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ABSTRACT

Flash droughts are extreme phenomena that have been identified using two different approaches. The first

approach identifies these events based on unusually rapid intensification rates, whereas the second approach

implicitly identifies short-term features. This latter approach classifies flash droughts into two types, namely,

precipitation deficit and heat wave flash droughts (denoted as PDFD and HWFD). In this study, we evaluate

these two approaches over the Yellow River basin (YRB) to determine which approach provides more ac-

curate information about flash droughts and why. Based on the concept of intensification rate, a new quan-

titative flash drought identification method focused on soil moisture depletion during the onset–development

phase is proposed. Its performance was evaluated by comparing the onset time and spatial dynamics of the

identified flash droughts with PDFD and HWFD events identified using the second approach. The results

show that the rapid-intensification approach is better able to capture the continuous evolution of a flash

drought. Since the approach for identifying PDFD and HWFD events does not consider changes in soil

moisture with time, it cannot ensure that the events exhibit rapid intensification, nor can it effectively capture

flash droughts’ onset. Evaluation of the results showed that the chosen hydrometeorological variables and

corresponding thresholds, particularly that of temperature, are the main reasons for the poor performance of

the PDFD andHWFD identification approach. This study promotes a deeper understanding of flash droughts

that is beneficial for drought monitoring, early warning, and mitigation.

1. Introduction

The summer 2012 drought that occurred across the

central United States is recognized as a historic flash

drought event. It attracted widespread attention by the

scientific community due to its tremendous impacts

on agricultural production and the economy (Hoerling

et al. 2014). In contrast to a traditional, more slowly

evolving drought, this event intensified suddenly and

caused a rapid depletion of soil moisture during a

2-month time period (Otkin et al. 2015). Trenberth et al.

(2014) report that the increased heating from global

warming can exacerbate drying, making the drought

proceed in a more intense and quicker manner. From

the perspective of its causative mechanism, such a rapid

depletion of soil moisture storage often involves com-

plicated soil moisture–atmosphere feedbacks coupled

with the transition between energy-limited and water-

limited conditions (Anderson et al. 2007; Otkin et al.

2013; Yuan et al. 2018). For example, enhanced evapo-

rative demand derived from above-normal air temper-

atures, strong wind, or low humidity may induce a sharp

decrease in soil moisture and aggravate vegetation stress

(Hunt et al. 2014; Shukla et al. 2015; Hobbins et al. 2016;

Ford and Labosier 2017; Liu et al. 2019). Persistent

consumption of soil moisture in turn, leads to less water
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available in the basin storage for evapotranspiration,

inducing water limited conditions (Hobbins et al. 2016;

Liu et al. 2017; Zhang et al. 2019).

In view of the relevant literature, there have been two

different ways to identify flash droughts. One is repre-

sented by Mo and Lettenmaier (2015, 2016), which uses

hydrological model simulations including soil moisture,

precipitation, evapotranspiration, and temperature to

identify the frequency of flash droughts in the United

States. By using different combinations of thresholds for

the above variables, two types of flash droughts can be

classified: the precipitation deficit flash drought (PDFD)

and the heat wave flash drought (HDFD). Although both

types are manifested by soil moisture deficits, they origi-

nate from different physical mechanisms. The former type

is initiated by negative precipitation anomalies, while the

latter type is temperature driven. Several studies have

employed this method to detect flash droughts in China

(Yuan et al. 2015; Wang et al. 2016; Zhang et al. 2017).

Another popular method in recent literature focuses

instead on the rapid intensification rate of flash drought

(e.g., Ford and Labosier 2017; Otkin et al. 2018; Yuan

et al. 2018; Liu et al. 2020). In their notion, the flash

drought is a subset of all droughts, in that its intensifi-

cation rate is unusual and should not be confused with a

short-term dry spell. Otkin et al. (2018) also state that

the method of flash drought identification should ac-

count for both its rapid intensification (i.e., the flash) and

the actual condition of moisture limitation (i.e., the

drought). Several studies have suggested that the change

in soil moisture with time should be an important indi-

cator of flash drought considering the close relationship

between soil moisture and vegetation conditions (Hunt

et al. 2009; Mozny et al. 2012; AghaKouchak et al. 2015;

Otkin et al. 2018). For example, Ford et al. (2015) de-

fined flash droughts as phenomena where soil mois-

ture decreases from the 40th to 20th percentile within

20 days. Overall, such an intensification manner em-

phasizes the time period over which flash droughts can

develop and intensify (Ford and Labosier 2017).

These two identification methods of flash droughts

provide us different ways to understand this extreme

phenomenon. So far, no study has made a comprehen-

sive evaluation of these two separate approaches to il-

lustrate which one best captures the onset time, as well

as the rapid intensification process of flash drought.

Based on the notion of intensification rate, here we

propose a quantitative method by measuring the rate of

soil moisture decline during the onset–development

phase of drought to identify flash drought. The perfor-

mances of the new method in monitoring flash drought

events, including their onset time, and responses to

variations in vegetation condition are compared with

those derived from the Mo and Lettenmaier (2016)

proposed approach (i.e., PDFD and HWFD). Finally,

the role of hydrometeorological variables in formulating

flash droughts is investigated to interpret which method

is more suitable for flash drought identification.

2. Study area and datasets

We used the hydrological outputs of the Variable

Infiltration Capacity (VIC) model constructed over the

Yellow River basin (YRB) during the period from 1961

to 2012 for flash drought analysis. TheVICmodel allows

for the accounting of subgrid variability in soil, vegeta-

tion, precipitation, and topography for gridscale fluxes,

which enables consideration of the dynamic variation in

both water and energy balances (Liang et al. 1996;Wang

et al. 2018). Daily meteorological forcing data required

by VIC include precipitation (P); mean, maximum, and

minimum air temperature (Tmean, Tmax, and Tmin); wind

speed; and atmospheric pressure. These data were down-

loaded from the China Meteorological Data Sharing

Service System (http://data.cma.gov.cn/). Streamflow

observations of five hydrological gauges with complete

daily records during 1961–2012 are used for model cal-

ibration and verification. To examine the accuracy

of simulated soil moisture, we also collect two sources

of soil moisture products. One is from the China

Agrometeorological Stations that provide 10-day rela-

tive soil moisture observations at a 50-cm depth from

September 1991 to December 2012. After quality con-

trol, 57 agricultural sites with relatively long records are

selected. The other is the European Space Agency

(ESA) Climate Change Initiative (CCI) remote sensing

soil moisture product (Dorigo et al. 2017) that has a

temporal span from 1979 to 2012 with 0.258 spatial reso-
lution. We use it to evaluate the model simulated surface

soil moisture (0.05–0.1-m depth). The spatial distribution

of the abovementionedmeteorological, hydrological, and

soil moisture sites are displayed in Fig. 1.

For model implementation, the VIC was run at a

spatial resolution of 0.258 at a daily time step and was

calibrated during 1961–90 and validated during 1991–

2012. Figure S1 in the online supplemental material

evaluates the consistency between simulated and ob-

served streamflow series. Generally, the model can

capture most of the streamflow variability with the

Nash–Sutcliffe coefficients of efficiency (NSCE) varying

between 0.65 and 0.94, and the absolute values of BIAS

ranging from 0.3% to 10.8%. As for soil moisture veri-

fication, the VIC simulated daily values are aggregated

to 10-day resolution and compared with agricultural

observations. As shown in Fig. S2a, the correlation co-

efficients (CC) are mostly above 0.5, with higher
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CC values (up to 0.75) concentrated in the middle parts

of YRB. Likewise, a good agreement is also observed

between model simulated and ESA CCI soil moisture

products (both are aggregated to weekly values) with

CC values above 0.7 for the majority of the basin

(Fig. S2b). In addition, we also compared the distribu-

tion tails of soil moisture percentiles derived from VIC

simulations against those of in situ observations. The

probability of detection (POD) was used to measure the

consistency between VIC simulated soil moisture and

in situ observations at different percentile intervals. In

this study, the POD is calculated as the ratio of soil

moisture percentiles at the same intervals (e.g., the soil

moisture values from the VIC simulations and from the

in situ observations both fall within the 40th–30th per-

centile) that is recorded by the VIC simulations and

in situ observations simultaneously. Detailed steps for

calculating the soil moisture percentiles is given in the

following paragraph. As shown in Fig. S3, the POD for

four intervals on average is around 0.5–0.6. Several po-

tential factors such as the scale mismatch between

model simulated soil moisture (grid scale) and in situ

measurements (point scale), the accuracy of meteo-

rological forcings (e.g., precipitation forcing) may be

responsible for their disparities (Peng et al. 2017;

Ford and Quiring 2019). Based on above validations

of soil moisture and runoff, it is suggested that VIC

model is able to depict the hydrological process in

this region.

Since the rapid depletion of soil moisture is an im-

portant indicator of flash drought occurrence and also

has a close relationship with vegetation status, in this

study, we use soil moisture percentiles to track drought

conditions. The gridded daily soil moisture (the average

values of 0–1-m soil layers) from the VIC simulations

during 1961–2012 are aggregated to weekly averages. To

minimize the artificial anomalies introduced by the

identification method, for each grid point, percentiles

are estimated separately for each calendar month. Eight

candidate theoretical probability distribution functions

(Table S1) are employed to fit soil moisture and other

hydrometeorological variables. The optimal distribution

is determined when the lowest value of root-mean-square

error is achieved and also passes theKolmogorov–Smirnov

test at a 95% significance level. Likewise, other gridded

outputs of VIC such as the actual evapotranspiration

(AET) are also extracted to explore the dynamics of

land surface and atmospheric moisture fluxes during

flash drought. Particularly, several meteorological var-

iables of VIC outputs including temperature, wind, hu-

midity, and shortwave radiation at the surface are used to

compute the potential evapotranspiration (PET) through

the Penman–Monteith equation.Detailed information can

be found in the official website (https://vic.readthedocs.io/

en/master/Documentation/OutputVarList/). In addi-

tion, we also collect the Global Inventory Modeling and

Mapping Studies–Normalized Difference Vegetation

Index (GIMMS-NDVI) dataset to investigate the veg-

etation conditions, which is available semimonthly from

1982 to 2015 with a resolution of 8 km.

3. Methodology

a. Heat wave and precipitation deficit flash droughts

From the perspective of physical mechanisms,Mo and

Lettenmaier (2016) defined two types of flash droughts,

FIG. 1. Spatial distribution of national meteorological stations, soil moisture observation sites,

and hydrological stations over the Yellow River basin (YRB).
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that is, heat wave and precipitation deficit flash droughts

(denoted as HWFD and PDFD). Although both types are

manifested by soil moisture deficits (below 40% percen-

tile), they substantially reflect different propagation chains

of moisture and energy fluxes. For HWFD, high tempera-

ture is themain driver,which further leads toward increases

in AET. Meanwhile, negative P anomalies before drought

onset are also necessary conditions to bring down soil

moisture anomalies. In a different manner, the PDFD is

precipitation driven. The lack of precipitation prior to

drought onset is responsible for the reduction in soil

moisture and AET, which in turn leads to high tempera-

tures. Mo and Lettenmaier (2015, 2016) tested different

scenarios of multivariable based thresholds and recom-

mended the following criteria for identifying flash droughts:

HWFD:T
anomaly

.s; AET
anomaly

. 0; P
anomaly

, 0;

SM, 40th percentile , (1)

PDFD:P, 40th percentile; AET
anomaly

, 0;

T
anomaly

.s; SM, 40th percentile (2)

where Tanomaly, Panomaly, and AETanomaly represent the

anomaly of weekly air temperature, precipitation, and

AET, respectively; s represents the standard deviation

of the Tanomaly series. For each grid, the HWFD and

PDFD events are identified when all corresponding re-

quirements are satisfied.

b. Intensification rate–based flash droughts

Following the suggestion of Otkin et al. (2018), here

we propose a quantitative method to identify flash

droughts by focusing on the rate of intensification (RI).

Unlike a more traditional, slowly evolving drought,

flash drought is characterized by the rapid depletion of

soil moisture resulting from a period of abnormally warm

and dryweather conditions. In this sense, flash drought can

be viewed as a subset of all droughts (e.g., meteorological,

agricultural, and hydrological droughts), and which is most

likely to occur in the onset-development phase of the

drought event. As shown in Fig. 2a, suppose t1 is the onset

time that the soil layer is experiencing the ‘‘abnormally

dry’’ conditions and has the potential to precede a drought,

and the time node t5 represents the stationary point that

moisture deficits suffer abrupt changes from rapid decline

to smooth fluctuations (e.g., t6–t15 in Fig. 2a) or even

present an increased pattern (e.g., t15–t18 in Fig. 2a). In

other words, the stationary point can be viewed as the

termination of rapid soil moisture reduction, which

may emerge at or before the peak of drought intensity.

With this in mind, the identification of flash droughts is

further generalized as two questions: how to extract the

onset–development phase (i.e., the time period from

t1–t5) of droughts, and how fast should the intensifica-

tion be to be recognized a flash drought?

In this study, we use weekly soil moisture percentiles to

depict the drought process (Fig. 2b). Specifically, drought

events are extracted when the soil moisture falls below a

predetermined value. Similar to previous studies, the

threshold adopted here is twofold: 1) soil moisture is less

than the 40th percentile, and 2) the peak drought intensity

must fall below the 20th percentile (Ford and Labosier

2017; Otkin et al. 2018). The onset time (i.e., t1 in Fig. 2a)

of a flash drought event, therefore, is defined as the first

weekwhen the soilmoisture falls below the 40%percentile.

As for the stationary point (i.e., t5 in Fig. 2a), a univariate

polynomial function is employed to determine its location

along the horizontal axis (viz., the date in Fig. 2a). Figure 3

presents four typical examples of the attenuation process

of soil moisture percentiles under drought. All points be-

tween the onset time and peak of intensity are used when

searching for the fitting equation.When a linear regression

function is employed, the peak of drought intensity is

chosen as the stationary point (Fig. 3a).With respect to the

nonlinear case, we increase the order of the polynomial

in sequence (e.g., linear polynomials, quadratic, cu-

bic, ..., nth-order polynomial) until a minimum value of

0.95 for the deterministic coefficient R2 of fitting poly-

nomial is attained (Figs. 3b–d). In calculus, the station-

ary point (i.e., t5 in Fig. 2a) can be located when the first

derivative of the constructed polynomial equals zero

(i.e., ›Y/›X 5 0). In other words, the polynomial func-

tion is only used to judge when the flash drought event

terminates but would not participate in estimating the

magnitude of the flash drought intensification. With the

extracted stationary point, the mean intensification rate

(RImean) of a drought event during its onset–development

phase can be calculated as

RI
mean

5
1

n
�
n

i51

�
SM(t

i11
)2 SM(t

i
)

t
i11

2 t
i

�
, t

1
# t

i
# t

n
, (3)

where t1 denotes the onset time, and tn represents the

stationary point. A similar concept of RImean is also em-

ployed in several previous studies. For instance, Ford and

Labosier (2017) recommended that the soil moisture

content dropping from the 40th percentile to below the

20th percentile in no less than 4 pentads (equivalent to a

RImean value of 6.5 percentile per week) could be rec-

ognized as flash droughts. Given the similar climatic

characteristics between the YRB and their research area

(i.e., Oklahoma, United States), in this study we use the

same metric to identify flash droughts, which puts more

emphasis on the overall declining rate of soil moisture

during the whole onset-development period. However,
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in reality, theremay exist some exceptional cases that their

RImean is lower than the predetermined value (i.e., 6.5

percentile per week) but have rather high instantaneous

RIi values at a certain moment. We determined that

such cases should also be considered flash droughts. On

these grounds, the instantaneous maximum intensifica-

tion rate (RImax) during the onset–development phase is

introduced:

RI
max

5max

�
SM(t

i11
)2 SM(t

i
)

t
i11

2 t
i

�
, t

1
# t

i
# t

n
. (4)

A flash drought is recognized when either the condi-

tion of RImean or RImax is met over a sufficiently long

enough period of time. For RImax selection, we make a

sensitivity test on the frequency of occurrence (FOC;

FIG. 2. (a) Schematic overview of the evolution process of flash drought indicated by soil moisture percentile;

t1 represents the onset time; t5 denotes the stationary point where rapid depletion of soil moisture ends; the period

from t6 to t18 represents the recovery stage where soil moisture increases gradually then returns to the normal

condition. (b) Generalized flowchart of identifying flash drought based on intensification rate. The left dashed

rectangle shows how find the stationary point with the polynomial fitting method. The left rectangle gives the

formulas for calculating the rate of intensification.
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the percent of weeks under flash drought) of flash droughts

to varied RImean and RImax. As shown in Fig. 4, smaller

values of RImean and RImax would correspond to higher

FOC, and vice versa.WhenRImean is set to 6.5 percentile

per week, the FOC of flash droughts mainly varies be-

tween 4% and 12% depending on different RImax

values. In this study, a value of 10 percentiles per week is

selected for RImax, with corresponding FOC approxi-

mate to 10%. This frequency is generally in accordance

with Mo and Lettenmaier (2015, 2016), which ensures

the significance of comparison between the two different

methods. The flash drought based on the modified rate

of intensification approach (i.e., RImean . 6.5 percentile

per week or RImax . 10 percentile per week) is denoted

as RIFD.

In the following section, we will compare RIFD

against HWFD and PDFD, and explore the underlying

reasons for their differences.

4. Results and discussion

a. Comparison of identified flash drought events

Based on the approaches described above, a cross

comparison of flash droughts identified from two dif-

ferent methods is conducted. As a subset of drought, one

basic feature of flash droughts is that the event should

fall into drought during the evolution process. Although

both methods employed the 40th percentile of soil

moisture to identify the onset of flash drought, it actually

only represents a drier condition than normal but not

drought. For soil moisture drought, conditions less than

the 30th percentile are commonly recognized as mildly

dry, and less than the 20th percentile for moderate

drought (Ford et al. 2015). In this sense, the RIFD

method meets the condition of moisture limitation due

to its secondary threshold, namely the soil moisture

should be lower than the 20th percentile for at least

one week. In contrast, the HWFD and PDFD make no

such restrictions on soil moisture, which may lead to

FIG. 3. Four typical examples of the attenuation process of soil moisture percentile (from the onset time to the

peak of drought intensity) under drought. Based on the trajectories of soil moisture percentile, we use different

order polynomials to fit these samples, and the red circles can be derived as the stationary point (when the partial

derivative of the fitted polynomial equation is 0) of the established polynomial. When a linear regression function is

employed, the peak of drought intensity is the stationary point.

FIG. 4. Sensitivity analysis on the frequency of occurrence

(FOC) of flash droughts to varied RImean and RImax. The gray solid

lines show the relationship between RImax and FOC under differ-

ent values of RImean (increasing gradually from 0.5 to 40 percentile

per week). Likewise, the red solid line gives the case when

RImean 5 6.5 percentile per week.
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misjudgment of the results. Given this, we further

extracted the nondrought events (i.e., for an event, the

soil moisture is higher than the 30th percentile during

each week) and nonmoderate drought events (higher

than the 20th percentile) from HWFD and PDFD. As

shown in Fig. 5, approximately 7%–40% of the iden-

tified flash drought events by HWFD and PDFD were

nondrought (i.e., soil moisture of such events are above

the 30th percentile), and 20%–69% were nonmoderate

drought (i.e., soil moisture of such events are above

the 20th percentile). This suggests that the HWFD

and PDFD method could not guarantee that all of the

identified events fall into drought. From the per-

spective of drought characteristic, these improperly

recognized flash droughts were mostly minor events

with their duration no more than 4 weeks. In the

following section, we will remove these minor events

from further analysis.

Another important feature of flash drought lies in the

unusually rapid intensification rate of soil moisture

deficit (i.e., the ‘‘flash’’ characteristic). Figure 6 presents

the variation of soil moisture percentile for major flash

drought events (events with duration less than 4 weeks

were excluded) of all grids in the study region. For

RIFD, most of the events present sharp declines in soil

moisture with the moisture condition changing from

normal status (above the 40th percentile) to moderate

drought (below the 20th percentile) within two weeks

(Fig. 6a). As for HWFD and PDFD, it on average takes

five weeks (from Tt21 to Tt14) for soil moisture to de-

crease from the 18th to 10th percentile (the dark solid

line in Fig. 6b). According to Eqs. (3) and (4), this de-

pletion rate of soil moisture is equivalent to 21.6 percen-

tile per week, which is far slower than the intensification

rate of RIFD (i.e., 26.5 percentile per week). Figure 7

further shows the frequency distributions of themean and

maximum rate of intensification for HWFD and PDFD

events. Generally, the HWFD statistics presented a

quasi-normal distribution where approximately 80%

of the events had a negative value of RImean (i.e.,

RImean , 0), but only 24% of the events identified fell

below the threshold of RIFD (i.e., RImean , 26.5). In

addition, a small percentage amount (approximately

20%) of RImean still presented positive values (i.e.,

RImean . 0), implying that the HWFD events defined

by Mo and Lettenmaier (2015) may have occurred in

the recovery phase where an incremental increase in

soil moisture emerges. Similar patterns were also ob-

served in RImax of HWFD, and RImean and RImax of

PDFD (Fig. 7b). These phenomena are not limited to

our study domain (YRB). Wang and Yuan (2018)

found that 10%–18% of HWFD and PDFD happened

in the recovery phase of seasonal droughts over China.

The above comparison demonstrates the sensitivity of

results to the method of flash drought identification.

Since the way for extractingHWFDand PDFD (Mo and

Lettenmaier 2015; 2016) only focuses on the threshold of

related variables (e.g., precipitation and temperature)

and neglects changes in soil moisture with time (Otkin

et al. 2018), the method can hardly ensure that the

identified events satisfy the moisture limitation (i.e., the

drought) and have the characteristic of rapid intensifi-

cation (i.e., the flash).

b. Frequency of flash droughts

Figure 8 shows the spatial distribution of the FOC (the

ratio of weeks under flash drought) indicated by these

two methods. For RIFD, the FOC on average varied

between 3% and 10%, with high occurrence of flash

drought concentrated in the northwestern, southeastern,

and southern of source regions (Fig. 8a). As for the two

types of flash drought defined by Mo and Lettenmaier

(2015, 2016), different patterns of FOC were ob-

served both in the magnitude and spatial distributions.

FIG. 5. (a) The ratio of nondrought events (viz., for an identified flash drought event, the soil moisture values at

eachweek are all higher than the 30th percentile) to all events identified byHWFDand PDFD. (b)As in (a), but for

the ratio of nonmoderate drought events (higher than the 20th percentile) to all events.

APRIL 2020 L IU ET AL . 697

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/21/4/691/4926187/jhm

d190088.pdf by guest on 19 June 2020



Specifically, the FOC of HWFD on average was less

than 3%, with high values located in the southern re-

gion. With respect to the PDFD type, the magnitude

of FOC increased to 4%–6%, and spatially the source

region experienced a lower flash drought frequency.

Taking HWFD and PDFD as a whole (i.e., events of

HWFD and PDFD were merged into a new sample for

calculating FOC), the FOC ranged between 5% and

10%, and presented an increased pattern from north-

west to southeast (Fig. 8d). This suggests that different

ways for identifying flash droughts would affect drought

frequency to some extent. In addition, Wang and Yuan

(2018) also analyzed flash drought frequency in China

based on the method of Mo and Lettenmaier (2015,

2016), and suggested a similar spatial distribution of

HWFD and PDFD with our results, but the values of

FOC were generally higher. The different source of soil

moisture dataset (global reanalysis products were em-

ployed in their study) might be one possible reason. The

time period of interest may be another possible reason

(Liu et al. 2016) because their study mainly reflects the

overall dry status during 1979–2010, which has a differ-

ent climate condition from 1961 to 2012.

c. Behavior in tracking flash drought

The 1991 flash drought event is selected to explore

how the two methods behave in monitoring the spatial

evolution of soil moisture. As shown in Fig. 9a, the

drought event indicated by soil moisture percentile ex-

perienced continuous reduction starting in June 1991

FIG. 6. Variation of soil moisture percentile for major flash drought events (light colored lines; excludes drought

duration less than 4 weeks) of all grids in the study region identified by (a) RIFD and (b) HWFD and PDFD. The

dark color line represents the ensemble-mean of all flash drought events. The t represents the time when the flash

droughts occur. The t2 2 and t2 1 denote the 1 week and 2 weeks prior to t, while t1 1–t1 4 represent the lagged

1–4 weeks of t, respectively.

FIG. 7. (a) The frequency distributions of the mean (the green bar) and maximum (the orange bar) rate of soil

moisture decline for all heat wave flash droughts (HWFD) during 1961–2012 over the entire domain. (b) As in (a),

but for the P-deficit flash droughts (PDFD). The dotted red and yellow lines in (a) and (b) show the two metrics of

RImax (210 percentile per week) andRImean (26.5 percentile per week), respectively, for identifying flash droughts.
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and sustains a rather low value (approximately one-third

of the basin area is below the 10th percentile) until the

next year. During this process, the period from June to

July exhibits a rapid rate of intensification during which

the soil moisture percentile sharply decreases from above

the 40th percentile to below the 20th percentile over four

weeks. Meanwhile, a spatial migration pattern is apparent

for the dry condition. As shown in Fig. 9b, the drought

center generally experiences a western–eastern–northern

shifting mode, with the vegetation types of grassland,

cropland, and shrubland suffering in sequence. This spatial

variation of vegetation condition is also reflected by the

15-dayNDVI anomalies (Fig. 9c). In the following section,

we pay special attention to the abilities of eachmethods to

depict the drought migration pattern, as well as in cap-

turing the instantaneous variation of soil moisture.

The initial drought patches, as indicated by the soil

moisture percentile, emerge in the source region of

YRB on 11 June (Fig. 9d). This dry signal is also cap-

tured by RImean and RImax but missed by HWFD and

PDFD. In the following week (18 June), the latter

method again fails to display dry conditions. According

to the NDVI anomalies (Fig. 9c), some parts of the

source region exhibited negative values on 21 June,

implying that the vegetation health starts to decline,

which also signifies the onset of this flash drought event.

In such cases, we consider that the ways of defining

HWFD and PDFD are less competent to provide early

warning for flash drought.

In addition, the HWFD and PDFD may separate a

continuous process of flash drought into several inde-

pendent events and can hardly characterize the spatio-

temporal variation of moisture dynamics. For example,

both HWFD and PDFD indicate droughts in the source

region on 25 June, which is in agreement with the pat-

tern of soil moisture percentile. But in the following

week (2 July), the lower values of soil moisture move

farther eastward; HWFD and PDFD by contrast, indi-

cate nondrought and fail to capture the spatial migration

of this event.

d. Roles of hydrometeorological variables in
formulating flash droughts

A potential reason for the unsatisfying performance

of the HWFD and PDFD methods could be attributed

to the thresholds of hydrometeorological variables that

they employ. As mentioned in section 3a, except for

soil moisture, their method involves: P anomaly , 0 or

P percentile , 40%; Tmean anomaly . 1 standard de-

viation; AET anomaly . 0 for HWFD, and AET

anomaly , 0 for PDFD. In recent papers, other vari-

ables such as PET and maximum air temperature (Tmax)

are also recommended as indicators (Hobbins et al.

2016; Zhang et al. 2017; Otkin et al. 2018). Given this,

FIG. 8. Spatial distribution of the FOC for flash droughts indicated by (a) RIFD, (b)HWFD, (c) PDFD, and (d) sum

of HWFD and PDFD (i.e., events of HWFD and PDFD were merged into a new sample for calculating FOC).
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FIG. 9. (a) Time series of weekly soil moisture percentile in 1991. The gray and blue shadows denote the 75th–

90th percentile range of soil moisture values over YRB. (b) The three circles with numbers in the middle indi-

cate the moving path of the drought center during June–July in 1991. (c) Spatial evolution of NDVI anomalies

(dimensionless; minus the mean then divided by the standard deviation) in June and July 1991. (d) Spatial evo-

lution of the mean and maximum intensification rate of soil moisture, two types of flash droughts defined by

Mo and Lettenmaier (2015, 2016), and soil moisture percentile in June and July 1991.
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an investigation on the anomalies (percentile) of related

hydrometeorological variables is conducted.

Figure 10 shows the hydrometeorological anomaly

values in adjacent weeks of the onset of all flash drought

events during 1961–2012 extracted from all grid cells

over YRB. The anomalies of all meteorological vari-

ables were derived by subtracting the climatological

(1961–2012) mean then divided by the standard devia-

tion of that calendar week. As shown in Fig. 10a, the P

anomalies are all negative and below 0.5 standard de-

viation at the week t (i.e., the first week when flash

drought occurs), which is consistent with the condition

(i.e., P anomaly , 0) set in Mo and Lettenmaier (2015,

2016). Moreover, for 1 week prior to t (i.e., t 2 1), more

than 75% of flash drought events are under negative P

anomalies, suggesting that this threshold can provide

some utility for flash drought early warning. The case of

the 40th P percentile, in contrast, presents considerable

spatial variability and does not work well for all regions

of YRB. In Fig. 10b, it can be seen that there exist some

cases when precipitation is above the 40th percentile

and flash drought occurred. In fact, this phenomenon is

not limited to the P percentile; similar patterns are also

observed in Tmean and Tmax but in a more significant

way. As shown in Figs. 10c and 10d, for the majority of

flash drought events in the YRB, corresponding air

temperature values rarely exceed one standard devia-

tion. This means substantial flash drought events would

be excluded by this truncated level. To verify this con-

jecture, the spatial variation of these thresholds during

June–July in 1991 is investigated (Fig. 11). Obviously,

the Tmean anomaly is the main factor for the poor per-

formance of the HWFD and PDFD. In contrast, the

AET anomaly is generally above normal in the early

period of flash drought (11 June in Fig. 11) and exhibits

negative values when the conditions become water

limited (the P anomaly is significantly negative and the

PET anomaly is positive). This indicates that AET may

not be a good indicator of flash drought. It plays a

minimal role in judging whether or not flash drought

occurs; however, it does have some implications

for understanding the physical mechanisms of heat

wave and precipitation deficit flash droughts (Figs. 10f

and 11). A similar phenomenon was also found in the

central United States, where the anomalies of evapora-

tion do not appear to be stronger during the flash drought

FIG. 10. Boxplots of the anomaly values of hydrometeorological variables in adjacent weeks of the onset of all

flash drought events during 1961–2012 extracted from all grid cells over YRB. The red solid lines in each panel

indicate the thresholds given by Mo and Lettenmaier (2015, 2016). The t represents the time node when the flash

droughts occur. The t2 2 and t2 1 denote the 1 week and 2 weeks prior to t, while t1 1– t1 4 represent the delayed

1–4 weeks of t, respectively. The anomalies of all meteorological variables were dimensionless and derived by

subtracting the climatological (1961–2012) mean then dividing by the standard deviation of that calendar week.
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onset (Koster et al. 2019). From the perspective of at-

mospheric evaporative demand, PET integrates the ef-

fects of wind, humidity, temperature, and solar radiation,

which can be viewed as a more comprehensive indicator

of howmuchmoisture is consumed. As shown in Fig. 10e,

more than half of the PET anomalies exhibit positively

biased patterns at week t 2 1, then the evaporative de-

mand quickly expands and reaches the peak at the onset

of flash drought. In other words, PET anomalies can

vary synchronously with the soil moisture dynamics

during the flash drought process and could be viewed

as a driver in the changes of soil moisture (Hobbins et al.

2016; Otkin et al. 2018).

In general, the unsatisfying performance of HWFD

and PDFD can be attributed to two aspects, that is, the

variable selection and corresponding thresholds. The

case study in YRB suggests the overly rigid threshold of

temperature (i.e., Tmean anomaly . 1 standard devia-

tion) may lead to some omission in capturing the onset

of the event. Some trials by lowering the threshold of the

temperature anomaly (e.g., relaxing from one standard

deviation to a half standard deviation or other values

according to the climate conditions and soil moisture

dynamics of the study region) can be made in future

studies to improve the performance of HWFD and

PDFD. In contrast, PET exhibits the potential of being a

precursor signal for indicating drought and can be em-

ployed as an alternative in future studies. In addition,

since more attention is given to the occurrences of flash

drought in determining the thresholds of related vari-

ables, the approach proposed by Mo and Lettenmaier

(2016) can hardly guarantee the identified events all

have the rapid intensification characteristic. An im-

proved flash drought identification result would be ex-

pected by introducing the intensification rate in their

objective function of threshold selection.

5. Conclusions

The inconsistent ways of flash drought definition, with

one explicitly focusing on the intensification rate of soil

moisture, and another considering its physical mecha-

nism (e.g., PDFD and HWFD), are currently a major

obstacle that hinders our understanding of this extreme

FIG. 11. Spatial anomalies of related meteorological variables for the 1991 flash drought.
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phenomenon. Following the conception of the intensi-

fication rate, in this study a new quantitative approach

concerning the rate of soil moisture depletion during the

onset-development phase is proposed, and its perfor-

mance in terms of monitoring flash drought events, their

onset time, and responses to the changes of vegetation

are compared with those of PDFD and HWFD in the

Yellow River basin. Overall, the rapid intensification–

based approach can effectively track the sudden change

of moisture status and is recommended for use. Since

the approach of PDFD and HWFD neglects the change

of soil moisture with time, it cannot ensure that the

identified flash droughts all have the rapid evolving

characteristic. In addition, the unreasonable thresholds

associated with PDFD and HWFD limit their ability

to capture the spatiotemporally continuous variation of

drought. An investigation of the related meteorological

variables suggests that the overly rigid temperature

threshold is responsible for the poor behavior of PDFD

and HWFD. Given the synchronous variation with soil

moisture, PET could be viewed as a driver in the changes

of soil moisture leading to flash droughts. Considering

our research is based on a case study, evaluation of these

flash drought identification methods for different re-

gions and events is further needed. Findings from this

study improve our understanding of flash drought, which

also have some implications for promoting drought early

warning techniques.
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