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ABSTRACT

The western Los Angeles (LA) wildfires of early January 2025 caused catastrophic social and environmental impacts,
drawing widespread attention. This study investigates the characteristics of these wildfires and quantifies the influence of
heat  and  drought  on  their  likelihood  using  a  copula-based  Bayesian  probability  framework.  The  wildfires  were
characterized by burned area (BA) and intensity (fire radiative power, FRP). The criteria establishing the presence of “hot
drought” conditions  were  identified  using  the  5-day  Standardized  Temperature  Index  (STI)  and  75-day  Standardized
Precipitation Index (SPI), respectively. The wildfire outbreak began on 7 January 2025 and burned for more than six days,
with the total  burned area exceeding 245 km2 and the cumulative FRP exceeding 41 060 MW. Based on satellite-derived
active  fire  observations  from  2001  to  2025,  we  estimate  that  such  large  and  intense  wildfires  during  LA’s  rainy  season
represent a once-in-a-67-year event. The wildfires were largely driven by the combination of hot and dry conditions, which
dried out soils and vegetation that had proliferated due to above-average precipitation in previous winter seasons, thereby
providing abundant fuel. Our seasonal analysis reveals that extreme drought increased the probability of wildfires matching
the  2025  intensity  and  BA  by  54%  and  75%,  respectively.  Hot  drought  further  amplified  these  probabilities  by  149%
(intensity)  and  210%  (BA).  These  findings  suggest  an  elevated  risk  of  large  wildfires  under  hot  drought  conditions,
contributing to their expansion into the non-traditional fire season.
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Article Highlights:
•  The 2025 western Los Angeles wildfires were a once-in-a-67-year event in terms of timing and severity.

•  Hot drought conditions dried out abundant vegetation that had proliferated due to antecedent rainfall, creating fuel for the
wildfires.

•   Hot  drought  increased  the  risk  of  2025-level  wildfires  by  2.8  and  4.4-fold  (for  intensity  and  burned  area)  over  non-
drought conditions.

 

  

 1.    Introduction

The  western  Los  Angeles  (LA)  region  (34°–34.5°N,

118°–119°W) experienced the ignition of multiple explosive
wildfires (e.g., the Palisades and Eaton fires) on 7−8 January
2025,  which  burned  over 50 000 acres  (~202  km2)  and
destroyed  more  than 16 000 structures  (Qiu  et al.,  2025).
Over 180 000 people had to be evacuated, and the economic
losses could exceed 250 billion US dollars. In addition, the
large wildfires caused severe smoke pollution and threatened
human physical and mental health (Qiu et al., 2025). There-
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fore,  the  2025  wildfires  have  been  reported  as  one  of  the
most destructive fire events to have ever affected the western
LA region.

These  immense  impacts  inevitably  brought  the  2025
western LA wildfires to public attention, and also raised ques-
tions as to the underlying reasons and exceptional nature of
the fires. Evidence is mounting that these wildfires resulted
from multiple components, including human activities, land-
scape  features,  and  meteorological  conditions  (Khorshidi
et al.,  2020; Brown et al.,  2023; Qiu  et al.,  2025).  Usually,
wildfires in the western LA region occur in late summer and
autumn (July through October) due to infrequent precipita-
tion, high temperatures, and intense solar radiation (Fig. 1),
which can lead to high evaporative demand and low-moisture
fuels  (Swain,  2021; Turco et al.,  2023).  Meanwhile,  strong
and dry Santa Ana winds during the fall and winter also con-
tribute  to  western  LA’s  large  wildfires  despite  relatively
low  evaporative  demand  (Abatzoglou  et al.,  2018; Swain,
2021).  Conditions  are  usually  not  conducive  to  drive  large
wildfires during mid-winter because it is the peak of western
LA’s rainy season, consistent with increases in relative humid-
ity in response to relatively low temperatures and intermittent
precipitation  (Dong  et al.,  2022).  However,  if  the  onset  of
the rainy season is delayed and/or the winter is dry, the con-
current dryness and strong winds can increase the potential
for large and fast-moving fires, as vegetation can be critically
dry  after  the  sustained  dry  and  warm conditions  typical  of
the  summer  and  fall  (Westerling  et al.,  2006; Dong  et al.,
2021; Gershunov et al., 2021).

A number  of  mechanisms linking wildfires  to  climatic

factors  have  been  suggested,  including  precipitation
deficits, high temperatures, and large vapor pressure deficits
(Westerling  et al.,  2006; Seager  et al.,  2015; Littell,  2018).
In fact, some recent reports also revealed that the combination
of Santa Ana winds and hot and dry weather created the per-
fect conditions for the rapid spread of the 2025 LA wildfires
(Qiu et al.,  2025).  However,  the quantitative characteristics
of these wildfires and their dependence on hot and dry condi-
tions have not been fully explored. Thus, this study aims to
explore how and to what extent  the hot and dry conditions
contributed to the extremely rare wildfires from a probabilis-
tic perspective. The remainder of this paper is organized as
follows. Section 2 introduces the data and methods used in
this  study.  Section  3  presents  the  spatiotemporal  evolution
of the 2025 western LA wildfires and quantifies the contribu-
tion of  drought  and hot  conditions.  Section 4 discusses the
possible  impacts  of  vegetation  abundance  and  Santa  Ana
winds, and, finally, section 5 draws the main conclusions of
the study.

 2.    Data and methods

 2.1.    Datasets

Daily  satellite-based  precipitation  during  1995–2025
from  the  Climate  Hazards  Group  InfraRed  Precipitation
with  Station  data  (CHIRPS)  with  a  spatial  resolution  of
0.05°  ×  0.05°  (Funk  et al.,  2014)  was  used  to  help  assess
drought conditions. Other meteorological data, including 2-
m  air  temperature  (T2m)  and  dew  point  temperature
(Tdew), evapotranspiration (ET), 10-m zonal and meridional
winds, and soil moisture (SM, 0–7 cm and 7–28 cm), at an
hourly scale during 1995–2025 were obtained from the fifth
generation  European  Centre  for  Medium-Range  Weather
Forecasts  (ECMWF)  Land  Surface  Reanalysis  (ERA5-
Land, Muñoz-Sabater et al., 2021). The spatial resolution of
the ERA5-Land datasets is 0.1° × 0.1°, and all hourly vari-
ables  were  aggregated  into  daily  scales.  The  daily  relative
humidity (RH) was then estimated by daily T2m and Tdew
(Alduchov and Eskridge,  1996).  Although reanalysis  prod-
ucts  are  an imperfect  representation of  reality,  assessments
of the ERA5-Land dataset have demonstrated that the product
performs well in reproducing temperature extremes and soil
moisture dynamics across the United States (Sheridan et al.,
2020; Beck et al., 2021; Muñoz-Sabater et al., 2021).

Fire  events  were  detected  using  the  Terra  and  Aqua
MODIS (MODerate resolution Imaging Spectroradiometer)
daily active fire data (MOD14 and MYD14, Collection 61)
between January 2001 and January 2025, as provided by the
Fire  Information  Resource  Management  System  (FIRMS).
The dataset includes the locations of active fire hotspots and
their intensity (i.e., Fire Radiative Power, FRP) with a 1-km
spatial  resolution,  which  represent  the  centroid  of  a  1-km2

pixel  with  one  or  more  fires  that  were  flagged  by  the
MODIS MOD14/MYD14 Fire and Thermal Anomalies algo-
rithm (Giglio et al., 2003, 2016). The MODIS active fire prod-
uct was used in this study because it provides both near-real-
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Fig. 1. The monthly (a) precipitation (Prec, mm; blue bars) and
2-m  air  temperature  (T2m,  °C;  black  lines)  averaged  over
1995–2024,  and  (b)  mean  normalized  difference  vegetation
index  (NDVI;  black  lines)  and  the  occurrence  percentage  of
fire  events  (%;  bars)  during  2001–24  in  the  western  Los
Angeles region (bounded by 34°–34.5°N, 118°–119°W). Here,
the  fire  events  were  identified  based  on  MODIS  active  fire
data (see section 2.2.1).
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time active fire locations and a long-term climatology neces-
sary to compute probabilities,  justifying its  widespread use
in global and regional fire detection and mapping (Hawbaker
et al.,  2008; Libonati  et al.,  2022; Shi  et al.,  2024).  The
MODIS  active  fire  product  can  capture  large  fires  well
across  the  United  States  with  detection  rates  exceeding
82%, but might miss small and low-intensity fires (Hawbaker
et al., 2008; Fusco et al., 2019). This tendency may result in
the  underestimation  of  burned  area  and  fire  intensity,  an
imperfection  deemed acceptable  in  our  study,  as  our  focus
is  on large wildfires,  considering their  profound ecological
impacts  and  the  robust  active  fire  detection  reliability  of
MODIS  (Hawbaker  et al.,  2008).  In  southern  California,
large  wildfires  accounted  for  the  majority  of  the  total
burned  area  and  were  strongly  linked  to  extreme  fire
weather  conditions  (Dong  et al.,  2022).  In  contrast,  small
fires  were  more  sensitive  to  human  ignitions  (Dong  et al.,
2022) and thus fall outside the scope of this study.

The  normalized  difference  vegetation  index  (NDVI)
was used to examine vegetation growth and fuel availability
(Hernández  Ayala  et al.,  2021).  The  NDVI  was  obtained
from  the  MODIS  Terra  (MOD13C1)  and  Aqua
(MYD13C1) databases  with  a  spatial  resolution of  0.05°  ×
0.05° and a temporal resolution of 16 days. An 8-day NDVI
time series was then developed by merging the two 16-day
satellite-based products (Wang et al., 2011), which has been
widely used in climate, ecosystem, and natural resources man-
agement  studies  (Hernández  Ayala  et al.,  2021; Liu  et al.,
2022; Burton et al., 2024).

For  the  purpose  of  establishing  a  connection  with  fire
characteristics, all meteorological variables and NDVI were
averaged over the study region in this study. The anomalies
(or percentiles) of meteorological variables and NDVI were
estimated with respect to the 1995–2024 and 2001–24 clima-
tologies, respectively, considering their seasonal cycle.

 2.2.    Methods

 2.2.1.    Fire analysis

The  characterization  of  fires  was  assessed  by  the
burned area (BA) and FRP, representing the extent and inten-
sity of  fires.  First,  the start  and end dates of  the fires  were
identified  based  on  the  MODIS  daily  active  fire  hotspots.
Here,  only  the  vegetation  fire  hotpots  (fire  type=0)  with  a
high confidence level (>80%) and FRP > 10 MW were consid-
ered. An active fire mask was developed for each fire,  and
then the BA and cumulative intensity were calculated at the
end of the event. Despite the underestimation of the true fire
severity, the satellite-derived fire detections provide valuable
insight  into  the  fire  severity  (Giglio  et al.,  2016).  In  this
study,  considering  the  locations  of  the  2025  wildfires,  our
analysis  focused  on  the  region  bounded  by  34°–34.5°N,
118°–119°W,  which  was  referred  to  as  the  western  LA
region.

 2.2.2.    Drought and hot conditions

We used the Standard Precipitation Index (SPI) and Stan-

dard  Temperature  Index  (STI)  to  identify  and  assess
drought  and  hot  conditions,  respectively  (McKee  et al.,
1993; Feng et al., 2019; Hao et al., 2021). In this study, the
SPI and STI were calculated at a daily resolution. To obtain
the optimal accumulated scales of SPI and STI, we estimated
Pearson correlation coefficients between fire characteristics
(i.e., BA) and SPI over 30–90 days and STI over 5–30 days.
It can be found that the SPI at a 75-day scale and STI at a 5-
day scale exhibited the highest correlation with BA (Fig. 2).
Therefore,  we  adopted  the  75-day  SPI  and  5-day  STI  that
were estimated by summing precipitation from the preceding
74 days to the current day and averaging temperature from
the preceding 4 days to the current day, respectively. For a
given day, these two series were fitted to a marginal distribu-
tion (e.g., gamma distribution), and then transformed into a
standard normal distribution to obtain the SPI and STI, respec-
tively  (McKee  et al.,  1993; Hao  and  AghaKouchak,  2013;
Ma  et al.,  2019; Yang  et al.,  2025).  Dry  conditions  were
said to exist if SPI < –0.5, and a hot drought was present if
SPI < –0.5 and STI > 0.5 (Svoboda et al., 2002).

 2.2.3.    The relationship between fires and hot and drought
conditions

We  used  the  copula  method  to  assess  the  dependency
between fire characteristics (BA and FRP) and dry and hot
conditions  (SPI  and  STI).  The  copula  method  can  connect
two or more variables with different marginal distributions,
and has been widely used for drought and wildfire analysis
(Li et al., 2023; Ma and Yuan, 2024; Ma et al., 2024). Several
marginal  distributions,  including  the  normal,  Generalized
Extreme Value (GEV), Extreme Value (EV), Gaussian, and
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Fig.  2. The  correlation  coefficients  between  burned  area  and
(a)  SPI  at  30–90-day  scales  and  (b)  STI  at  5–60-day  scales
during the fire period. The red hexagons denote the timescale
with the highest correlation.
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empirical  distributions,  were  tried  to  fit  the  log  (BA),  log
(FRP), SPI, and STI series, and the most appropriate distribu-
tion  for  each  variable  was  selected  based  on  the
Kolmogorov-Smirnov  test.  For  the  bivariate  joint  distribu-
tion, five copula functions, including Gaussian, Clayton, Gum-
bel,  Frank,  and  t,  were  selected  as  candidates  and  then
ranked based on their performance in the Maximum Likeli-
hood (MLE), Akaike Information Content (AIC),  Bayesian
Information  Criterion  (BIC),  Root-Mean-Square  Error
(RMSE), and Nash-Sutcliffe Efficiency (NSE) tests (Sadegh
et al., 2017; Ballarin et al., 2021). The MLE test focuses on
minimizing  the  residuals  between  model  simulations  and
observations, the AIC considers the model complexity, and
the  BIC further  takes  into  account  the  number  of  observa-
tions. The copula function that most frequently ranked first
across  these  metrics  was  adopted  as  the  optimal  copula

model. The C-vine copula function, characterized by its rela-
tively  simple  structure  and  robust  performance  (Wu  et al.,
2021; Jiang et al.,  2023),  was then utilized to construct  the
trivariate joint distribution based on the AIC and BIC tests.

To assess the impact of drought and hot conditions on
fires,  we  further  estimated  the  probabilistic  response  of
fires  under  different  conditions  from  a  statistical  perspec-
tive. In this study, we particularly focused on the occurrence
probability  of  fires  like  the  2025  wildfires,  which  were
defined as P[log(BAarea)>log(BA2025)]  or P[log(FRPintensity)>
log(FRP2025)], where BAarea and FRPintensity indicate BA and
FRP,  BA2025 and  FRP2025 denote  the  BA  and  FRP  of  the
2025 wildfires, respectively. Following Ribeiro et al. (2020)
and Hao  et al. (2021),  the  conditional  probability  of  fires
with  BA  of  the  2025  wildfires  given  non-dry,  individual
dry, and hot drought conditions can be expressed as:

P[log(BAarea) > log(BA2025)|SPID > −0.5]

=

P[log(BAarea) > log(BA2025),SPID > −0.5]
P(SPID > −0.5)

=

1−P(SPID < −0.5)−P[ log (BAarea) < log(BA2025)]+C[log(BAarea) < log(BA2025),SPID < −0.5]
1−P(SPID < −0.5)

, (1)
 

P[log(BAarea) > log(BA2025)|SPID < spi2025] =
P[log(BAarea) > log(BA2025),SPID < spi2025]

P(SPID < spi2025)

=1−
C[log(BAarea) < log(BA2025),SPID < spi2025]

P(SPID < spi2025)
, (2)

and

P[log(BAarea) >log(BA2025)|SPID <spi2025,STIH >sti2025]

=

P[log(BAarea) >log(BA2025),SPID <spi2025,STIH >sti2025]
P(SPID <spi2025,STIH >sti2025)

= 1−
C[log(BAarea) <log(BA2025),SPID <spi2025]−C[log(BAarea) <log(BA2025),SPID <spi2025,STIH <sti2025]

P(SPID <spi2025)−C(SPID <spi2025,STIH <sti2025)
, (3)

where C denotes  the  multivariate  copula  joint  cumulative
probability  distribution,  SPID and  STIH indicate  SPI  and
STI, and spi2025 and sti2025 denote the actual SPI and STI val-
ues during the 2025 wildfires, respectively. Similarly, the con-
ditional  probability  of  FRP  under  different  conditions  can
be  estimated  by P[log(FRPintensity)>log(FRP2025)|SPID>
−0.5], P[log(FRPintensity)>log(FRP2025)|SPID<spi2025],  and
P[log(FRPintensity)>log(FRP2025)|SPID<spi2025,  STIH>sti2025],
respectively.  Then,  the  difference  between  Eq.  (2)  and  Eq.
(1)  indicates  the  impact  of  drought,  and  the  difference
between Eq. (3) and Eq. (2) indicates the additional impact
of hot drought, as opposed to drought impact alone. An inten-
sified  impact  of  extreme conditions  on  fires  is  expected  to
cause  an  increased  conditional  probability.  The  above
copula-based  Bayesian  probability  framework  has  been
widely  used  to  study  the  impact  of  drought  and/or  hot
events  on  vegetation  and  wildfires  (Hao  et al.,  2021; Ma
et al., 2024).

 3.    Results

 3.1.    Overview of the 2025 Los Angeles wildfires

Figure 3 displays the satellite imagery provided by the
FIRMS,  showing  the  active  fire  locations  in  LA  during
7–12  January  2025.  The  first  wildfire  erupted  near  the
Pacific  Palisades  (i.e.,  Palisades  Fire)  on  7  January  2025,
and spread quickly westward along the Pacific Coast High-
way  toward  Malibu  on  8  January.  Further  inland,  another
destructive fire  (i.e.,  the Eaton Fire)  ignited near  Altadena,
north of downtown LA, and grew rapidly on 8 January. Mean-
while, several major fires (e.g., Hurst Fire) also occurred in
the  San  Fernando  Valley.  These  large  wildfires  persisted
from 7 January to 12 January, burning for more than 6 days.
As  of  12  January,  several  small  fire  hotspots  were  still
active.

Figure 4 shows the total BA and intensity (FRP) of the
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2025  wildfires  in  comparison  to  previous  wildfires  in  the
western LA region. In total, 133 fires were detected from Jan-
uary 2001 to  January 2025 in  the western LA region,  with
36  events  occurring  in  the  winter  season  (December–
February).  Though  the  largest  fires  occurred  in  2003  and

2009, large wildfires have become more frequent during the
past decades, which has been attributed to climate warming
(Abatzoglou  and  Williams,  2016; Brown  et al.,  2023;
Turco et al., 2023). The BA of the 2025 wildfires was over
245  km2,  and  the  cumulative  intensity  was  about 41 060

 

 

Fig. 3. The spatiotemporal evolution of the wildfires in the western Los Angeles (LA) region during 7–12 January
2025  (data  source:  Fire  Information  for  Resource  Management  System,  FIRMS).  Red  shadings  denote  fire
detections. The red rectangle on the right map denotes the western LA region (34°–34.5°N, 118°–119°W) used for
the quantitative analysis.
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Fig.  4. The  (a)  Burned  Area  (BA,  km2)  and  (c)  Fire  Radiative  Power  (FRP,  MW)  for  each  wildfire  event  from
January 2001 to January 2025, and the cumulative distribution function (CDF) of the (b) log (BA) and (d) log (FRP)
for fires that occurred in winter season. Here, fires with BA >1 km2 were considered. Blue hexagons denote the very
large wildfires with BA ≥ 50 km2 that occurred in LA’s fire-prone season, and red hexagons denote very large fires
in the non-traditional fire season, including the 2025 wildfires.
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MW (Figs.  4a, c).  The 2025 wildfires  ranked as  the fourth
largest  and  most  intense  fire  event  since  2001,  surpassed
only  by  the  24–29  October  2003,  27  August–7  September
2009, and 9–14 November 2018 fires. In spite of its relatively
small  BA  and  intensity  compared  to  the  three  large  wild-
fires,  the  2025 wildfires  were  exceptional  in  terms of  their
destructive effects and the speed at which the fires developed
(Qiu et al.,  2025).  In addition,  we also note that a majority
of  dangerous  wildfires  occurred  during  the  summer  and
autumn, coincident with scarce precipitation and high temper-
atures (Fig. 1). However, the 2025 wildfires occurred in mid-
winter when large wildfires are rare due to the climatologi-
cally wetter and cooler meteorological conditions, spanning
a winter season characterized by mean BA of 8.24 km2 and
mean FRP of 574 MW over 2001–24. The BA (FRP) of the
2025  wildfires  was  approximately  30-fold  (72-fold)  larger
than the mean BA (FRP) of fires in the winter climatology,
constituting the largest observed values since 2001. We fur-
ther fitted the log (BA) and log (FRP) of fires in the winter
season  to  Kernel  probability  distributions  to  estimate  the
return period of the wildfires (Figs. 4b, d). The results indicate

that the 2025 wildfires were about a 1-in-67-year and 1-in-
68-year event during the winter in terms of their BA and inten-
sity, respectively.

 3.2.    Linking  the  2025  Los  Angeles  wildfires  to  hot
drought

To further explore the drivers affecting the 2025 wild-
fires, we analyzed the temporal evolution of meteorological
and vegetation conditions preceding the fires (Fig. 5). During
the  pre-fire  and  active  fire  periods  (i.e.,  from  December
2024 to mid-January 2025), the temperature was above nor-
mal,  with  a  maximum  anomaly  of  4.18°C  and  a  mean
anomaly of 2.57°C (Fig. 5a). The summer of 2024 was also
marked  by  numerous  high  temperature  episodes.  Mean-
while,  the  precipitation  was  lower  than  the  climatological
mean  values,  with  rainfall  amounts  reaching  zero  or  near-
zero values from May 2024 to mid-January 2025 (Fig. 5b).
The high evaporative demand drove high ET, which was con-
sistently higher than precipitation (Figs. 5b, c). The persistent
drought  combined  with  warm  temperatures  induced  rapid
soil moisture decline since September 2024 (Fig. 5d). Conse-

 

 

Fig. 5. Temporal evolution of the 8-day (a) 2-m air temperature (T2m, °C); (b) precipitation
(Prec,  mm);  (c)  evapotranspiration  (ET,  mm);  (d)  soil  moisture  (SM)  percentile  (%);  (e)
NDVI and its percentile (%) averaged over the analysis region from January 2023 to March
2025. Red hexagons denote the 2025 wildfire event.
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quently, the vegetation vigor slowed down, as evidenced by
the declining NDVI (Fig. 5e), leading to lower fuel moisture
and the accumulation of dry fuels. It is noteworthy that the
late  winters  of  2023  and  2024  were  wetter  than  normal
(Fig. 5b). The antecedent above-average rainfall fostered veg-
etative growth (Fig. 5e), resulting in abundant plant biomass
and  denser  foliage  (e.g.,  higher  NDVI  percentile),  which
later became available fuels for wildfires after sustained dry
and  warm  conditions  occurred  from  the  summer  of  2024
through  early-January  of  2025  (Khorshidi  et al.,  2020;
Hernández  Ayala  et al.,  2021).  The  concurrence  of  fire-
prone weather and ample dry fuels contributed to the rapid
spread, large BA, and intensity of the 2025 wildfires.

The  above  analysis  confirms  that  the  2025  wildfires
were  largely  driven  by  hot  drought  conditions.  During  the
fire period, the mean SPI and STI were –1.57 and 1.03, corre-
sponding  to  occurrence  probabilities  of  <  6%  and  <  15%
respectively. The quantitative indices further indicate the pres-
ence of extremely dry and hot conditions (i.e., hot drought).
We thus quantified the impact of individual drought and hot
drought on the fires via a copula-based Bayesian probability
framework (see section 2.2.3). Figure 6 shows the scatterplots

of  SPI-STI,  log(BA)-SPI,  log(BA)-STI,  and  log(BA)-SPI-
STI correlations, and the conditional probabilities of different
levels of wildfires given different dry and/or hot conditions.
A  negative  correlation  existed  for  log(BA)-SPI  (r=−0.22,
p<0.01),  while  log(BA)-STI  showed  a  positive  correlation
(r=0.30, p<0.001). Here, r is the Pearson correlation coeffi-
cient, and p denotes the significance level. The results indicate
an increase in fire BA with the increased severity of drought
and hot conditions. The conditional probability of wildfires
with BA like the 2025 wildfires (BA=245 km2) under actual
drought  conditions,  i.e., P[log(BAarea)>5.5|SPID≤–1.57],
was  14.14%,  while  the  conditional  probability  given  non-
dry  conditions,  i.e., P[log(BAarea)>5.5|SPID>–0.5],  was
8.06%. This  indicates that  extreme drought during the pre-
fire and fire periods increased the conditional probability of
fires with BA similar to the 2025 wildfires by 75%. The con-
ditional  probability  of  the  wildfires  under  the  hot  drought
conditions,  i.e., P[log(BAarea)>5.5|SPID≤−1.57,  STIH>
1.03], was 43.85%, which was higher than that under the indi-
vidual drought condition. The hot drought further increased
the  occurrence  probability  of  the  2025  wildfires  by  210%,
compared  with  that  under  individual  drought  conditions

 

 

Fig. 6. Scatterplots of SPI, STI, and burned area (BA) for detected fire events in the study region: (a) SPI and STI;
(b) SPI and log(BA); (c) STI and log(BA); (d) copula-based conditional probability of log(BA) under different levels
of dry and hot conditions. r is the Pearson correlation coefficient, and p denotes the significance level. Wildfires in
warm  (April–September)  and  cold  (October–March)  seasons  are  represented  as  red  and  blue  dots,  respectively;
colored contours in (b−c) and shadings in (d) indicate the copula-based conditional probability.
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(Table 1).
Figure 7 further shows the correlation between the fire

intensity (FRP) and SPI and STI, and the conditional probabil-
ity of wildfires with different intensities given different dry
and hot conditions. Similar results are found, evidenced by
the  negative  correlation  between  log(FRP)  and  SPI
(r=–0.23, p<0.07),  while  a  positive  correlation  exists
between log(FRP) and STI (r=0.30, p<0.001). The wildfire
intensity increased with the severity of drought and hot condi-
tions. The conditional probability of fires with intensity like

the 2025 wildfires (FRP=41 060 MW) under actual drought
condition,  i.e., P[log(FRPintensity)>10.6|SPID≤–1.57],  was
8.38%, while the conditional probability given a non-dry con-
dition P[log(FRPintensity)>10.6|SPID>–0.5]  was  5.44%
(Table 1). The conditional probability under hot drought con-
ditions,  i.e., P[log(FRPintensity)>10.6|SPID≤–1.57,  STIH>
1.03],  was  20.89%.  These  results  indicate  that  the  extreme
drought  increased  the  conditional  probability  of  fires  with
intensity like the 2025 wildfires by 54%, and hot drought fur-
ther increased the probability by 149%. Overall,  relative to

 

Table 1. The conditional probability of wildfires with BA and FRP in 2025 under different levels of dry and hot conditions.

Fire characteristics Non-hot-dry conditions Drought Hot drought

All seasons BA 8.06% 14.14% 43.85%
FRP 5.44% 8.38% 20.89%

Warm seasons BA 5.51% 7.49% 14.59%
FRP 0.38% 1.93% 2.17%

Cold seasons BA 3.23% 4.87% 6.32%
FRP 7.81% 9.06% 25.39%

 

 

Fig. 7. Scatterplots of SPI, STI and Fire Radiative Power (FRP) for detected fire events in the study region: (a) SPI
and log(FRP); (b) STI and log(FRP); (c) copula-based conditional probability of log(FRP) under different levels of
dry  and  hot  conditions. r is  the  Pearson  correlation  coefficient,  and p denotes  the  significance  level.  Wildfires  in
warm (April–September) and cold (October–March) seasons are represented by the red and blue dots, respectively.
The colored contours in (a-b) and shadings in (c) indicate the conditional probability.
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a non-dry scenario,  hot drought increased the likelihood of
wildfires with an intensity and BA, as observed in 2025, by
2.8  and  4.4  times,  respectively.  The  impact  of  hot  drought
conditions on fire intensity was smaller than their impact on
BA.

 4.    Discussion

This study provides evidence that the rare 2025 LA wild-
fires  were  favored  by  hot  drought  conditions  (SPI=–1.57
and STI=1.03), which dried out the vegetation, thereby provid-
ing extensive dry fuels for the wildfires. The results are con-
sistent  with  previous  studies  that  have  preliminarily
ascribed  the  2025  wildfires  to  the  concurrence  of  dry  and
hot conditions but did not assess their severity and impacts
(Qiu et al., 2025). Here, we quantified the contribution of indi-
vidual drought and hot drought to the 2025 wildfires from a
probabilistic  perspective.  Results  show  that  hot  drought
increased the conditional probability of 2025 wildfire inten-
sity  and  BA  by  about  2.8  and  4.4  times,  respectively.
Despite the hot-drought amplification effect on the 2025 wild-

fires not being the largest historically, our analysis reveals a
growing  trend  in  its  effect  on  BA  (p<0.08)  and  FRP
(p<0.04) (Fig. 8). This phenomenon is in agreement with pre-
vious studies that have showed an increase in the observed fre-
quency of hot and dry extremes in California and increasing
climatic  potential  for  large  wildfires  (Diffenbaugh  et al.,
2015; Abatzoglou and Williams, 2016; Keeley and Syphard,
2021; Turco et al., 2023). Given the distinct mechanisms driv-
ing  warm-season  and  cold-season  wildfires  in  the  western
LA region, we also estimated the seasonal dependency upon
the contribution of hot and drought conditions. Here, the cop-
ula  relationships  between  wildfire  characteristics  and  SPI
and STI during the warm (April–September) and cold (Octo-
ber–March)  seasons  were  fitted  separately.  It  is  found  that
the effects of the hot-drought conditions showed significant
seasonal  variations.  The  conditional  probability  of  such
extreme wildfires with such BA and FRP in 2025 was larger
in  warm  and  cold  seasons,  respectively,  while  the  impacts
of hot-drought conditions on both BA and FRP were larger
in warm seasons (Table 1). This might be because more fre-
quent hot drought conditions are conducive to fire activities
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Fig. 8. The increased likelihood of the conditional probability of wildfire (a) burned area and
(b)  FRP  given  hot  and  dry  conditions.  Here,  the x-axis  denotes  the  wildfire  events  that
occurred  historically  in  chronological  order  during  2001–25.  Black-solid  and -dashed  lines
denote the increased likelihood under individual dry conditions relative to non-dry conditions
and its trend, respectively. Red-solid and -dashed lines denote the increased likelihood under
hot drought conditions relative to individual dry conditions and its trend, respectively. Blue-
vertical lines indicate the 2025 wildfire event.
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in the warm and dry seasons (Dong et al., 2022).
Although  hot  drought  conditions  have  a  substantial

impact  on  fire  occurrence,  fuel  availability  plays  a  critical
role  in  enhancing  the  fire  activity  (Sarris  et al.,  2014;
Walker et al., 2020). Previous studies have shown that exces-
sive  rainfall  over  the  previous  1–3  years  has  a  significant
impact on wildfires by promoting vegetation growth, which
can  provide  more  available  fuels  to  burn  (Pilliod  et al.,
2017; Li et al., 2019). Hernández Ayala et al. (2021) also sug-
gested that more than half of the extreme wildfire seasons in
California  were  preceded  by  enhanced  vegetation  growth
due to wetter antecedent conditions. In this study, we further
find  that  a  majority  of  (8  of  11)  extremely  large  wildfire
cases (BA≥50 km2), including the 2003, 2005, 2007, 2008,
2009, 2017, 2020 and 2025 wildfires, showed above average
NDVI values in the peak growth season (March–May) prior
to these wildfire events (Fig. 9a), indicating anomalous vege-
tation growth that later fueled these wildfires. Six out of the
eight extreme wildfires were preceded by antecedent above-
normal  precipitation in  the peak wet  (December–February)
season (Fig. 9b). The analysis for wildfires with BA>4 km2

also  reveals  a  significant  correlation  (r=0.44, p<0.01)
between  vegetation  conditions  and  preceding  precipitation
anomalies.  In  this  situation,  the  synergy  between  abundant
fuel  and  local  extreme  weather  (e.g.,  hot  drought)  may

explain  the  very  large  fire  spread  (Pausas  and  Ribeiro,
2013; Gouveia et al., 2016). For the extreme wildfires without
prior  excessive  vegetation  growth  (i.e.,  below  average
NDVI values), we note that the NDVI anomalies were not sig-
nificant. Hot drought conditions could still drive severe burn-
ing  through  rapidly  drying  out  the  existing  live  and  dead
fuels (e.g., vegetation, organic soils and built structures) and
reducing  the  ignition  threshold,  compounded  by  prolonged
high vapor pressure deficit and wind-driven spread (Gouveia
et al.,  2016; Keeley  and  Syphard,  2021; Collins  et al.,
2022). Collins et al. (2022) have shown that very large fires
usually  occur  in  periods  characterized  by  extreme  drought
and  fire  weather  conducive  to  fire  spread.  For  example,
anomalous  dead  fuel  accumulation  due  to  prolonged
drought and windblown debris fueled the 2018 megafire in
California (Kang et al., 2023).

Certainly, during the extreme fire days in early January
2025,  anomalous  northeasterly  winds  with  low  humidity
descending from elevated inland areas prevailed over the west-
ern  LA  region  (Fig.  10a).  The  hourly  winds  exhibited  a
rapid strengthening at 1100 UTC (0300 PST) on 7 January,
and peaked at 1900–2300 UTC (1100–1500 PST) on 7 Jan-
uary  and  0800–1300  UTC (0000–0500  PST)  on  8  January
(Fig.  10b),  near  the  time  of  the  rapid  wildfire  outbreak.
Under  hot  and  dry  weather  conditions,  the  strong  and  dry
winds usually act as a catalyst for large wildfires. For exam-
ple,  the  anomalously  dry  winds  can  accelerate  evaporation
and lead to a rapid decrease in fuel moisture. Strong winds
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Fig.  9. Normalized  Difference  Vegetation  Index  (NDVI)  and
precipitation anomalies preceding the extremely large wildfire
events  (BA≥50  km2):  (a)  Mean  NDVI  anomaly  in  the  peak
growth season (March–May), and (b) cumulative precipitation
anomaly  (mm)  in  the  peak  wet  season  (December–February)
prior  to  the  extreme  wildfires.  The  x-axis  represents  the
occurrence timeline of extremely large wildfires in the western
LA region.
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Fig.  10. (a)  10-m  wind  anomalies  (vectors;  m  s–1)  and  2-m
relative humidity (shading; %) on the peak wildfire day (i.e., 8
January  2025).  Blue  box  denotes  the  western  LA  region.  (b)
Hourly (UTC) wind speed (black line; m s–1) and its anomalies
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January 2025.
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can  also  foster  the  fire  spread,  often  leading  to  erratic  and
uncontrollable  fire  behavior,  especially  during  hot  and  dry
conditions  (Westerling  et al.,  2004; Jin  et al.,  2014; Qian
et al.,  2021).  Previous  studies  additionally  showed that  hot
Santa Ana winds could result in low relative humidity at the
coast  and preferentially  favor  wildfire  growth (Dong et al.,
2021; Gershunov et al., 2021). Therefore, the probability of
such extreme wildfires might be lower in the absence of the
strong and dry winds.  To quantify the role  of  the winds in
exacerbating the extreme wildfires, we partitioned wildfires
into those with positive wind anomalies (W+) and those with-
out  (W-)  and  then  evaluated  the  copula-based  relationship
between wildfires and weather conditions separately. Under
hot drought conditions, the conditional probabilities of wild-
fires with intensity and BA in 2025 were 4.26% and 3.87%
for  the  W- scenario,  while  these  probabilities  were  9.31%
and  18.85%  for  W+  scenario,  respectively.  This  indicates
that concurrent windy weather had amplified the likelihood
of 2025 wildfire intensity and BA by 119% and 387%, respec-
tively.

 5.    Conclusions

Beginning on 7 January 2025, the western Los Angeles
(LA) region experienced several  large wildfires,  leading to
destructive  social,  economic,  and  environmental  impacts.
Although the  burned area  (~245 km2)  and  intensity  (FRP=
41 060 MW)  were  not  the  largest  in  western  LA’s  history,
the  2025  wildfires  were  extremely  rare  in  terms  of  their
extent and occurrence during the rainy (non-fire-prone) sea-
son. The wildfires ranked first in the non-traditional fire sea-
son since satellite records began in 2001, and were estimated
to be at  least  a  once-in-a-67-year  event.  The occurrence of
the  wildfires  was  accompanied  by  hot  drought  conditions,
characterized  by  mean  SPI  and  STI  values  of –1.57  and
1.03 during the fire period. Subsequently, we further quanti-
fied  the  roles  of  the  hot  drought  conditions  by  estimating
the conditional probabilities of the 2025 wildfires under non-
dry, individual drought, and hot drought conditions using a
copula-based  Bayesian  probability  framework.  Analysis  of
wildfires across all seasons shows that extreme drought dur-
ing the fire period increased the probabilities of extreme wild-
fires  with  an  intensity  and  BA  in  2025  by  54%  and  75%
respectively. When compounded by hot drought conditions,
these probabilities were further amplified by 149% for inten-
sity and 210% for BA. The impact of hot drought was larger
in warm seasons. In addition to hot drought conditions, abun-
dant vegetation, promoted by above-average precipitation dur-
ing  the  late  winters  of  2023  and  2024,  and  strong  winds
with low humidity also contributed to the extreme wildfires.
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