geostationary 
satellite himawari-8 AHI. Remote Sensing, 11(24), 2990. https://doi.org/10.3390/rs11242990

Li, X., Xiao, J., Fisher, J. B., & Baldocchi, D. (2021). ECOSTRESS estimates gross primary production with fine spatial resolution for different 
times of day from the International Space Station. Remote Sensing of Environment, 258, 112360. https://doi.org/10.1016/j.rse.2021.112360

Lin, C., Gentine, P., Frankenberg, C., Zhou, S., Kennedy, D., & Li, X. (2019). Evaluation and mechanism exploration of the diurnal hysteresis of 
ecosystem fluxes. Agricultural and Forest Meteorology, 278, 107642. https://doi.org/10.1016/j.agrformet.2019.107642

Ma, S., Baldocchi, D., Wolf, S., & Verfaillie, J. (2016). Slow ecosystem responses conditionally regulate annual carbon balance over 15 years 
in Californian oak-grass savanna. Agricultural and Forest Meteorology, 228–229, 252–264. https://doi.org/10.1016/j.agrformet.2016.07.016

Ma, S., Eichelmann, E., Wolf, S., Rey-Sanchez, C., & Baldocchi, D. D. (2020). Transpiration and evaporation in a Californian oak-grass 
savanna: Field measurements and partitioning model results. Agricultural and Forest Meteorology, 295, 108204. https://doi.org/10.1016/j.
agrformet.2020.108204

Ma, S., Xu, L., Verfaillie, J., & Baldocchi, D. (2001). Ameriflux US-Ton Tonzi Ranch. https://doi.org/10.17190/AMF/1245971
Magney, T. S., Barnes, M. L., & Yang, X. (2020). On the covariation of chlorophyll fluorescence and photosynthesis across scales. Geophysical 

Research Letters, 47, e2020GL091098. https://doi.org/10.1029/2020GL091098
Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X., Dunn, A. L., Lin, J. C., et al. (2008). A satellite-based biosphere parameterization for net 

ecosystem CO2 exchange: Vegetation photosynthesis and respiration model (VPRM): Net ecosystem exchange model. Global Biogeochemical 
Cycles, 22, GB2005. https://doi.org/10.1029/2006GB002735

Matheny, A. M., Bohrer, G., Stoy, P. C., Baker, I. T., Black, A. T., Desai, A. R., et al. (2014). Characterizing the diurnal patterns of errors in the 
prediction of evapotranspiration by several land-surface models: An NACP analysis. Journal of Geophysical Research: Biogeosciences, 119, 
1458–1473. https://doi.org/10.1002/2014JG002623

Matthews, J. S. A., Vialet-Chabrand, S. R. M., & Lawson, T. (2017). Diurnal variation in gas exchange: The balance between carbon fixation and 
water loss. Plant Physiology, 174(2), 614–623. https://doi.org/10.1104/pp.17.00152

Meek, D. W., Hatfield, J. L., Howell, T. A., Idso, S. B., & Reginato, R. J. (1984). A generalized relationship between Photosynthetically Active 
Radiation and solar radiation. Agronomy Journal, 76(6), 939–945. https://doi.org/10.2134/agronj1984.00021962007600060018x

Meinzer, F. C., Smith, D. D., Woodruff, D. R., Marias, D. E., McCulloh, K. A., Howard, A. R., & Magedman, A. L. (2017). Stomatal kinetics 
and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status. Plant, Cell and Environment, 
40(8), 1618–1628. https://doi.org/10.1111/pce.12970

Merrick, T., Pau, S., Detto, M., Broadbent, E. N., Bohlman, S. A., Still, C. J., & Almeyda Zambrano, A. M. (2021). Unveiling spatial and temporal 
heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad from UAS observations. Biogeosciences, 18(22), 
6077–6091. https://doi.org/10.5194/bg-18-6077-2021

Miller, G. R., Chen, X., Rubin, Y., Ma, S., & Baldocchi, D. D. (2010). Groundwater uptake by woody vegetation in a semiarid oak savanna. Water 
Resources Research, 46, W10503. https://doi.org/10.1029/2009WR008902

NASA (2018). GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for downward shortwave radiation (surface), 
and reflected shortwave radiation (TOA) [Computer software manual]. Retrieved from https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf

https://doi.org/10.3390/rs11222655
https://doi.org/10.3390/rs11222655
https://www.goes-r.gov/products/baseline-clear-sky-mask.html
https://www.goes-r.gov/products/baseline-clear-sky-mask.html
https://doi.org/10.1016/j.agrformet.2020.108314
https://doi.org/10.1111/nph.17592
https://doi.org/10.1016/j.agrformet.2020.108092
https://doi.org/10.3390/rs10091346
https://doi.org/10.5194/bg-17-1343-2020
https://doi.org/10.1088/1748-9326/ab7b97
https://doi.org/10.1111/j.1365-2486.2012.02678.x
https://doi.org/10.5194/bg-6-1423-2009
https://doi.org/10.5194/bg-18-4117-2021
https://doi.org/10.1111/gcb.13389
https://doi.org/10.1111/gcb.13389
https://doi.org/10.1038/ngeo2903
https://doi.org/10.1002/2016GL072388
https://doi.org/10.1002/2016GL072388
https://doi.org/10.1111/j.1365-2486.2009.02041.x
https://doi.org/10.1111/j.1469-8137.2008.02685.x
https://doi.org/10.1111/j.1469-8137.2008.02685.x
https://doi.org/10.3390/rs11242990
https://doi.org/10.1016/j.rse.2021.112360
https://doi.org/10.1016/j.agrformet.2019.107642
https://doi.org/10.1016/j.agrformet.2016.07.016
https://doi.org/10.1016/j.agrformet.2020.108204
https://doi.org/10.1016/j.agrformet.2020.108204
https://doi.org/10.17190/AMF/1245971
https://doi.org/10.1029/2020GL091098
https://doi.org/10.1029/2006GB002735
https://doi.org/10.1002/2014JG002623
https://doi.org/10.1104/pp.17.00152
https://doi.org/10.2134/agronj1984.00021962007600060018x
https://doi.org/10.1111/pce.12970
https://doi.org/10.5194/bg-18-6077-2021
https://doi.org/10.1029/2009WR008902
https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf


Journal of Geophysical Research: Biogeosciences

KHAN ET AL.

10.1029/2021JG006701

27 of 28

NASA (2019). Product Definition and User’s Guide (PUG): Volume 3: Level 1b products [Computer software manual]. Retrieved from https://
www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf

Nelson, J. A., Carvalhais, N., Migliavacca, M., Reichstein, M., & Jung, M. (2018). Water-stress-induced breakdown of carbon–water relations: 
Indicators from diurnal FLUXNET patterns. Biogeosciences, 15(8), 2433–2447. https://doi.org/10.5194/bg-15-2433-2018

Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., et al. (2016). The increasing importance of atmospheric 
demand for ecosystem water and carbon fluxes. Nature Climate Change, 6(11), 1023–1027. https://doi.org/10.1038/nclimate3114

Novick, K. A., Konings, A. G., & Gentine, P. (2019). Beyond soil water potential: An expanded view on isohydricity including land–atmosphere 
interactions and phenology. Plant, Cell and Environment, 42(6), 1802–1815. https://doi.org/10.1111/pce.13517

O’Sullivan, M., Smith, W. K., Sitch, S., Friedlingstein, P., Arora, V. K., Haverd, V., et  al. (2020). Climate-driven variability and trends in 
plant productivity over recent decades based on three global products. Global Biogeochemical Cycles, 34, e2020GB006613. https://doi.
org/10.1029/2020GB006613

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal 
of Machine Learning Research, 12, 2825–2830.

Prince, S. D., & Goward, S. N. (1995). Global primary production: A remote sensing approach. Journal of Biogeography, 22(4/5), 815–835. 
https://doi.org/10.2307/2845983

Qin, W., Herman, J. R., & Ahmad, Z. (2001). A fast, accurate algorithm to account for non-Lambertian surface effects on TOA radiance. Journal 
of Geophysical Research, 106, 22671–22684. https://doi.org/10.1029/2001JD900215

Randazzo, N. A., Michalak, A. M., & Desai, A. R. (2020). Synoptic meteorology explains temperate forest carbon uptake. Journal of Geophysical 
Research: Biogeosciences, 125, e2019JG005476. https://doi.org/10.1029/2019JG005476

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., et  al. (2005). On the separation of net ecosystem exchange 
into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11, 1424–1439. https://doi.
org/10.1111/j.1365-2486.2005.001002.x

Reichstein, M., Stoy, P. C., Desai, A. R., Lasslop, G., & Richardson, A. D. (2012). Partitioning of net fluxes. In M.Aubinet, T.Vesala, & D.Papale 
(Eds.), Eddy covariance (pp. 263–289). The Netherlands: Springer. https://doi.org/10.1007/978-94-007-2351-1_9

Roby, M. C., Scott, R. L., & Moore, D. J. P. (2020). High vapor pressure deficit decreases the productivity and water-use efficiency of rain-induced 
pulses in semiarid ecosystems. Journal of Geophysical Research: Biogeosciences, 125, e2020JG005665. https://doi.org/10.1029/2020JG005665

Ruimy, A., Dedieu, G., & Saugier, B. (1996). Turc: A diagnostic model of continental gross primary productivity and net primary productivity. 
Global Biogeochemical Cycles, 10(2), 269–285. https://doi.org/10.1029/96GB00349

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004). A continuous satellite-derived measure of global 
terrestrial primary production. BioScience, 54(6), 547–560. https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2

Running, S. W., & Zhao, M. (2015). User’s guide daily GPP and annual NPP (MOD17A2/A3) products NASA earth observing system MODIS 
land algorithm [Computer software manual].

Ryu, Y., Baldocchi, D. D., Ma, S., & Hehn, T. (2008). Interannual variability of evapotranspiration and energy exchange over an annual grassland 
in California. Journal of Geophysical Research: Atmospheres, 113, D09104. https://doi.org/10.1029/2007JD009263

Schmit, T. J., & Gunshor, M. M. (2020). ABI Imagery from the GOES-R series. In The GOES-R series (pp. 23–34). Elsevier. https://doi.
org/10.1016/B978-0-12-814327-8.00004-4

Schulze, E.-D., & Hall, A. E. (1982). Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In 
O. L.Lange, P. S.Nobel, C. B.Osmond, & H.Ziegler (Eds.), Physiological plant Ecology II: Water relations and carbon assimilation (pp. 
181–230). Berlin: Springer. https://doi.org/10.1007/978-3-642-68150-9_8

Seabold, S., & Perktold, J. (2010). statsmodels: Econometric and statistical modeling with Python. In 9th Python in science conference. https://
doi.org/10.25080/majora-92bf1922-011

Sims, D. A., Brzostek, E. R., Rahman, A. F., Dragoni, D., & Phillips, R. P. (2014). An improved approach for remotely sensing water stress 
impacts on forest c uptake. Global Change Biology, 20, 2856–2866. https://doi.org/10.1111/gcb.12537

Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C., Seneviratne, S. I., & Peñuelas, J. (2019). Drought impacts on terrestrial primary 
production underestimated by satellite monitoring. Nature Geoscience, 12(4), 264–270. https://doi.org/10.1038/s41561-019-0318-6

Stoy, P. C., Katul, G. G., Siqueira, M. B. S., Juang, J.-Y., McCarthy, H. R., Kim, H.-S., et al. (2005). Variability in net ecosystem exchange from 
hourly to inter-annual time scales at adjacent pine and hardwood forests: A wavelet analysis. Tree Physiology, 25(7), 887–902. https://doi.
org/10.1093/treephys/25.7.887

Stoy, P. C., Katul, G. G., Siqueira, M. B., Juang, J.-Y., Novick, K. A., Uebelherr, J. M., & Oren, R. (2006). An evaluation of models for partitioning 
eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agricultural and Forest Meteorology, 141(1), 2–18. 
https://doi.org/10.1016/j.agrformet.2006.09.001

Tang, J., Baldocchi, D. D., & Xu, L. (2005). Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Biology, 11, 
1298–1304. https://doi.org/10.1111/j.1365-2486.2005.00978.x

Thimijan, R., & Heins, R. (1983). Photometric, radiometric, and quantum light units of measure: A review of procedures for interconversion. 
Horticultural Science, 18, 818–822.

Tuzet, A., Perrier, A., & Leuning, R. (2003). A coupled model of stomatal conductance, photosynthesis and transpiration. Plant, Cell and Envi-
ronment, 26(7), 1097–1116. https://doi.org/10.1046/j.1365-3040.2003.01035.x

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., et al. (2020). SciPy 1.0: Fundamental algorithms for 
scientific computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Wanner, W., Li, X., & Strahler, A. H. (1995). On the derivation of kernels for kernel-driven models of bidirectional reflectance. Journal of 
Geophysical Research, 100, 21077–21089. https://doi.org/10.1029/95JD02371

Weiss, A., & Norman, J. (1985). Partitioning solar radiation into direct and diffuse, visible and near-infrared components. Agricultural and Forest 
Meteorology, 34(2), 205–213. https://doi.org/10.1016/0168-1923(85)90020-6

Wilson, K. B., Baldocchi, D., Falge, E., Aubinet, M., Berbigier, P., Bernhofer, C., et al. (2003). Diurnal centroid of ecosystem energy and carbon 
fluxes at FLUXNET sites. Journal of Geophysical Research: Atmospheres, 108(D21), 4664. https://doi.org/10.1029/2001JD001349

Wilson, R. (2013). Py6s: A python interface to the 6s radiative transfer model. Computers & Geosciences, 51, 166–171. https://doi.org/10.1016/j.
cageo.2012.08.002

Wu, G., Guan, K., Jiang, C., Peng, B., Kimm, H., Chen, M., et al. (2020). Radiance-based NIRv as a proxy for GPP of corn and soybean. Envi-
ronmental Research Letters, 15(3), 034009. https://doi.org/10.1088/1748-9326/ab65cc

Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., et al. (2018). Basic and extensible post-processing of eddy 
covariance flux data with REddyProc. Biogeosciences, 15(16), 5015–5030. https://doi.org/10.5194/bg-15-5015-2018

https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf
https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf
https://doi.org/10.5194/bg-15-2433-2018
https://doi.org/10.1038/nclimate3114
https://doi.org/10.1111/pce.13517
https://doi.org/10.1029/2020GB006613
https://doi.org/10.1029/2020GB006613
https://doi.org/10.2307/2845983
https://doi.org/10.1029/2001JD900215
https://doi.org/10.1029/2019JG005476
https://doi.org/10.1111/j.1365-2486.2005.001002.x
https://doi.org/10.1111/j.1365-2486.2005.001002.x
https://doi.org/10.1007/978-94-007-2351-1_9
https://doi.org/10.1029/2020JG005665
https://doi.org/10.1029/96GB00349
https://doi.org/10.1641/0006-3568(2004)054%5B0547:ACSMOG%5D2.0.CO;2
https://doi.org/10.1029/2007JD009263
https://doi.org/10.1016/B978-0-12-814327-8.00004-4
https://doi.org/10.1016/B978-0-12-814327-8.00004-4
https://doi.org/10.1007/978-3-642-68150-9_8
https://doi.org/10.25080/majora-92bf1922-011
https://doi.org/10.25080/majora-92bf1922-011
https://doi.org/10.1111/gcb.12537
https://doi.org/10.1038/s41561-019-0318-6
https://doi.org/10.1093/treephys/25.7.887
https://doi.org/10.1093/treephys/25.7.887
https://doi.org/10.1016/j.agrformet.2006.09.001
https://doi.org/10.1111/j.1365-2486.2005.00978.x
https://doi.org/10.1046/j.1365-3040.2003.01035.x
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1029/95JD02371
https://doi.org/10.1016/0168-1923(85)90020-6
https://doi.org/10.1029/2001JD001349
https://doi.org/10.1016/j.cageo.2012.08.002
https://doi.org/10.1016/j.cageo.2012.08.002
https://doi.org/10.1088/1748-9326/ab65cc
https://doi.org/10.5194/bg-15-5015-2018


Journal of Geophysical Research: Biogeosciences

KHAN ET AL.

10.1029/2021JG006701

28 of 28

Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., et al. (2019). Remote sensing of the terrestrial carbon cycle: A review 
of advances over 50 years. Remote Sensing of Environment, 233, 111383. https://doi.org/10.1016/j.rse.2019.111383

Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K., & Parazoo, N. C. (2021). Emerging satellite observations for diurnal cycling of ecosystem 
processes. Nature Plants, 7, 877–887. https://doi.org/10.1038/s41477-021-00952-8

Xu, L., & Baldocchi, D. D. (2003). Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under 
prolonged summer drought and high temperature. Tree Physiology, 23(13), 865–877. https://doi.org/10.1093/treephys/23.13.865

Yu, Y., Tarpley, D., & Xu, H. (2012). GOES-R Advanced Baseline Imager (ABI) Algorithm theoretical basis document for land surface tempera-
ture [Computer software manual]. Retrieved from https://www.goes-r.gov/products/baseline-LST.html

Yuan, W., Cai, W., Xia, J., Chen, J., Liu, S., Dong, W., et al. (2014). Global comparison of light use efficiency models for simulating terrestrial 
vegetation gross primary production based on the LaThuile database. Agricultural and Forest Meteorology, 192–193, 108–120. https://doi.
org/10.1016/j.agrformet.2014.03.007

Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L. L., Baldocchi, D., et al. (2007). Deriving a light use efficiency model from eddy covariance 
flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 143(3), 189–207. https://doi.
org/10.1016/j.agrformet.2006.12.001

Zhang, Y., Xiao, X., Guanter, L., Zhou, S., Ciais, P., Joiner, J., et al. (2016). Precipitation and carbon-water coupling jointly control the interannual 
variability of global land gross primary production. Scientific Reports, 6(1), 39748. https://doi.org/10.1038/srep39748

Zhang, Y., Xiao, X., Zhang, Y., Wolf, S., Zhou, S., Joiner, J., et al. (2018). On the relationship between sub-daily instantaneous and daily total 
gross primary production: Implications for interpreting satellite-based SIF retrievals. Remote Sensing of Environment, 205, 276–289. https://
doi.org/10.1016/j.rse.2017.12.009

Zscheischler, J., Mahecha, M. D., von Buttlar, J., Harmeling, S., Jung, M., Rammig, A., et al. (2014). A few extreme events dominate global inter-
annual variability in gross primary production. Environmental Research Letters, 9(3), 035001. https://doi.org/10.1088/1748-9326/9/3/035001

https://doi.org/10.1016/j.rse.2019.111383
https://doi.org/10.1038/s41477-021-00952-8
https://doi.org/10.1093/treephys/23.13.865
https://www.goes-r.gov/products/baseline-LST.html
https://doi.org/10.1016/j.agrformet.2014.03.007
https://doi.org/10.1016/j.agrformet.2014.03.007
https://doi.org/10.1016/j.agrformet.2006.12.001
https://doi.org/10.1016/j.agrformet.2006.12.001
https://doi.org/10.1038/srep39748
https://doi.org/10.1016/j.rse.2017.12.009
https://doi.org/10.1016/j.rse.2017.12.009
https://doi.org/10.1088/1748-9326/9/3/035001

	The Diurnal Dynamics of Gross Primary Productivity Using Observations From the Advanced Baseline Imager on the Geostationary Operational Environmental Satellite-R Series at an Oak Savanna Ecosystem
	Abstract
	Plain Language Summary
	1. Introduction
	2. Materials and Methods
	2.1. Study Site
	2.2. Data
	2.2.1. ABI
	2.2.2. Ameriflux Eddy Covariance Tower

	2.3. Estimating GPP
	2.4. Model Evaluation
	2.5. Diurnal Centroids

	3. Results
	3.1. Model Evaluation
	3.2. Diurnal Centroids

	4. Discussion
	4.1. Diurnal Environmental Stresses
	4.2. Diurnal Dynamics of GPP in Relation to Soil Moisture and Evapotranspiration
	4.3. Uncertainties and Moving Forward

	5. Conclusion
	Appendix A: Land Surface Temperature Stress on Maximum CO2 Uptake Rate in the Light Response Curve
	Appendix B: Comparison of NEE Partitioning Approaches
	Data Availability Statement
	References


