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ABSTRACT

The western Los Angeles (LA) wildfires of early January 2025 caused catastrophic social and environmental impacts,
drawing widespread attention. This study investigates the characteristics of these wildfires and quantifies the influence of
heat and drought on their likelihood using a copula-based Bayesian probability framework. The wildfires were
characterized by burned area (BA) and intensity (fire radiative power, FRP). The criteria establishing the presence of “hot
drought” conditions were identified using the 5-day Standardized Temperature Index (STI) and 75-day Standardized
Precipitation Index (SPI), respectively. The wildfire outbreak began on 7 January 2025 and burned for more than six days,
with the total burned area exceeding 245 km? and the cumulative FRP exceeding 41060 MW. Based on satellite-derived
active fire observations from 2001 to 2025, we estimate that such large and intense wildfires during LA’s rainy season
represent a once-in-a-67-year event. The wildfires were largely driven by the combination of hot and dry conditions, which
dried out soils and vegetation that had proliferated due to above-average precipitation in previous winter seasons, thereby
providing abundant fuel. Our seasonal analysis reveals that extreme drought increased the probability of wildfires matching
the 2025 intensity and BA by 54% and 75%, respectively. Hot drought further amplified these probabilities by 149%
(intensity) and 210% (BA). These findings suggest an elevated risk of large wildfires under hot drought conditions,
contributing to their expansion into the non-traditional fire season.
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Article Highlights:

* The 2025 western Los Angeles wildfires were a once-in-a-67-year event in terms of timing and severity.

¢ Hot drought conditions dried out abundant vegetation that had proliferated due to antecedent rainfall, creating fuel for the
wildfires.

¢ Hot drought increased the risk of 2025-level wildfires by 2.8 and 4.4-fold (for intensity and burned area) over non-
drought conditions.

118°-119°W) experienced the ignition of multiple explosive
wildfires (e.g., the Palisades and Eaton fires) on 7—8 January
The western Los Angeles (LA) region (34°-34.5°N, 2025, which burned over 50000 acres (~202 km?) and
destroyed more than 16000 structures (Qiu et al., 2025).
Over 180000 people had to be evacuated, and the economic

1. Introduction

> This paper is a contribution to the special topic on the 2025 Los

Angeles Wildfires. losses could exceed 250 billion US dollars. In addition, the
* Corresponding author: Xing YUAN large wildfires caused severe smoke pollution and threatened
Email: xyuan2 @mail.iap.ac.cn human physical and mental health (Qiu et al., 2025). There-
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fore, the 2025 wildfires have been reported as one of the
most destructive fire events to have ever affected the western
LA region.

These immense impacts inevitably brought the 2025
western LA wildfires to public attention, and also raised ques-
tions as to the underlying reasons and exceptional nature of
the fires. Evidence is mounting that these wildfires resulted
from multiple components, including human activities, land-
scape features, and meteorological conditions (Khorshidi
et al., 2020; Brown et al., 2023; Qiu et al., 2025). Usually,
wildfires in the western LA region occur in late summer and
autumn (July through October) due to infrequent precipita-
tion, high temperatures, and intense solar radiation (Fig. 1),
which can lead to high evaporative demand and low-moisture
fuels (Swain, 2021; Turco et al., 2023). Meanwhile, strong
and dry Santa Ana winds during the fall and winter also con-
tribute to western LA’s large wildfires despite relatively
low evaporative demand (Abatzoglou et al., 2018; Swain,
2021). Conditions are usually not conducive to drive large
wildfires during mid-winter because it is the peak of western
LA’srainy season, consistent with increases in relative humid-
ity in response to relatively low temperatures and intermittent
precipitation (Dong et al., 2022). However, if the onset of
the rainy season is delayed and/or the winter is dry, the con-
current dryness and strong winds can increase the potential
for large and fast-moving fires, as vegetation can be critically
dry after the sustained dry and warm conditions typical of
the summer and fall (Westerling et al., 2006; Dong et al.,
2021; Gershunov et al., 2021).

A number of mechanisms linking wildfires to climatic
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Fig. 1. The monthly (a) precipitation (Prec, mm; blue bars) and
2-m air temperature (T2m, °C; black lines) averaged over
1995-2024, and (b) mean normalized difference vegetation
index (NDVI; black lines) and the occurrence percentage of
fire events (%; bars) during 2001-24 in the western Los
Angeles region (bounded by 34°-34.5°N, 118°~119°W). Here,
the fire events were identified based on MODIS active fire
data (see section 2.2.1).
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factors have been suggested, including precipitation
deficits, high temperatures, and large vapor pressure deficits
(Westerling et al., 2006; Seager et al., 2015; Littell, 2018).
In fact, some recent reports also revealed that the combination
of Santa Ana winds and hot and dry weather created the per-
fect conditions for the rapid spread of the 2025 LA wildfires
(Qiu et al., 2025). However, the quantitative characteristics
of these wildfires and their dependence on hot and dry condi-
tions have not been fully explored. Thus, this study aims to
explore how and to what extent the hot and dry conditions
contributed to the extremely rare wildfires from a probabilis-
tic perspective. The remainder of this paper is organized as
follows. Section 2 introduces the data and methods used in
this study. Section 3 presents the spatiotemporal evolution
of the 2025 western LA wildfires and quantifies the contribu-
tion of drought and hot conditions. Section 4 discusses the
possible impacts of vegetation abundance and Santa Ana
winds, and, finally, section 5 draws the main conclusions of
the study.

2. Data and methods

2.1. Datasets

Daily satellite-based precipitation during 1995-2025
from the Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) with a spatial resolution of
0.05° x 0.05° (Funk et al., 2014) was used to help assess
drought conditions. Other meteorological data, including 2-
m air temperature (T2m) and dew point temperature
(Tdew), evapotranspiration (ET), 10-m zonal and meridional
winds, and soil moisture (SM, 0-7 cm and 7-28 cm), at an
hourly scale during 1995-2025 were obtained from the fifth
generation European Centre for Medium-Range Weather
Forecasts (ECMWF) Land Surface Reanalysis (ERAS-
Land, Mufioz-Sabater et al., 2021). The spatial resolution of
the ERAS5-Land datasets is 0.1° x 0.1°, and all hourly vari-
ables were aggregated into daily scales. The daily relative
humidity (RH) was then estimated by daily T2m and Tdew
(Alduchov and Eskridge, 1996). Although reanalysis prod-
ucts are an imperfect representation of reality, assessments
of the ERAS5-Land dataset have demonstrated that the product
performs well in reproducing temperature extremes and soil
moisture dynamics across the United States (Sheridan et al.,
2020; Beck et al., 2021; Muifioz-Sabater et al., 2021).

Fire events were detected using the Terra and Aqua
MODIS (MODerate resolution Imaging Spectroradiometer)
daily active fire data (MOD14 and MYD14, Collection 61)
between January 2001 and January 2025, as provided by the
Fire Information Resource Management System (FIRMS).
The dataset includes the locations of active fire hotspots and
their intensity (i.e., Fire Radiative Power, FRP) with a 1-km
spatial resolution, which represent the centroid of a 1-km?
pixel with one or more fires that were flagged by the
MODIS MOD14/MYD14 Fire and Thermal Anomalies algo-
rithm (Giglio et al., 2003, 2016). The MODIS active fire prod-
uct was used in this study because it provides both near-real-



APRIL 2026

time active fire locations and a long-term climatology neces-
sary to compute probabilities, justifying its widespread use
in global and regional fire detection and mapping (Hawbaker
et al., 2008; Libonati et al., 2022; Shi et al., 2024). The
MODIS active fire product can capture large fires well
across the United States with detection rates exceeding
82%, but might miss small and low-intensity fires (Hawbaker
et al., 2008; Fusco et al., 2019). This tendency may result in
the underestimation of burned area and fire intensity, an
imperfection deemed acceptable in our study, as our focus
is on large wildfires, considering their profound ecological
impacts and the robust active fire detection reliability of
MODIS (Hawbaker et al., 2008). In southern California,
large wildfires accounted for the majority of the total
burned area and were strongly linked to extreme fire
weather conditions (Dong et al., 2022). In contrast, small
fires were more sensitive to human ignitions (Dong et al.,
2022) and thus fall outside the scope of this study.

The normalized difference vegetation index (NDVI)
was used to examine vegetation growth and fuel availability
(Herndndez Ayala et al.,, 2021). The NDVI was obtained
from the MODIS Terra (MODI13Cl) and Aqua
(MYD13C1) databases with a spatial resolution of 0.05° x
0.05° and a temporal resolution of 16 days. An 8-day NDVI
time series was then developed by merging the two 16-day
satellite-based products (Wang et al., 2011), which has been
widely used in climate, ecosystem, and natural resources man-
agement studies (Herndndez Ayala et al., 2021; Liu etal.,
2022; Burton et al., 2024).

For the purpose of establishing a connection with fire
characteristics, all meteorological variables and NDVI were
averaged over the study region in this study. The anomalies
(or percentiles) of meteorological variables and NDVI were
estimated with respect to the 1995-2024 and 2001-24 clima-
tologies, respectively, considering their seasonal cycle.

2.2. Methods

2.2.1. Fire analysis

The characterization of fires was assessed by the
burned area (BA) and FRP, representing the extent and inten-
sity of fires. First, the start and end dates of the fires were
identified based on the MODIS daily active fire hotspots.
Here, only the vegetation fire hotpots (fire type=0) with a
high confidence level (>80%) and FRP > 10 MW were consid-
ered. An active fire mask was developed for each fire, and
then the BA and cumulative intensity were calculated at the
end of the event. Despite the underestimation of the true fire
severity, the satellite-derived fire detections provide valuable
insight into the fire severity (Giglio et al., 2016). In this
study, considering the locations of the 2025 wildfires, our
analysis focused on the region bounded by 34°-34.5°N,
118°-119°W, which was referred to as the western LA
region.

2.2.2. Drought and hot conditions
We used the Standard Precipitation Index (SPI) and Stan-
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dard Temperature Index (STI) to identify and assess
drought and hot conditions, respectively (McKee et al.,
1993; Feng et al., 2019; Hao et al., 2021). In this study, the
SPI and STI were calculated at a daily resolution. To obtain
the optimal accumulated scales of SPI and STI, we estimated
Pearson correlation coefficients between fire characteristics
(i.e., BA) and SPI over 30-90 days and STI over 5-30 days.
It can be found that the SPI at a 75-day scale and STI at a 5-
day scale exhibited the highest correlation with BA (Fig. 2).
Therefore, we adopted the 75-day SPI and 5-day STI that
were estimated by summing precipitation from the preceding
74 days to the current day and averaging temperature from
the preceding 4 days to the current day, respectively. For a
given day, these two series were fitted to a marginal distribu-
tion (e.g., gamma distribution), and then transformed into a
standard normal distribution to obtain the SPI and STI, respec-
tively (McKee et al., 1993; Hao and AghaKouchak, 2013;
Ma etal., 2019; Yang et al., 2025). Dry conditions were
said to exist if SPI < —0.5, and a hot drought was present if
SPI < -0.5 and STI > 0.5 (Svoboda et al., 2002).

2.2.3.  The relationship between fires and hot and drought

conditions

We used the copula method to assess the dependency
between fire characteristics (BA and FRP) and dry and hot
conditions (SPI and STI). The copula method can connect
two or more variables with different marginal distributions,
and has been widely used for drought and wildfire analysis
(Liet al., 2023; Ma and Yuan, 2024; Ma et al., 2024). Several
marginal distributions, including the normal, Generalized
Extreme Value (GEV), Extreme Value (EV), Gaussian, and
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Fig. 2. The correlation coefficients between burned area and

(a) SPI at 30-90-day scales and (b) STI at 5-60-day scales

during the fire period. The red hexagons denote the timescale
with the highest correlation.
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empirical distributions, were tried to fit the log (BA), log
(FRP), SPI, and STT series, and the most appropriate distribu-
tion for each variable was selected based on the
Kolmogorov-Smirnov test. For the bivariate joint distribu-
tion, five copula functions, including Gaussian, Clayton, Gum-
bel, Frank, and t, were selected as candidates and then
ranked based on their performance in the Maximum Likeli-
hood (MLE), Akaike Information Content (AIC), Bayesian
Information Criterion (BIC), Root-Mean-Square Error
(RMSE), and Nash-Sutcliffe Efficiency (NSE) tests (Sadegh
et al., 2017; Ballarin et al., 2021). The MLE test focuses on
minimizing the residuals between model simulations and
observations, the AIC considers the model complexity, and
the BIC further takes into account the number of observa-
tions. The copula function that most frequently ranked first
across these metrics was adopted as the optimal copula

P[IOg(BAarea) > 1C’g(BA2025)|SPID > _05]
_ Pllog(BAurea) > log(BAzgs), SPIp > ~0.5]
P(SPIp > —0.5)

_ 1 - P(SPIp < —0.5) — P[log (BAyrea) < log(BAzp2s)] + C[log(BA,rea) < log(BAzg2s), SPIp < —0.5]
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model. The C-vine copula function, characterized by its rela-
tively simple structure and robust performance (Wu et al.,
2021; Jiang et al., 2023), was then utilized to construct the
trivariate joint distribution based on the AIC and BIC tests.

To assess the impact of drought and hot conditions on
fires, we further estimated the probabilistic response of
fires under different conditions from a statistical perspec-
tive. In this study, we particularly focused on the occurrence
probability of fires like the 2025 wildfires, which were
defined as P [log(BAarea)>10g(BA2()25)] or P [10g(F RPimensity)>
log(FRPy»5)], where BA ¢, and FRP;p ity indicate BA and
FRP, BA,y5 and FRP,j,5 denote the BA and FRP of the
2025 wildfires, respectively. Following Ribeiro et al. (2020)
and Hao etal. (2021), the conditional probability of fires
with BA of the 2025 wildfires given non-dry, individual
dry, and hot drought conditions can be expressed as:

and

S 1
1 - P(SPIp < -0.5) 1
. P[lOg(BAm—ea) > IOg(BA2025),SPID < Spi2025]
Pllog(BA,a) > log(BA Plp < = :
[log(BAarea) > 10g(BA2025)|SPIp < spizgs] P(SPly < Spinngs)
_ _ Cl10g(BAarea) < log(BA2os),SPIp < spisoas] @)
P(SPIp < spixas) ’

Pllog(BArea) >10g(BA2g25)|SPIp <spizgs,STIy >stizgas]

_ P[lOg(BAarea) >10g(BA2025),SPID <Spi2025,STIH >Sti2025]

P(SPIp <spinges,STly >stizgs)
_ 1 _ Clog(BAara) <log(BAzs)SPIp <spizoas] — Clog(BAarca) <log(BA2s),SPIp <spizoas, STl <stizeos] 3)

P(SPIp <spizgas) — C(SPIp <spinpas,STIx <stizgns)

where C denotes the multivariate copula joint cumulative
probability distribution, SPIy and STIy indicate SPI and
STI, and spiygys and stiygys denote the actual SPI and STT val-
ues during the 2025 wildfires, respectively. Similarly, the con-
ditional probability of FRP under different conditions can
be estimated by P[log(FRPipcnsity)>10g(FRP,g5)ISPIp>
—0.5],  P[log(FRPpensity)>10g(FRP2025)ISPIp<spizgps], and
P[1og(FRP;pensity)>10g(FRP0,5)ISPIp<spisgas, STI>stizesl],
respectively. Then, the difference between Eq. (2) and Eq.
(1) indicates the impact of drought, and the difference
between Eq. (3) and Eq. (2) indicates the additional impact
of hot drought, as opposed to drought impact alone. An inten-
sified impact of extreme conditions on fires is expected to
cause an increased conditional probability. The above
copula-based Bayesian probability framework has been
widely used to study the impact of drought and/or hot
events on vegetation and wildfires (Hao etal., 2021; Ma
et al., 2024).

3. Results

3.1. Overview of the 2025 Los Angeles wildfires

Figure 3 displays the satellite imagery provided by the
FIRMS, showing the active fire locations in LA during
7-12 January 2025. The first wildfire erupted near the
Pacific Palisades (i.e., Palisades Fire) on 7 January 2025,
and spread quickly westward along the Pacific Coast High-
way toward Malibu on 8 January. Further inland, another
destructive fire (i.e., the Eaton Fire) ignited near Altadena,
north of downtown LA, and grew rapidly on 8 January. Mean-
while, several major fires (e.g., Hurst Fire) also occurred in
the San Fernando Valley. These large wildfires persisted
from 7 January to 12 January, burning for more than 6 days.
As of 12 January, several small fire hotspots were still
active.

Figure 4 shows the total BA and intensity (FRP) of the
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2025 wildfires in comparison to previous wildfires in the 2009, large wildfires have become more frequent during the
western LA region. In total, 133 fires were detected from Jan-  past decades, which has been attributed to climate warming
uary 2001 to January 2025 in the western LA region, with  (Abatzoglou and Williams, 2016; Brown etal., 2023;
36 events occurring in the winter season (December— Turco et al., 2023). The BA of the 2025 wildfires was over
February). Though the largest fires occurred in 2003 and 245 km?2, and the cumulative intensity was about 41060
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Fig. 3. The spatiotemporal evolution of the wildfires in the western Los Angeles (LA) region during 7-12 January
2025 (data source: Fire Information for Resource Management System, FIRMS). Red shadings denote fire

detections. The red rectangle on the right map denotes the western LA region (34°-34.5°N, 118°-119°W) used for
the quantitative analysis.
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large wildfires with BA = 50 km? that occurred in LA’s fire-prone season, and red hexagons denote very large fires
in the non-traditional fire season, including the 2025 wildfires.
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MW (Figs. 4a, c). The 2025 wildfires ranked as the fourth
largest and most intense fire event since 2001, surpassed
only by the 24-29 October 2003, 27 August-7 September
2009, and 9—14 November 2018 fires. In spite of its relatively
small BA and intensity compared to the three large wild-
fires, the 2025 wildfires were exceptional in terms of their
destructive effects and the speed at which the fires developed
(Qiu et al., 2025). In addition, we also note that a majority
of dangerous wildfires occurred during the summer and
autumn, coincident with scarce precipitation and high temper-
atures (Fig. 1). However, the 2025 wildfires occurred in mid-
winter when large wildfires are rare due to the climatologi-
cally wetter and cooler meteorological conditions, spanning
a winter season characterized by mean BA of 8.24 km?2 and
mean FRP of 574 MW over 2001-24. The BA (FRP) of the
2025 wildfires was approximately 30-fold (72-fold) larger
than the mean BA (FRP) of fires in the winter climatology,
constituting the largest observed values since 2001. We fur-
ther fitted the log (BA) and log (FRP) of fires in the winter
season to Kernel probability distributions to estimate the
return period of the wildfires (Figs. 4b, d). The results indicate
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that the 2025 wildfires were about a 1-in-67-year and 1-in-
68-year event during the winter in terms of their BA and inten-
sity, respectively.

3.2. Linking the 2025 Los Angeles wildfires to hot
drought

To further explore the drivers affecting the 2025 wild-
fires, we analyzed the temporal evolution of meteorological
and vegetation conditions preceding the fires (Fig. 5). During
the pre-fire and active fire periods (i.e., from December
2024 to mid-January 2025), the temperature was above nor-
mal, with a maximum anomaly of 4.18°C and a mean
anomaly of 2.57°C (Fig. 5a). The summer of 2024 was also
marked by numerous high temperature episodes. Mean-
while, the precipitation was lower than the climatological
mean values, with rainfall amounts reaching zero or near-
zero values from May 2024 to mid-January 2025 (Fig. 5b).
The high evaporative demand drove high ET, which was con-
sistently higher than precipitation (Figs. 5b, ¢). The persistent
drought combined with warm temperatures induced rapid
soil moisture decline since September 2024 (Fig. 5d). Conse-
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Fig. 5. Temporal evolution of the 8-day (a) 2-m air temperature (T2m, °C); (b) precipitation
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NDVI and its percentile (%) averaged over the analysis region from January 2023 to March
2025. Red hexagons denote the 2025 wildfire event.
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quently, the vegetation vigor slowed down, as evidenced by
the declining NDVI (Fig. Se), leading to lower fuel moisture
and the accumulation of dry fuels. It is noteworthy that the
late winters of 2023 and 2024 were wetter than normal
(Fig. 5b). The antecedent above-average rainfall fostered veg-
etative growth (Fig. Se), resulting in abundant plant biomass
and denser foliage (e.g., higher NDVI percentile), which
later became available fuels for wildfires after sustained dry
and warm conditions occurred from the summer of 2024
through early-January of 2025 (Khorshidi etal., 2020;
Herndndez Ayala etal., 2021). The concurrence of fire-
prone weather and ample dry fuels contributed to the rapid
spread, large BA, and intensity of the 2025 wildfires.

The above analysis confirms that the 2025 wildfires
were largely driven by hot drought conditions. During the
fire period, the mean SPI and STI were —1.57 and 1.03, corre-
sponding to occurrence probabilities of < 6% and < 15%
respectively. The quantitative indices further indicate the pres-
ence of extremely dry and hot conditions (i.e., hot drought).
We thus quantified the impact of individual drought and hot
drought on the fires via a copula-based Bayesian probability
framework (see section 2.2.3). Figure 6 shows the scatterplots
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of SPI-STI, log(BA)-SPI, log(BA)-STI, and log(BA)-SPI-
STI correlations, and the conditional probabilities of different
levels of wildfires given different dry and/or hot conditions.
A negative correlation existed for log(BA)-SPI (r=-0.22,
p<0.01), while log(BA)-STI showed a positive correlation
(r=0.30, p<0.001). Here, r is the Pearson correlation coeffi-
cient, and p denotes the significance level. The results indicate
an increase in fire BA with the increased severity of drought
and hot conditions. The conditional probability of wildfires
with BA like the 2025 wildfires (BA=245 km?) under actual
drought conditions, i.e., P[log(BA,)>5.5I1SPIp<-1.57],
was 14.14%, while the conditional probability given non-
dry conditions, i.e., P[log(BA,..)>5.5ISPIp>-0.5], was
8.06%. This indicates that extreme drought during the pre-
fire and fire periods increased the conditional probability of
fires with BA similar to the 2025 wildfires by 75%. The con-
ditional probability of the wildfires under the hot drought
conditions, 1i.e., P[log(BA,c)>5.5I1SPIp<-1.57, SThp>
1.03], was 43.85%, which was higher than that under the indi-
vidual drought condition. The hot drought further increased
the occurrence probability of the 2025 wildfires by 210%,
compared with that under individual drought conditions
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Fig. 6. Scatterplots of SPI, STI, and burned area (BA) for detected fire events in the study region: (a) SPI and STI;
(b) SPI and log(BA); (c) STI and log(BA); (d) copula-based conditional probability of log(BA) under different levels
of dry and hot conditions. r is the Pearson correlation coefficient, and p denotes the significance level. Wildfires in
warm (April-September) and cold (October—-March) seasons are represented as red and blue dots, respectively;
colored contours in (b—c) and shadings in (d) indicate the copula-based conditional probability.
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(Table 1).

Figure 7 further shows the correlation between the fire
intensity (FRP) and SPI and STI, and the conditional probabil-
ity of wildfires with different intensities given different dry
and hot conditions. Similar results are found, evidenced by
the negative correlation between log(FRP) and SPI
(r==0.23, p<0.07), while a positive correlation exists
between log(FRP) and STI (r=0.30, p<0.001). The wildfire
intensity increased with the severity of drought and hot condi-
tions. The conditional probability of fires with intensity like
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the 2025 wildfires (FRP=41060 MW) under actual drought
condition, i.e., P[log(FRPjyensity)>10.61SPIp<-1.57], was
8.38%, while the conditional probability given a non-dry con-
dition  P[log(FRPjyensity)>10.61SPIp>-0.5]  was  5.44%
(Table 1). The conditional probability under hot drought con-
ditions, i.e., P[log(FRP;yensity)>10.6ISPIp<-1.57, STly>
1.03], was 20.89%. These results indicate that the extreme
drought increased the conditional probability of fires with
intensity like the 2025 wildfires by 54%, and hot drought fur-
ther increased the probability by 149%. Overall, relative to

Table 1. The conditional probability of wildfires with BA and FRP in 2025 under different levels of dry and hot conditions.

Fire characteristics Non-hot-dry conditions Drought Hot drought

All seasons BA 8.06% 14.14% 43.85%
FRP 5.44% 8.38% 20.89%

Warm seasons BA 5.51% 7.49% 14.59%
FRP 0.38% 1.93% 2.17%

Cold seasons BA 3.23% 4.87% 6.32%
FRP 7.81% 9.06% 25.39%
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log(FRP)

01— — ", =023 p<0.01|
ooa. 0.1 —|

STI -2

SPI

Fig. 7. Scatterplots of SPI, STI and Fire Radiative Power (FRP) for detected fire events in the study region: (a) SPI
and log(FRP); (b) STI and log(FRP); (c) copula-based conditional probability of log(FRP) under different levels of
dry and hot conditions. r is the Pearson correlation coefficient, and p denotes the significance level. Wildfires in
warm (April-September) and cold (October—March) seasons are represented by the red and blue dots, respectively.
The colored contours in (a-b) and shadings in (c) indicate the conditional probability.
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a non-dry scenario, hot drought increased the likelihood of
wildfires with an intensity and BA, as observed in 2025, by
2.8 and 4.4 times, respectively. The impact of hot drought
conditions on fire intensity was smaller than their impact on
BA.

4. Discussion

This study provides evidence that the rare 2025 LA wild-
fires were favored by hot drought conditions (SPI=-1.57
and STI=1.03), which dried out the vegetation, thereby provid-
ing extensive dry fuels for the wildfires. The results are con-
sistent with previous studies that have preliminarily
ascribed the 2025 wildfires to the concurrence of dry and
hot conditions but did not assess their severity and impacts
(Qiuet al., 2025). Here, we quantified the contribution of indi-
vidual drought and hot drought to the 2025 wildfires from a
probabilistic perspective. Results show that hot drought
increased the conditional probability of 2025 wildfire inten-
sity and BA by about 2.8 and 4.4 times, respectively.
Despite the hot-drought amplification effect on the 2025 wild-

(@)
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fires not being the largest historically, our analysis reveals a
growing trend in its effect on BA (p<0.08) and FRP
(p<0.04) (Fig. 8). This phenomenon is in agreement with pre-
vious studies that have showed an increase in the observed fre-
quency of hot and dry extremes in California and increasing
climatic potential for large wildfires (Diffenbaugh et al.,
2015; Abatzoglou and Williams, 2016; Keeley and Syphard,
2021; Turcoet al., 2023). Given the distinct mechanisms driv-
ing warm-season and cold-season wildfires in the western
LA region, we also estimated the seasonal dependency upon
the contribution of hot and drought conditions. Here, the cop-
ula relationships between wildfire characteristics and SPI
and STI during the warm (April-September) and cold (Octo-
ber—March) seasons were fitted separately. It is found that
the effects of the hot-drought conditions showed significant
seasonal variations. The conditional probability of such
extreme wildfires with such BA and FRP in 2025 was larger
in warm and cold seasons, respectively, while the impacts
of hot-drought conditions on both BA and FRP were larger
in warm seasons (Table 1). This might be because more fre-
quent hot drought conditions are conducive to fire activities
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Fig. 8. The increased likelihood of the conditional probability of wildfire (a) burned area and
(b) FRP given hot and dry conditions. Here, the x-axis denotes the wildfire events that
occurred historically in chronological order during 2001-25. Black-solid and -dashed lines
denote the increased likelihood under individual dry conditions relative to non-dry conditions
and its trend, respectively. Red-solid and -dashed lines denote the increased likelihood under
hot drought conditions relative to individual dry conditions and its trend, respectively. Blue-

vertical lines indicate the 2025 wildfire event.
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in the warm and dry seasons (Dong et al., 2022).

Although hot drought conditions have a substantial
impact on fire occurrence, fuel availability plays a critical
role in enhancing the fire activity (Sarris etal., 2014;
Walker et al., 2020). Previous studies have shown that exces-
sive rainfall over the previous 1-3 years has a significant
impact on wildfires by promoting vegetation growth, which
can provide more available fuels to burn (Pilliod et al.,
2017; Liet al.,2019). Herndndez Ayala et al. (2021) also sug-
gested that more than half of the extreme wildfire seasons in
California were preceded by enhanced vegetation growth
due to wetter antecedent conditions. In this study, we further
find that a majority of (8 of 11) extremely large wildfire
cases (BA=50 km?), including the 2003, 2005, 2007, 2008,
2009, 2017, 2020 and 2025 wildfires, showed above average
NDVI values in the peak growth season (March—May) prior
to these wildfire events (Fig. 9a), indicating anomalous vege-
tation growth that later fueled these wildfires. Six out of the
eight extreme wildfires were preceded by antecedent above-
normal precipitation in the peak wet (December—February)
season (Fig. 9b). The analysis for wildfires with BA>4 km?
also reveals a significant correlation (r=0.44, p<0.01)
between vegetation conditions and preceding precipitation
anomalies. In this situation, the synergy between abundant
fuel and local extreme weather (e.g., hot drought) may
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Fig. 9. Normalized Difference Vegetation Index (NDVI) and
precipitation anomalies preceding the extremely large wildfire
events (BA=50 km?2): (a) Mean NDVI anomaly in the peak
growth season (March—-May), and (b) cumulative precipitation
anomaly (mm) in the peak wet season (December—February)
prior to the extreme wildfires. The x-axis represents the
occurrence timeline of extremely large wildfires in the western
LA region.
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explain the very large fire spread (Pausas and Ribeiro,
2013; Gouveiaet al., 2016). For the extreme wildfires without
prior excessive vegetation growth (i.e., below average
NDVI values), we note that the NDVI anomalies were not sig-
nificant. Hot drought conditions could still drive severe burn-
ing through rapidly drying out the existing live and dead
fuels (e.g., vegetation, organic soils and built structures) and
reducing the ignition threshold, compounded by prolonged
high vapor pressure deficit and wind-driven spread (Gouveia
etal., 2016; Keeley and Syphard, 2021; Collins etal.,
2022). Collins et al. (2022) have shown that very large fires
usually occur in periods characterized by extreme drought
and fire weather conducive to fire spread. For example,
anomalous dead fuel accumulation due to prolonged
drought and windblown debris fueled the 2018 megafire in
California (Kang et al., 2023).

Certainly, during the extreme fire days in early January
2025, anomalous northeasterly winds with low humidity
descending from elevated inland areas prevailed over the west-
ern LA region (Fig. 10a). The hourly winds exhibited a
rapid strengthening at 1100 UTC (0300 PST) on 7 January,
and peaked at 1900-2300 UTC (1100-1500 PST) on 7 Jan-
uary and 0800-1300 UTC (0000-0500 PST) on 8 January
(Fig. 10b), near the time of the rapid wildfire outbreak.
Under hot and dry weather conditions, the strong and dry
winds usually act as a catalyst for large wildfires. For exam-
ple, the anomalously dry winds can accelerate evaporation
and lead to a rapid decrease in fuel moisture. Strong winds
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Fig. 10. (a) 10-m wind anomalies (vectors; m s7!) and 2-m
relative humidity (shading; %) on the peak wildfire day (i.e., 8
January 2025). Blue box denotes the western LA region. (b)
Hourly (UTC) wind speed (black line; m s~!) and its anomalies
(blue bars; m s!) averaged over the study area during 7-9
January 2025.
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can also foster the fire spread, often leading to erratic and
uncontrollable fire behavior, especially during hot and dry
conditions (Westerling et al., 2004; Jin et al., 2014; Qian
et al., 2021). Previous studies additionally showed that hot
Santa Ana winds could result in low relative humidity at the
coast and preferentially favor wildfire growth (Dong et al.,
2021; Gershunov et al., 2021). Therefore, the probability of
such extreme wildfires might be lower in the absence of the
strong and dry winds. To quantify the role of the winds in
exacerbating the extreme wildfires, we partitioned wildfires
into those with positive wind anomalies (W+) and those with-
out (W-) and then evaluated the copula-based relationship
between wildfires and weather conditions separately. Under
hot drought conditions, the conditional probabilities of wild-
fires with intensity and BA in 2025 were 4.26% and 3.87%
for the W- scenario, while these probabilities were 9.31%
and 18.85% for W+ scenario, respectively. This indicates
that concurrent windy weather had amplified the likelihood
of 2025 wildfire intensity and BA by 119% and 387%, respec-
tively.

5. Conclusions

Beginning on 7 January 2025, the western Los Angeles
(LA) region experienced several large wildfires, leading to
destructive social, economic, and environmental impacts.
Although the burned area (~245 km?2) and intensity (FRP=
41060 MW) were not the largest in western LA’s history,
the 2025 wildfires were extremely rare in terms of their
extent and occurrence during the rainy (non-fire-prone) sea-
son. The wildfires ranked first in the non-traditional fire sea-
son since satellite records began in 2001, and were estimated
to be at least a once-in-a-67-year event. The occurrence of
the wildfires was accompanied by hot drought conditions,
characterized by mean SPI and STI values of —1.57 and
1.03 during the fire period. Subsequently, we further quanti-
fied the roles of the hot drought conditions by estimating
the conditional probabilities of the 2025 wildfires under non-
dry, individual drought, and hot drought conditions using a
copula-based Bayesian probability framework. Analysis of
wildfires across all seasons shows that extreme drought dur-
ing the fire period increased the probabilities of extreme wild-
fires with an intensity and BA in 2025 by 54% and 75%
respectively. When compounded by hot drought conditions,
these probabilities were further amplified by 149% for inten-
sity and 210% for BA. The impact of hot drought was larger
in warm seasons. In addition to hot drought conditions, abun-
dant vegetation, promoted by above-average precipitation dur-
ing the late winters of 2023 and 2024, and strong winds
with low humidity also contributed to the extreme wildfires.
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