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A B S T R A C T   

During 2017–2019, drought existed in many parts of Australia with varying degrees of severity and varied timing 
of development and intensification. In a broad sense, the surface climate conditions went from anomalously wet 
in 2016 to an official government-declared drought from the end of 2017. The drought subsequently intensified 
further to become most severe in mid to late 2019. Here we explore the more detailed evolution of the 2019 
conditions over subtropical eastern Australia and infer its predictability through linear relationships with large- 
scale climate drivers. To monitor the detailed drought evolution, we use the Evaporative Stress Index (ESI) 
computed over a 4-week running window on a 5 km grid. Flash drought onset is defined as when there is a rapid 
decline in the ESI that is sustained over at least 2 weeks which ends in drought conditions. For the Central Slopes 
area of the upper Darling River basin, flash drought onset occurred in June, persisted over 6 months, and rapidly 
terminated through a flash recovery in February 2020. In the far east of Australia (East Coast regions), flash 
drought onset was identified later, in November and December. For the Central Slopes area, less than half the 
magnitude of the flash drought development in June could be explained through linear relationships with the 
positive Indian Ocean Dipole mode (IOD) and the central Pacific El Niño, together with the long-term trend in ESI 
in the region. Similarly, only about half the magnitude of the East Coast flash drought developments in 
November and December could be explained by the ongoing positive IOD, central Pacific El Niño, negative 
Southern Annular Mode, and ongoing global warming trend. Therefore, although these large-scale drivers set the 
stage for the likelihood of drought, successful prediction of flash drought will require more local and current 
information than those large-scale climate drivers alone.   

1. Introduction 

Beginning in early 2017 and extending to the end of 2019, sub
tropical eastern Australia, including the agriculturally-important Mur
ray Darling Basin (MDB) and the densely populated East Coast regions 
(MDB, ECS and ECN in Fig. 1a), experienced hydrological drought due to 
large rainfall deficits (Bureau’s Special Climate Statement 70, 2019; see 
also the Bureau’s drought report webpage http://www.bom.gov. 
au/climate/drought/). The 2017–2019 drought also affected most of 
the state of New South Wales and southern Queensland. The rainfall 
deficits were especially sustained during 2018-19. For example, in the 
Central Slopes (CS) area of the north-eastern MDB (Fig. 1b) there were 
only three months of at least normal precipitation during those 2 years 
and the 36-month period 2017–2019 was the driest on record (more 
than 100 mm lower than the next driest period of 1965-67). The dryness 

was particularly concentrated during the cool season (April–Sep
tember), which is the most important season in much of southern 
Australia for recharging soil moisture and generating runoff. The accu
mulated April–September rainfall totals over subtropical eastern 
Australia for each of 2017, 2018, and 2019 were among the 10 lowest 
years on record since 1901 when observation data became available. 
Each of these years had rainfall totals that were at least 50% below the 
1961–1990 average, which is an unprecedented sequence of unusually 
dry years. The very much below average October and November rainfall 
in 2019 over most of the main water catchments of subtropical eastern 
Australia further exacerbated the effect of low inflows during the prior 
years. The catchment average soil moisture over the 3-year period was 
the lowest on record in ten of the 26 river catchments in the MDB 
(Bureau’s Special Climate Statement 70, 2019). These years were also 
the warmest on record with maximum temperature anomalies for 
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subtropical eastern Australia reaching 1.73 ◦C, 1.91 ◦C and 2.13 ◦C 
above the 1961–1990 average of 24.9 ◦C, respectively. 

Although the cause of the low rainfall during 2017 and 2018 is still 
being debated, the extreme dryness during 2019 has been attributed to 
the occurrence of a record positive Indian Ocean Dipole (IOD) (Bureau 
special climate statement 70) along with strong El Niño Modoki (Lim 
et al., 2021), both of which are known to act to reduce rainfall in sub
tropical eastern Australia during the cool season (Wang and Hendon 
2007; Cai et al., 2012). In addition, a rare strong Southern Hemisphere 
polar stratospheric warming occurred at the beginning of September 
2019, which subsequently promoted a strong negative polarity of the 
Southern Annular Mode (SAM) from late October through to the end of 
December 2019 (Lim et al., 2021). Low SAM in response to polar 
stratospheric warmings has been shown to promote hot and dry condi
tions and bushfires across subtropical eastern Australia in austral late 
spring to early summer (Lim et al. 2019, 2021). 

The purpose of the present study is to investigate the exacerbation of 
the drought during 2019 from the perspective of evaporative stress as 
monitored by the Evaporative Stress Index (ESI), which is an integrated 
metric that captures the combined influence of multiple factors 
contributing to drought such as soil moisture deficit and elevated 
evaporative demand. The ESI is more indicative of drought conditions 

that affect agriculture and natural ecosystems than, for instance, the 
rainfall deficiency, as it can better capture the factors that contribute to 
the total stress on vegetation. Nguyen et al. (2020) showed that the 
2017–2019 drought in subtropical eastern Australia was associated with 
above normal evaporative stress (i.e. negative ESI). Nguyen et al. (2019) 
also demonstrated the utility of the ESI for identifying flash drought in 
Australia as per the definition of Otkin et al. (2018a,b). Flash drought, 
which refers to drought that rapidly develops or intensifies within a few 
weeks, is especially important for some agricultural practices because 
the rapid intensification can have dire consequences for plant survival 
and production (e.g., Nguyen et al., 2019; Otkin et al., 2018a,b). We 
therefore use the ESI to study in detail the development of the drought 
during 2019, identifying occurrences of flash drought, and attempt to 
attribute their cause and infer their predictability. 

The paper is organised as follows: The data and methods are 
described in section 2. Details of the 2017–2019 multi-year drought and 
its evolution during 2019 are described in section 3. The role of large- 
scale climate drivers on the life cycle of the 2019 flash drought and its 
inferred predictability are investigated in section 4, and the conclusion 
is given in section 5. 

Fig. 1. (a) Map showing the thirteen clusters of natural resource management (NRM) regions using a unique Australian regionalisation scheme taken from htt 
ps://www.climatechangeinaustralia.gov.au/en/climate-projections/about/modelling-choices-and-methodology/regionalisation-schemes/. The grey contour in
dicates the Murray-Darling basin (MDB). The six states and two territories are indicated on the map by their acronyms: Western Australia (WA), Northern Territory 
(NT), Queensland (QLD), South Australia (SA), New South Wales (NSW), Victoria (VIC) and Australian Capital City (ACT) and Tasmania (TAS). The light beige 
regions encircled by the brown contours indicate where there is insufficient observational data to reliably compute the ESI and is therefore masked out. (b) Time 
series of the ESI (orange) and rainfall (blue) and 2-m temperature (olive) anomalies averaged over the NRM cluster CS. The anomalies were normalized by their 
respective standard deviation. Note that the date refers to the end of the 4-week window over which the ESI, rainfall, and temperature are averaged. Time marks are 
placed on the 1st day of each month. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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2. Data and method 

This study uses the daily analyses of precipitation and surface air 
temperature from the Australian Water Availability Project (AWAP, 
Jones et al., 2009). These analyses are based on an optimum interpo
lation of available station observations and are provided on a 5 km grid. 
The analyses are performed daily for 1900-present. We also use some of 
the output from version 6 of the Bureau of Meteorology’s land surface 
landscape water-balance model (AWRA-L v6, Frost et al., 2018) to assess 
the drought evolution. The one-dimensional water balance model pro
duces daily outputs on a 5 km grid that include evapotranspiration (ET) 
and potential ET (PET), which are used to compute the ESI. ET in the 
AWRA-L model is estimated as the sum of evaporation (interception, soil 
and groundwater) and transpiration (shallow and deep root water up
take and transpiration from groundwater). PET in the AWRA-L model is 
computed using the Penman equation (Penman 1948) as a combination 
of net radiation and vapour pressure deficit, and is indicative of the 
demand for moisture from the atmosphere. Validation against inde
pendent observation (mainly stream flow) and comparison to other 
model-derived analyses indicate that AWRA-L provides good estimates 
of ET (Khan et al., 2020). The AWRA-L model is driven with observed 
inputs of rainfall, temperature, solar radiation and wind speed to esti
mate ET and PET. Therefore, the ET and PET are 
observation-constrained and not purely model based. AWRA-L outputs 
are available in near real-time and extend back to 1911. 

The ESI is the standardized anomaly of the ratio ET/PET. Agricul
tural drought is implied by strongly negative values of the ESI, when 
actual ET is reduced due to lack of available moisture in the soil and PET 
is increased due to factors such as increased air temperature and wind 

speed. Normalizing ET anomaly by PET serves to remove some of the 
variability in ET due to seasonal variations in available energy and 
vegetation cover amount (e.g., Anderson et al., 2013). In this study the 
ESI is computed daily over a 4-week window, with the last day of the 
window being the date of that window, using the climatology from 1975 
to 2018. Quantities are also defined to measure changes in the ESI. More 
precisely, the quantities calculated are:  

(i) The ESI computed at each time step t as: 

ESI(t) =
rET(t) − 〈rET(tclim) 〉

σ(rET(tclim))

where rET = ET
PET, and 〈rET(tclim) 〉 and σ(rET(tclim)) are its climatological 

mean and standard deviation, respectively, for time t of the year 
computed over the period 1975–2018.  

(ii) Changes in the ESI over a 2-week interval (δESI) are used to 
capture the rapid intensification of drought. The 2-week interval 
is chosen to avoid short-lived dry spells that may lead to a false 
alarm of onset of flash drought (Christian et al., 2019). Like the 
ESI, the change anomalies are standardized by the standard de
viation of the same 2 week change in the climatological period: 

δESI(t) =
dESI(t) − 〈dESI(tclim) 〉

σ(dESI(tclim) )

where dESI(t) = ESI(t) − ESI(t − 2wk) is the ESI difference between the 
2-week intervals, and 〈dESI(tclim) 〉 and σ(dESI(tclim) )are its climatolog
ical mean and standard deviation for the time of the year t, respectively. 

Fig. 2. Annual mean ESI for Australia for 2016 to 2019. The green contour on the 2019 map indicates the NRM cluster CS which coincide with the epicentre of 
strongest negative ESI. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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(iii) The Rapid Change Index (RCI) at each time step t is used to 
capture the intensification phase of a potential flash drought 
event when δESI is below its 20th percentile (p20). p20 is a single 
value estimated for each individual region over the full data 
period for this study (1975–2020). RCI is set to 1 when δESI is 
below p20 and set to 0 otherwise: 

RCI(t)=
{

1, δESI ≤ p20
0, δESI > p20    

(iv) The Flash Drought Index (FDI) at each time step t is used to detect 
the onset of a potential flash drought event. Flash drought is 
defined to occur when RCI = 1 for a sequence of at least 2 weeks 
and the ESI is less than − 1 (i.e., drought, Nguyen et al., 2020) at 
the end of the 2-week period. This definition ensures that the 
rapid intensification occurs over at least 2 weeks (Otkin et al., 
2018a,b; Pendergrass et al., 2020) and that the end point for the 
period of change is in drought condition: 

FDI(t)=
{

1, if RCI(t) = 1 for at least 2 weeks and ESI(t) ≤ − 1
0, otherwise 

Global analysis of Reynolds daily sea surface temperature (SST) is 
used to investigate potential relationships of SST anomalies with the ESI. 
These SST data are the National Oceanic and Atmospheric Administra
tion (NOAA)’s optimum interpolation SST that is based on a combina
tion of remotely sensed ocean temperatures from satellite and in situ 
observations and is interpolated globally to a 0.25◦ resolution grid that 
spans from 1982 to present (Reynolds et al., 2007). Computation of daily 
indices of the Indian Ocean Dipole Mode Index (DMI) and the central 
Pacific El Niño Modoki index (EMI) is performed using the daily SST, 

and then averaged over a daily running window of 4 weeks to be 
compatible with the ESI. The DMI1 is defined as the difference in SST 
between boxes in the eastern and the western Indian Ocean as defined by 
Saji et al. (1999). The EMI2 is the difference in SST between the three 
equatorial Pacific regions as defined by Ashok et al. (2007) and captures 
El Niño variations that occur near the dateline as opposed to those that 
occur in the eastern equatorial Pacific. Daily SAM is monitored by the 
Antarctic Oscillation (AAO3) index (SAMI), which was retrieved from 
the NOAA National Weather Service webpage (https://www.cpc.ncep. 
noaa.gov/products/precip/CWlink/daily_ao_index/aao/aao.shtml). 

With the aim to attribute the cause and predictability of the 2019 
drought evolution, we reconstruct the ESI via multiple linear regression 
using four predictors: de-trended and standardized EMI, DMI and SAMI, 
and time that depicts the long-term linear trend in ESI. The first three 
indices capture the key modes of monthly to interannual variability of 
the climate system that most strongly affect Australian rainfall (e.g., 
Risbey et al., 2009). We include the trend to capture possible effects of 
ongoing global warming on evaporative stress. We do not expect a pri
mary contribution of the trend to the evaporative stress because we 
previously found the trends in ESI to be relatively small and/or of mixed 
sign in subtropical eastern Australia (Nguyen et al., 2020). For the SAMI, 
a one-month lag is applied with the SAMI leading the ESI because the 
lagged relationship between the SAM and the ESI is stronger than with a 

Fig. 3. Schematic of flash drought monitoring using the ESI (orange with values ≤-1 bold) and δESI (dashed magenta with values below the 20th percentile bold). 
Four different stages are indicated: tstart is the first instance RCI=1, tonset is the onset of when ESI drops below − 1, thereby representing the onset of the event, tmin is 
the ESI local minimum indicating the end of the intensification period, tend is when the ESI becomes > − 1, thereby representing the end of the event and t0 is when ESI 
reaches 0 marking the return to normal conditions. Time marks are placed every 7 days. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 

1 DMI = SST(0 − 10◦S, 90 − 110◦E) − SST(10◦S − 10◦N, 50 − 70◦E), where 
overbar denotes the area average.  

2 EMI = SSTcp − 0.5*(SSTep + SST wp), where cp denotes tropical central 
Pacific (10◦S-10◦N, 165–220◦E), ep denotes tropical eastern Pacific (15◦S-5◦N, 
250–290◦E), and wp denotes tropical western Pacific (10◦S-20◦N, 125–145◦E). 
The overbar represents the area average.  

3 The AAO is obtained by projecting daily geopotential height anomalies at 
700-hPa onto the leading mode of the EOF of the 700-hPa geopotential height 
variability over 20-90oS. 
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zero-lag regression (Nguyen et al., 2020). The significance of the 
regression coefficients is assessed by using the analysis of variance and 
we impose p-value = 0.01 for the null hypothesis. 

Note that neither rainfall nor temperature are used as predictors here 
because unlike the above climate modes, these variables especially 
rainfall may occur by chance through the chaotic nature of the weather 
and are not well predicted beyond about a week. Therefore, they will not 
provide potential predictability of the ESI on subseasonal to seasonal 

time scale. 
The period used to perform the multiple linear regression is limited 

by the availability of daily SST (1982–2018). The four regression co
efficients obtained are then used to determine the projected values for a 
given selected date by multiplying each coefficient by the associated 
predictor value for the selected date. Hence, the resulting reconstructed 
ESI is the sum of the projected values from all four predictors, and the 
residual is the difference between the observed and reconstructed ESI 

Fig. 4. Evolution of the 2019 flash drought sequence as depicted in the ESI from the beginning of (a) the rapid intensification (tstart=3-Jun-2019) to (f) the rapid 
recovery to normal conditions (t0=25-Feb-2020). Only negative ESI values are shown. The other key dates are (b) tonset=21-Jun-2019 and (c) tmin=18-Jul-2019. Two 
additional dates show a slight decrease of the ESI on (d) 15-Oct-2019 before peaking on the (e) 10-Jan-2020 as shown in Fig. 3. 
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(further details of this method can be found in Lim et al. (2021)). 
Note that all variables used for the regression model are standardized 

and are 4-week running means with the same date convention as for the 
ESI. The regression is developed separately for each 4-week window 
during the year, taking data from up to 8 weeks earlier and later to each 
window. For example, the regression equation used for the 1st 
September window is generated using ESI and predictor data pairs from 
7th July to 27th October. The use of data from 8 weeks earlier to 8 weeks 
later is required because of the lack of available number of years with 
which to compute a reliable regression – without doing this the 
regression coefficients become dominated by noise and are no longer a 
smoothly-varying function of the time of year. The effective degrees of 
freedom for each regression calculation is therefore 37 (the number of 
years) times 3 which is the number of non-overlapping 4-week windows 
in the period extending from minus 8 weeks to plus 8 weeks determined 
by the ESI autocorrelation coefficient below 0.36 (not shown). 

3. Drought and flash drought inferred from the ESI 

3.1. The 2017–2019 drought 

The evolution and scale of the 2017-19 multi-year drought is 
depicted using the annual-mean ESI for 2016–2019 (Fig. 2). Conditions 
in 2016 were generally good for plant water supply, as indicated by 
positive ESI, across most of Australia. Following this more favourable 
year, a 3-year period of steadily worsening drought conditions 
commenced across eastern Australia, culminating in severe drought 
conditions in 2019. 

The time series of area averaged ESI along with standardized 
anomalies of rainfall and temperature for the National Resource Man
agement (NRM) cluster of regions called the Central Slopes (CS) are 
shown in Fig. 1b for the period 2016–2020. Cluster CS covers the north 
eastern quadrant of the MDB (Fig. 1a) and is indicative of what broadly 

occurred elsewhere in subtropical eastern Australia. From late 2016 
onward, rainfall and the ESI mostly remain below normal and temper
ature anomalies mostly above normal. Although there are 4 or 5 brief 
episodes where rainfall was above normal (e.g., Mar 2017, Oct 2017, Oct 
2018, Mar 2019), the ESI dropped below zero at the beginning of 2018 
and did not rise above zero again until Feb 2020. During the entire 
2016–2020 period, positive temperature anomalies show high vari
ability although they frequently attained values > 2σ, suggesting that 
the slow decline in ESI during 2017–2019 was driven more by persis
tently low rainfall. 

Looking more closely at the ESI fluctuations in Fig. 1b, there were 
several sharp increases that lag by about one-month similar increases in 
rainfall. This shows that rainfall can quickly alleviate drought condi
tions, albeit temporarily. The ESI also exhibited several sharp declines, 
most notably in early 2019 and June 201 9. After the latter, the ESI 
remained below − 1 until Feb 2020. The sharp decline in June 2019 
satisfies the flash drought criteria described in Sec. 2 and is further 
investigated below. These sharp declines in ESI occur during more sus
tained negative rainfall anomalies but coincide with brief episodes of 
very high temperature. This suggests a contribution of anomalously high 
temperatures for promoting the onset of flash drought. However, it 
should be noted that temperature only comes into the Penman equation 
for PET through the humidity term, so it is likely that wind, humidity, 
and radiation are also involved in flash drought onset. 

During the 4-year period to the end of 2019, the overall trend in the 
ESI is negative with each peak and trough in the ESI falling below the 
previous one (Fig. 1b). This demonstrates the steadily worsening con
ditions during the drought. It also shows that ecological and agricultural 
drought may temporarily end or at least weaken, as represented by the 
occasional increases in the ESI, but then resumes after a few months. A 
likely explanation for the downward trend in ESI over the period, 
despite less obvious trends in temperature and rainfall, is the accumu
lative effect of the reduced rainfall and increased temperatures on the 
soil moisture and vegetation (e.g., Otkin et al., 2016). 

The first instance of positive ESI over the most recent two years 
occurred at the end of February 2020, following heavy rainfall across 
eastern Australia (Fig. 1b). This rapid improvement marks the end of the 
2017–2019 drought and is consistent with the “flash recovery” termi
nology introduced by Otkin et al. (2019) to describe the sudden tran
sition from drought to above normal conditions. More details of the 
rapid declines in the ESI during 2019, i.e., flash drought, are given 
hereafter. 

Fig. 5. Time series of the ESI averaged over NRM clusters (solid curves). Values below − 1 are bold. Dotted curves are the standardized EMI (forest green), the DMI 
(red) and the SAMI (sign flipped, purple). The daily data are filtered with a 4-week running mean, with the indicated date corresponding to the last day of the 
window. Time marks are placed every 7 days. Positive anomalies of the dotted curves should likely correspond to negative anomalies of the solid curves. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
The 2019 flash drought occurrence for 6 NRM clusters as defined in Fig. 1  

cluster Onset date (tonset) End date (tend) Duration (days) Intensity (ESI) 

CS 21-06-2019 10-02-2020 235 − 1.73 
ECS 16-11-2019 11-02-2020 88 − 2.92 
ECN 01-12-2019 07-02-2020 69 − 2.00 
WT 20-12-2019 23-01-2020 35 − 1.23 
MNE 25-12-2019 05-02-2020 43 − 1.48 
MNW 27-12-2019 29-01-2020 34 − 1.64  

H. Nguyen et al.                                                                                                                                                                                                                                 



Weather and Climate Extremes 32 (2021) 100321

7

3.2. The 2019 flash droughts 

Following the method described in section 2, we objectively identify 
the flash droughts that occurred in Australia during 2019. Fig. 3 illus
trates this objective identification for the example CS region (as iden
tified in Fig. 1). The time series run from May 2019 to March 2020. The 
beginning of the rapid intensification period when δESI≤p20 (i.e., bot
tom 20%) is defined as tstart=3-Jun-2019. The ESI first dropped below − 1 
on 21 June 2019, at which time FDI=1 (δESI≤p20 for the previous 18 
consecutive days and ESI<-1). Therefore, flash drought onset is flagged 
as tonset=21-Jun-2019. The ESI continued to decrease from tonset until it 
reached a local minimum on 18 July, which marks the end of the flash 
drought intensification period defined as tmin=18-Jul-2019. This drought 
event is defined to persist until the ESI increases to above − 1, which 
occurred on tend=10-Feb-2020. The t0=25-Feb-2020 indicates the 
moment ESI = 0 marking the return to normal conditions. 

The flash drought event is then characterized by its duration Δt =
tend − tonset and its intensity I = ESI(tonset : tend), where the overbar de

notes the temporal average. A threshold is imposed to the length of any 
drought event to ensure that the event is impactful on agriculture such 
that Δt ≥ 4 weeks. 

Maps of the ESI across Australia for a sequence of key dates capturing 
the evolution of the flash drought event are shown in Fig. 4. At the 
beginning of the rapid intensification in the CS region, only a small 
portion of eastern Australia stretching along the east coast of New South 
Wales (NSW) is shown to be experiencing evaporative stress (Fig. 4a). By 
the flash drought onset date, an extended area of large negative ESI <
− 1.2 covering much of the cluster CS is evident (Fig. 4b). By the end of 
the intensification period, strong negative ESI well below − 2 had formed 
in an area much larger than cluster CS (Fig. 4c). In comparison, on 15 
October 2019 when drought conditions over the cluster CS had slightly 
weakened (Fig. 1b), the ESI (Fig. 4d) suggests that drought conditions 
extended across most of the country. After this, the ESI time series de
creases again to its most extreme on 10 January 2020 (Fig. 1b) and the 
whole country is dominated by ESI < − 1 and in the east and far north by 
ESI < − 2 (Fig. 4e). At the end of February 2020 after the end of the flash 

Fig. 6. (a) Time series of the ESI averaged over NRM cluster CS coefficients (left axis) regressed onto the detrended and standardized (i) EMI, (ii) DMI, (iii) 1-month 
lag reversed SAMI and (iv) linear trend centred on each 16-week period, calculated every week for the period 1982–2018. Values with p-value <0.01 are bold, they 
are dashed otherwise. The total variance explained is also indicated (dashed black line, right axis). (b) Time series of the ESI averaged over NRM cluster CS explained 
by the above 4 predictors using the multiple linear regression and scaled by the amplitude of the predictors at each date indicated on the x-axis. The reconstructed ESI 
using the multiple linear regression model (grey) and observed (black) ESI are also shown. Time marks are placed every 7 days. 
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drought, the ESI indicates near-normal conditions had returned across 
most of the country, marking the end of the multi-year drought event 
(Fig. 4f). 

To further elucidate the rapid change of the ESI leading to intense 
negative values over northern and eastern Australia in January 2020, we 
show ESI time series for six NRM cluster regions in Fig. 5 (refer to Fig. 1 
for the location of these clusters). These clusters were chosen because 
they each had an identified flash drought during 2019 whereas the other 

clusters in Australia did not. All six clusters exhibit the strongest nega
tive ESI around mid-January 2020. In contrast to cluster CS, the other 
clusters did not start their rapid change until November or December 
2019, but all six clusters show the same flash recovery between late 
January and early February 2020. Applying the flash drought moni
toring technique here, these clusters meet the criteria for the occurrence 
of a flash drought event, and their characteristics are summarized in 
Table 1. Although the CS event is the longest (Δt = 235 days), the East 
Coast South (ECS) is the most intense (I=-2.92). After the CS and ECS 
clusters, the next most severe flash drought was identified in the East 
Coast North (ECN) cluster with a duration of 69 days and intensity of − 2. 
Together the CS, ECS, and ECN regions occupy a large portion of sub
tropical eastern Australia, and we concentrate on these regions in the 
following analysis. 

4. Role of climate drivers in the 2019 flash droughts 

Nguyen et al. (2020) showed that on the seasonal time scale, the ESI 
over Australia is strongly correlated with the same climate drivers that 
affect Australian rainfall. In particular, the ESI tends to be more negative 
i) during El Niño throughout the entire year with the strongest signal in 
summer across the north and east; ii) during positive IOD in winter and 
spring across the south and east; and iii) during negative SAM in spring 
across the east. All three of these drivers are therefore relevant for 
drought in subtropical eastern Australia. 

Here, we investigate the evolution of these drivers during the 
development of the 2019 flash droughts using the EMI, DMI and the 
inversely signed SAMI (Fig. 5). The EMI increased to about +1σ in 
August 2019 and remained there until about mid-December, after which 
there was a slow decline until March 2020. The DMI was positive with a 
first peak of +1.2σ in June 2019, then gradually increasing to +2σ in 
October and remained around +2σ for two months before declining to 
weakly negative values at the end of February 2020. The SAMI showed 
large variability during this period. The first peak of negative SAMI at 
about -1σ occurred around August 2019, but the second stronger peak of 
about -2σ occurred during November–December 2019. 

In June 2019, the DMI peaked at +1.2σ and EMI was weakly positive 
(<+0.5σ) while SAMI was positive (noting that the sign of SAMI is 
reversed in the purple dotted curve in Fig. 5). Between October and 
December 2019, not only did the positive DMI (peaking around +2σ) 
become stronger than in June, but both strong positive EMI (peaking at 
+1.1σ) and strong negative SAMI (peaking at − 2.1σ) were present (Lim 
et al., 2021; Watterson, 2020). Strong negative SAMI resulted from the 
sudden stratospheric warming of September 2019 and was the strongest 
on record for the October to December season, playing a primary role in 
promoting high maximum temperatures, low rainfall, and an associated 
bushfire episode in eastern NSW in late spring 2019 (Lim et al., 2021; 
Bureau’s Special Climate Statement 72, 73). This suggests that these 
large-scale oceanic and atmospheric circulations may have made sig
nificant contributions to the 2019 flash droughts. 

To verify this hypothesis and quantify the contributions of these 
climate drivers, we perform a multiple linear regression on the ESI using 
these climate drivers as predictors. A linear trend is also included as a 
predictor to assess the role of the ongoing warming trend for this 
particularly strong flash drought event. Fig. 6a shows the ESI multiple 
linear regression coefficients for each of the four predictors EMI, DMI, 
SAMI and linear trend and the variance explained by the four predictors 
for cluster CS. These coefficients show that the impact of the trend 
maximises in winter, the impacts of ENSO and IOD maximise in late 
winter-spring while the impact of SAM maximises in summer. In terms 
of peak magnitude of the regression coefficients on any date, the order of 
importance of the predictors can be seen to be EMI, DMI, SAM, and lastly 
the trend, confirming our earlier statement that we did not expect a 
primary role for the trend. The explained variance of the CS ESI by the 
multiple regression peaks in spring at 0.46, suggesting that the ESI in 
this NRM cluster is most predictable in spring. 

Fig. 7. ESI total variance explained by the four predictors EMI, DMI, 1-month 
lag SAMI and linear trend for the 16-week period centred on (a) 18 July, (b) 6 
December and (c) 1 January over the years 1982–2018. The total variance 
includes only the regression coefficients with p-value <0.01. 
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Using these multiple linear regression coefficients and the ampli
tudes of the predictors for each date, we obtain the time series of the ESI 
explained by each of the four predictors and the reconstructed ESI 
during 2019 and early 2020 (Fig. 6b). Prior to October 2019, all pre
dictors contributed to the negative ESI except for the SAMI. After that, 
all predictors to the negative ESI, with the trend being least important. 
From a season-long perspective the reconstructed ESI during this period 
has some consistency with the observed ESI in that they are both 
negative during the winter to mid-summer. However, the reconstructed 
ESI fails to reproduce the sharp declines in the ESI in June 2019 and 
January 2020, the first of which was identified above as a flash drought. 
For the June 2019 flash drought onset, only about half the magnitude of 
the ESI decline was predicted by this linear regression model. It was only 
in October that the magnitude of the reconstructed ESI became equal, 
and slightly greater, than the observed, which further confirms the more 
predictable nature of the variability in spring in the region. By February, 
all regression coefficients returned to neutral followed by the ESI. 

To generalise the impacts of these predictors across Australia, we 
apply the multiple linear regression to the ESI at each gridpoint to assess 
the extent the regression model above holds. Based on the flash drought 
sequence (Fig. 4) and the ESI evolution for cluster CS (Fig. 6b), here we 
reconstruct the ESI for the two dates of strongest negative ESI of 18 July 
2019 and 10 January 2020. We also include the intermediate date 6 
December 2019, which is around the onset dates of flash drought in the 
other NRM clusters (Table 1). We show maps of the explained variance 
on these dates for all years going into the regression (1982–2018, Fig. 7) 
along with the ESI components reconstructed for these three key dates in 
2019/20 (Fig. 8). The variance explained by the four predictors for July 
varies between 0.2 and 0.35 in much of eastern Queensland and NSW, 
and especially in the flash drought affected area (compare with Fig. 4). 
The December explained variance also broadly matches the flash 

drought affected areas in the east and north shown in Fig. 4. Note 
however that the coastal strip along NSW and Victoria has only a rela
tively low explained variance, which suggests that it will be difficult to 
account for much of the December 2019 flash drought in these coastal 
zones. This region is generally dominated by east coast lows that cause 
heavy rain events, which also have a weak relationship with these pre
dictors (Dowdy et al., 2019). In January, most of the explained variance 
is located in the north-northwest. 

Breaking down the effect of each predictor on the ESI in 2019/20 
(Fig. 8), the ESI for the different predictors show similar features in 
subtropical eastern Australia to those seen in the CS time series (Fig. 6). 
In July, all four predictors display some contribution to the strong 
negative ESI in subtropical eastern Australia, with the linear trend 
showing the strongest contribution to the total reconstructed ESI. In 
contrast, in December all three modes of variability, Central Pacific El 
Niño, positive IOD and negative SAM significantly contribute to the 
strong negative ESI anomalies associated with the flash drought events 
in the ECN and ECS clusters while the linear trend shows a much smaller 
contribution. It appears that the Central Pacific El Niño contribution is 
mainly in the northern half of the country, the IOD dominates in the 
southwest and southeast, the negative SAM contributes most in the 
southern half of the country, and the trend contributes mainly over 
Tasmania. The amplitude of the predictors in December was much 
stronger than for July with November SAMI being strongest (− 1.6σ). 
Despite these predictors’ strengths, only about half the magnitude of the 
observed strongly negative ESI in subtropical eastern Australia in 
December could be explained by them. 

Finally, in January 2020, while the amplitude of the SAMI increased 
compared to the previous month (− 1.9σ), both the EMI and DMI 
decreased markedly. This is reflected in the reconstructed ESI which is 
well below the observed negative ESI across the country, making 

Fig. 8. ESI components reconstructed from the detrended and standardized (i) EMI, (ii) DMI, (iii) 1-month lag sign-reversed SAMI and (iv) the linear trend for (a) 18 
July 2019, (b) 06 December 2019 and (c) 10 January 2020. The value on top of each panel indicates the magnitude of the predictors for each date. The total 
reconstructed ESI by the multiple linear regression is displayed in (v) and the observed ESI in (vi) of each date. 
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January the least predictable by this linear regression model. 

5. Conclusion 

The recent multi-year drought across subtropical eastern Australia 
was the driest and hottest 3-year period since 1911. During 2017–2019, 
the drought impacts increased to become most severe in 2019 after 
several episodes of rapid intensification that we have objectively iden
tified as flash drought. Flash drought developed first in the Central Slope 
region in conjunction with the positive IOD and Central Pacific El Niño 
Modoki from June 2019. This flash drought event further gained in in
tensity and additional flash droughts developed in the nearby East Coast 
North and East Coast South regions from late November under the in
fluence of the combined effects of: (i) very strong positive IOD from 
October to December; (ii) moderately strong Central Pacific El Niño 
Modoki from October to November; and (iii) very strong negative SAM 
from November to December. 

Through the monitoring of drought using the ESI, we show that the 
2019 flash droughts can be detected and fully characterised in terms of 
their timing, duration and severity. The linear attribution suggests that 
at least during the 2019 spring season, the co-occurrence of strong 
positive IOD, El Niño-Modoki and strong negative SAM may have 
offered some predictability of the widespread drought conditions given 
that these climate modes are generally well predicted by both statistical 
and dynamical coupled multi-week to seasonal prediction systems (e.g. 
Hudson et al., 2017). However, the climate drivers alone could not 
predict the precise timing or magnitude of the local regions of flash 
drought. Useful prediction of flash drought will therefore require more 
local and current information than such large-scale climate drivers 
alone, such as may be provided by the atmospheric initial conditions in 
dynamical models. Current work is therefore underway to assess the 
flash drought predictability in the Australian Community Climate and 
Earth-System Simulator-Seasonal v1.0 (ACCESS-S1) model (Hudson 
et al., 2017). 
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