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ABSTRACT: Recent years have seen growing appreciation that rapidly intensifying flash droughts are significant climate
hazards with major economic and ecological impacts. This has motivated efforts to inventory, monitor, and forecast flash
drought events. Here we consider the question of whether the term “flash drought” comprises multiple distinct classes of
event, which would imply that understanding and forecasting flash droughts might require more than one framework. To
do this, we first extend and evaluate a soil moisture volatility–based flash drought definition that we introduced in previous
work and use it to inventory the onset dates and severity of flash droughts across the contiguous United States (CONUS)
for the period 1979–2018. Using this inventory, we examine meteorological and land surface conditions associated with
flash drought onset and recovery. These same meteorological and land surface conditions are then used to classify the flash
droughts based on precursor conditions that may represent predictable drivers of the event. We find that distinct classes of
flash drought can be diagnosed in the event inventory. Specifically, we describe three classes of flash drought: “dry and
demanding” events for which antecedent evaporative demand is high and soil moisture is low, “evaporative” events with
more modest antecedent evaporative demand and soil moisture anomalies, but positive antecedent evaporative anomalies,
and “stealth” flash droughts, which are different from the other two classes in that precursor meteorological anomalies are
modest relative to the other classes. The three classes exhibit somewhat different geographic and seasonal distributions.
We conclude that soil moisture flash droughts are indeed a composite of distinct types of rapidly intensifying droughts, and
that flash drought analyses and forecasts would benefit from approaches that recognize the existence of multiple phenome-
nological pathways.
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1. Introduction

In recent years, a number of rapid-onset drought events
have struck the contiguous United States (CONUS), with
severe consequences for ecological and agricultural systems.
For example, droughts in the Southern Plains in 2011, the cen-
tral United States in 2012, the Southeast in 2016, the Northern
Plains in 2017, and Texas in 2019 led to widespread crop

losses, wildfires, and economic damages in the tens of billions
of dollars. These droughts occurred at different times of the
year in different climate zones with different ecological char-
acteristics, yet they have all been described as flash droughts,
a term first coined by Peters et al. (2002) and Svoboda et al.
(2002) to reflect the fact that some droughts emerge rapidly
and quickly develop into high-impact extreme events.

A challenging characteristic of flash droughts is that they
appear suddenly}seemingly without warning}and therefore
leave farmers, ranchers, and other vulnerable stakeholders lit-
tle time to prepare mitigation responses (Otkin et al. 2015b,
2018a; Haigh et al. 2019). The 2012 flash drought, for exam-
ple, received tremendous attention because of its impact on
the nation’s corn crop. Yet there was virtually no sign of an
impending rapid intensification prior to the event in standard
drought monitoring products at that time or in dynamically
based seasonal forecasting systems (Hoerling et al. 2014).
Postevent analyses concluded that the event was largely
driven by random atmospheric variability, and perhaps was
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inherently unpredictable using conventional methods (Kumar
et al. 2013). Poor model performance both in forecasting and
reproducing these events presents an additional challenge in
efforts to project flash drought impacts and feedbacks under
nonstationary climate conditions (Wolf et al. 2016). Notwith-
standing these challenges, there is evidence that flash droughts
are amenable to seasonal-to-subseasonal scale prediction on
account of their sensitivity to initial conditions (Lorenz et al.
2017a,b), the perceived importance of forecastable drivers of
evaporative demand during flash drought intensification (Hob-
bins et al. 2016), and the potentially predictable role of vegeta-
tion in flash drought processes (Wolf et al. 2016).

Any such generalized statements on the predictability of flash
droughts, however, implicitly assume that the occurrence and
severity of flash droughts can be diagnosed in a consistent and
process-relevant manner, and that the term “flash drought”
refers to a single class of event. In recent years, many studies
have sought to describe and diagnose the occurrence of flash
droughts by proposing a variety of definitions that can be used to
inventory and map flash droughts. Otkin et al. (2013, 2014,
2015a) identified flash droughts based on rapid changes in the
ratio between actual evapotranspiration (EVP) and potential
evapotranspiration (PEVP). Other studies (Hunt et al. 2014; Mo
and Lettenmaier 2015) defined flash droughts as a function of
the rapid drop in soil moisture with time. Chen et al. (2019) sug-
gested the degradation of two categories in the U.S. Drought
Monitor (USDM) in a period of four weeks as a definition for
the onset of flash droughts. Christian et al. (2019) introduced the
definition for flash droughts based on the rate of change in stan-
dardized ratio between EVP and PEVP over a six-pentad (63 5
days) period. Another quantitative definition (Ford and Labosier
2017) identified flash droughts as the drop of the one pentad
averaged soil moisture (SM) from the 40th to 20th percentiles in
a period of four pentads or less. A subsequent study by Hoff-
mann et al. (2021) followed a similar methodology with adjust-
ments to reduce the number of identified events. In a recent
study, (Osman et al. 2021) introduced a definition based on a soil
moisture volatility index (SMVI), and also compared the SMVI
with six other definitions to highlight the fact that there are dif-
ferent pathways to identify flash drought onset. All of the listed
studies focused on CONUS, but the flash drought phenomenon
has been observed in many regions across the globe (Nguyen
et al. 2019; Zhang and Yuan 2020), with a number of studies
focusing on China and India (Wang et al. 2016; Yuan et al. 2019;
Mahto and Mishra 2020). These studies have yielded additional
definitions. Indeed, the need to understand the implications of
different definitions has become a research question in its own
right (Lisonbee et al. 2021).

Fewer studies have attempted to quantify the severity of the
flash droughts, but informative efforts do exist. Chen et al.
(2019) and Otkin et al. (2015a) both used USDM categories to
diagnose and assess severity of flash droughts. Christian et al.
(2019) used standardized evaporative stress ratio (SESR) for
both purposes, Yuan et al. (2019) used soil moisture deficit, and
Li et al. (2020) used evapotranspiration deficit. Based on mod-
eled soil moisture, Otkin et al. (2021) developed a flash drought
intensity index (FDII) that explicitly accounts both for the mag-
nitude of the rapid intensification and the resultant drought

severity when determining the intensity of a flash drought.
Their study showed that there are important regional differ-
ences in flash drought severity when both of these components
are considered.

Most proposed definitions and intensity metrics for flash
droughts have focused exclusively on capturing the phenome-
non rather than assessing whether it represents a coherent
class from the perspective of drought process. An exception is
the work of Mo and Lettenmaier (2015, 2016), which explic-
itly distinguished between precipitation deficit flash droughts
and heat wave flash droughts. The method used to define
these droughts has been debated, in large part because Mo
and Lettenmaier consider duration of the heatwave event
rather than intensification rate, which is more typically under-
stood to be the defining characteristic of flash drought (Otkin
et al. 2018b; Lisonbee et al. 2021), but their concept that flash
droughts might be the product of multiple different pathways
with distinct meteorological drivers is highly relevant to
understanding and prediction. While Mo and Lettenmaier
made this distinction a priori by incorporating different varia-
bles and thresholds in their definitions, we are not aware of
any study that empirically classifies different flash drought
types within an inventory generated using a common flash
drought definition. That is: if an inventory of flash drought
events is generated using a definition based on flash drought
phenomenology alone, are there distinct classes within that
inventory that can be identified due to different precursors in
meteorology or surface conditions? If so, that implies that
understanding and predicting flash droughts may require that
we adopt different perspectives for each class.

Here, we apply our recently introduced SMVI flash drought
definition (Osman et al. 2021) to address this question. First,
we extend the SMVI presented in Osman et al. (2021) to
include estimates of drought severity, and we compare the
SMVI to independent vegetation and crop datasets for semi-
nal flash drought events. Next, we apply a retrospective inven-
tory of flash droughts, generated using SMVI, to derive
composites of meteorological and surface conditions in the
predrought, onset, and recovery phases of all flash droughts.
Finally, we perform objective classification of the flash
drought inventory on the basis of meteorological and surface
condition precursors to identify flash drought classes relevant
to process understanding and prediction.

2. Data and methods

We generate an inventory of soil moisture flash droughts
for all of CONUS over the period 1979–2018 for spring
through fall (March–November). SMVI is calculated using
root zone soil moisture (RZSM) from the SMERGE dataset.
SMERGE is a hybrid daily product at 0.1258 spatial resolution
that combines satellite-derived soil moisture estimates from
the European Space Agency Climate Change Initiative and
NLDAS-2 Noah model output for RZSM averaged from 0- to
40-cm depth (Tobin et al. 2019). The SMERGE dataset has
been evaluated against normalized difference vegetation
index (NDVI) products (Rouse et al. 1974) as well as in situ
soil moisture observations, and it has been found to be a
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reliable dataset for agricultural and ecological applications
(Tobin et al. 2019).

The SMVI is motivated by the fact that flash drought diagno-
sis is concerned with capturing change that is more rapid than
usual, so that it could be used to identify both rapid onset and
rapid intensification drought events. For SMVI, rapid changes
are identified by the crossover of simple moving averages
(SMAs) combined with duration and dryness thresholds. Onset
is recorded when 1) the 5-day (1-pentad) RZSM SMA falls and
stays below the 20-day (4-pentad) SMA for at least a 20-day
period or 2) both SMAs are below the 20th percentile of the
1979–2018 time-of-year RZSM climatology (Osman et al.
2021). If two sequential flash droughts are identified with a
period of three pentads or less between them, then they are
combined into a single event. We do this because a short rain-
fall event may result in a temporary reduction in the severity of
a flash drought but is often not sufficient to restore predrought
conditions and end the drought event.

Severity is quantified based on RZSM deficit during the iden-
tified flash drought event according to Eqs. (1) and (2) as illus-
trated in the example in Fig. S1 in the online supplemental
material. This scale is based on the standardized distribution of
the integrated RZSM deficit below the 20th percentile (and
over the 5-day running average) during the drought event:

SV 5
∑t5tf

t5to

RZSM20th 2 RZSM5d( ) (1)

SVCAT 5
SV

STD SV197922018( ) , (2)

where SV is the computed severity, and RZSM20th and RZSM5d

are the 20th percentile and 5-day moving average RZSM,
respectively. Parameters to and tf represent the times at which
identified flash drought onset occurs and ends, respectively. The
standardized severity category is represented by SVCAT with a
range from zero (no flash drought) up to 5 (maximum severity),
and STD(SV1979–2018) is the severity standard deviation calcu-
lated from the flash drought inventory for all grid points, mea-
sured against the severity of all other identified flash drought
events within the inventory. The use of categories to indicate
drought severity is a common approach, as used in systems such
as the USDM. In contrast to the USDM, the SMVI-based
severity is intended to capture the severity of the rapid onset
flash drought process.

The end of the flash drought period (recovery period) date
is identified when the rate of drop in RZSM during an identi-
fied flash drought event begins to recover (i.e., the 1-pentad
running average is no longer below 4-pentad running average)
or the 1-pentad RZSM is no longer below the 20th percentile
of the 1979–2018 time-of-year RZSM.

SMVI performance was previously evaluated based on
descriptions of reported major flash drought events (Osman et al.
2021). Influenced by the methodology followed by Peters et al.
(2002) to detect drought using standardized NDVI, in this study
we use MODIS NDVI time-of-year anomalies to assess the

method’s skill to capture changes in satellite-observed vegetation
greenness due to flash drought. The cloud-free NDVI data were
obtained from the 16-day MODIS composite product
(MOD13C1) at 0.058 spatial resolution (Didan 2021) for the
years 2000 to present. NDVI grid points with anomalies below
20.5 standard deviation from the mean are defined as
“negatively impacted” in comparisons with SMVI. This approxi-
mately corresponds to a probability of occurrence less than 30%
for normally distributed conditions. Further, we evaluate the per-
formance of the SMVI definition for the 2012 central United
States and 2017 Northern Plains flash droughts versus in situ
reports of soil and crop conditions collected by the USDA
National Agricultural Statistics Service (NASS) observers. Data
showing poor conditions are marked as negatively impacted.
These data are collected at county scale, then spatially smoothed
to reduce noise, and protect confidentiality (access to data at
county level was provided to the coauthors after signing a confi-
dentiality agreement with the USDA NASS). The performance
analyses are carried out for the spring and summer seasonal aver-
ages due to data availability and temporal resolution.

The performance of the SMVI is assessed with hit–miss confu-
sion matrices that use NDVI and NASS data as observational
reference datasets. True positive values represent grid points and
pentads depicted by SMVI as being in flash drought and also
marked as negatively impacted by the NASS or NDVI validation
datasets, while false positives are the events classified as flash
drought by SMVI where NASS or NDVI do not meet drought
impact criteria. True negative values represent grid points not
marked as negatively impacted by the NASS or NDVI validation
datasets and not identified as flash drought grid points. False neg-
atives represent grid points identified by SMVI as having no flash
drought while marked as negatively impacted by the NASS or
NDVI validation datasets. Hit–miss statistics are calculated
according to Eqs. (3)–(10):

sensitivity TPR( ) 5 TP
TP 1 FN

, (3)

specificity TNR( ) 5 TN
TN 1 FP

, (4)

false discovery rate FDR( ) 5 FP
FP 1 TP

, (5)

false negative rate FNR( ) 5 FN
FN 1 TP

, (6)

false positive rate FPR( ) 5 FP
FP 1 TN

, (7)

precision PPV( ) 5 TP
TP 1 FP

, (8)

accuracy ACC( ) 5 TP 1 TN
TP 1 TN 1 FP 1 FN

, (9)
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critical success index CSI( ) 5 TP
TP 1 FN 1 FP

, (10)

where TP, TN, FP, and FN represent true positive, true nega-
tive, false positive, and false negative grid points, respectively.
Values of Eqs. (3)–(10) range from 0 to 1, with 1 being the
perfect score for the TP or TN numerator-based ratios and
the opposite for the FP and FN numerator-based ratios.

Drawing on previous studies that have described meteoro-
logical and surface conditions associated with flash drought
onset (Mo and Lettenmaier 2015, 2016; Ford and Labosier
2017; He et al. 2019; Osman et al. 2021), we select multiple
variables from the NLDAS-2 datasets (temperature, precipi-
tation, RZSM, PEVP, EVP, and surface pressure) along with
the computed vapor pressure deficit (VPD) and total cloud
cover (TCC) from NCEP–NCAR reanalysis products (Kalnay
et al. 1996), and analyze their progression through the pre-
drought, onset and end of the flash drought periods for all
events included in the 40-yr (1979–2018) SMVI-derived flash
drought inventory. To focus on events with meaningful
impact, we analyze only SMVI-derived flash drought events
with severity greater than 2. Unsupervised multivariate classi-
fication is then performed as a function of these meteorologi-
cal variables, using principal components transformation to
control for collinearity between variables. This classification is
used to characterize different types of flash droughts driven
by different processes. The classes are determined using the
k-means partitioning unsupervised classification algorithm
(Hartigan and Wong 1979; Lloyd 1982) as a heuristic cluster-
ing method. We apply a sensitivity analysis to determine the
statistically optimal number of clusters. The anomalies are
calculated as the in-time (predrought, onset, or recovery) pen-
tad anomaly relative to the 1979–2018 time-of-year average.
The k-means algorithm allows the user to set the number of

classes subjectively, but there are recommended diagnostics
for use in choosing the optimal number of classes. Here we
apply the commonly used elbow method (Thorndike 1953)
for this purpose.

3. Results and discussion

a. The SMVI flash drought intensity metric

The United States was hit by several major flash drought
events over the past decade, resulting in excessive agricultural
losses and livestock destruction. In 2012, the country experi-
enced one of the largest and most destructive flash droughts
recorded to date, with more than $30 billion estimated dam-
ages (Hoerling et al. 2013, 2014; Basara et al. 2019; Mallya
et al. 2013; Fuchs et al. 2012; Otkin et al. 2016). A warm spring
followed by early summer heatwaves set the stage for a rap-
idly intensifying drought that struck much of the middle part
of the country in late spring and early summer and extended
to the north later in summer and in early fall (Fig. 1a). Nota-
bly, though the occurrence of flash drought was very wide-
spread (according to both SMVI and other definitions)
(Osman et al. 2021), the central United States had the greatest
severity, as diagnosed by the SMVI (Fig. 1c).

Five years after the 2012 flash drought, the Northern Plains
region was hit by another major flash drought, causing more
than $2.6 billion in agricultural losses and sparking wildfires.
The 2017 Northern Plains flash drought was focused on Mon-
tana, North Dakota, South Dakota, and parts of Alberta and
Saskatchewan (Jencso et al. 2019). The event started in May
over western Montana and swiftly intensified through high
evaporative demand and precipitation deficits (Hoell et al.
2019a; Osman et al. 2021). The drought eventually spread
over much of the Northern Plains region (Fig. 1b) causing
enormous economic losses (Gerken et al. 2018; Jencso et al.

FIG. 1. Flash drought maps as captured by SMVI definition during the active growing season (March–November): (left) 2012 and (right)
2017. (a),(b) Onset maps, where each color represents the month of flash drought onset. (c),(d) Estimated severity category maps.
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2019; He et al. 2019). Montana was the most impacted state
(Jencso et al. 2019), and this is evident in the SMVI-based
severity analysis (Fig. 1d). The severity analysis is also consis-
tent with the USDM reports that showed an exceptional (D4
category) drought over Montana (Jencso et al. 2019). It is
important to highlight that estimation of flash droughts’ sever-
ity in this study is a method to relatively quantify soil moisture
deficit with a methodology similar to Yuan et al. (2019) study
given the different flash drought identification method.

Independent, quantitative validation of drought indices is
notoriously difficult, since impacts of drought vary with cli-
mate context, land cover, and economic system. Since flash
drought is a subset of all droughts which is typically consid-
ered in agricultural and ecological contexts (Wang et al. 2016;
Mo and Lettenmaier 2015; Christian et al. 2019; Otkin et al.
2018b), we consider vegetation health and crop status to be
two relevant indicators of drought impact that can verify the
utility of SMVI as a useful drought metric. In doing this, we
recognize that the independent comparisons do not necessar-
ily confirm the presence of flash drought; rather, they are
interpreted as indicators of whether an agricultural drought
may have occurred.

With this caveat in mind, we compare the SMVI flash
drought index to MODIS NDVI anomalies and NASS crop
and topsoil condition anomalies. Using a simple hit/miss met-
ric in which negative anomalies in MODIS NDVI (more than
0.5 standard deviation below the mean) or the NASS condi-
tion maps are interpreted as evidence of drought conditions,
we find that there is broad agreement between the SMVI and
observed drought conditions for both the 2012 and 2017 flash
drought events (Figs. 1 and 2). We do see considerable false
negatives on the margins of the drought-affected area, particu-
larly in 2012, but this is consistent with our liberal definition of
agricultural drought in the NDVI and NASS fields (i.e., flash
drought identified area is smaller than NDVI and NASS nega-
tive anomalies). We also note a concentration of false positives
along edge of drought regions, particularly in 2017, indicate
that the SMVI approach overestimated the extent of drought-
affected area relative to NASS estimates.

Focusing on the central and northern High Plains regions
[as defined by Bukovsky (2011)] for the years 2012 and 2017,
respectively, we find that for flash droughts based on negative
NDVI anomalies the accuracy was 0.68 in 2012 and 0.56 in
2017. Precision was higher in 2012 (0.74) than 2017 (0.50),

FIG. 2. Maps of hit–miss analysis for the 2012 and the 2017 flash droughts during the actively growing season (March–November): (left)
2012 and (right) 2017. (a),(b) SMVI vs negative NDVI anomaly hit–miss map, in which lavender represents false positive (FP), orange rep-
resents true positive (TP), white represents true negative (TN), green represents false negative (FN), and gray represents missing/unavail-
able data. (c),(d) As in (a) and (b), but for NASS reported negative average crop conditions. (e),(f) As in (a) and (b), but for the observed
topsoil moisture.
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while the probability of detection (sensitivity) was higher in
2017: 0.93, versus 0.81 in 2012 (Tables 1 and 2). The critical
success index was significantly higher for the 2012 event (0.63)
compared to that observed in 2017 (0.48). These values of
hit–miss statistics are consistent with moderate to strong per-
formance in event identification (Hoerling et al. 2013, 2014;
Basara et al. 2019; Mallya et al. 2013; Fuchs et al. 2012; Otkin
et al. 2016; Gerken et al. 2018; Jencso et al. 2019; He et al.
2019). It is important to note that this is an imperfect compari-
son. The SMVI approach is one pathway of identifying flash
droughts, and a comparison with a vegetation index metric,
such as NDVI anomalies, is not exactly indicative of perfor-
mance in capturing a soil moisture flash drought.

NASS-based evaluation, based on NASS identification of
poor crop and soil conditions, led to comparable statistics for
each impacted region’s dominant crop (Figs. 2c–f). Tables 1
and 2 summarize SMVI–NASS statistics for both the 2012
and 2017 flash droughts. In the 2012 central U.S. flash
drought, SMVI shows an accuracy of 0.79, 0.75, and 0.74 for
negatively impacted soybean, range, and corn, with a preci-
sion of 0.84, 0.79, and 0.89, respectively. The 2017 Northern
Plains flash drought captured by SMVI is similarly evaluated
and statistical evaluation was slightly higher than that seen for
the NDVI analysis. Accuracy for detecting grids of flash
drought in the Northern Plains compared to negatively
impacted dominant crops (barley and spring wheat) are 0.8
and 0.76, respectively, with precision values of 0.91 and 0.88,
and probability of detection greater than 0.84. Comparing
SMVI to the reported NASS topsoil moisture conditions
shows a very similar pattern for the negatively reported condi-
tions. The accuracy and precision of SMVI detection of the
reported negative NASS topsoil moisture conditions for the
2012 flash drought event are 0.77 and 0.95, respectively, and

they are 0.84 and 0.95 for the 2017 event. We also note that
irrigation is a complicating factor that may affect comparison
between datasets. While SMVI does include partial consider-
ation of irrigation, insomuch as SMERGE captures irrigation
signals, this representation is imperfect and might not align
with observed vegetation response to irrigation.

b. Proposed drivers of flash drought

Figure 3 presents composites of predrought (onset minus
three pentads), onset, and recovery period conditions, using
composites of standardized anomalies of meteorological fields
for all flash droughts of severity greater than 2 in the SMVI-
derived 1979–2018 inventory. Composites are calculated sepa-
rately for each grid cell, such that the anomalies represent
conditions when a flash drought occurred in that exact loca-
tion. Precipitation (PRCP) anomalies in the predrought and
onset periods are mostly negative, as one would expect, which
is also associated with suppression of the convective available
potential energy (CAPE) over most of CONUS (we include
CAPE in addition to precipitation in order to isolate local
convective potential as distinct from total realized rainfall).
This is similar to the observed scenario before and during the
2017 northern High Plains flash drought (Gerken et al. 2018).
The magnitude of these standardized anomalies, however, is
generally small relative to the anomalies in RZSM and poten-
tial evaporation (PEVP), particularly during the pentad of
drought onset.

These findings are consistent with previous studies (Otkin
et al. 2018b, 2013; Anderson et al. 2013), which have empha-
sized the importance of precursor soil moisture conditions and
PEVP in the onset of a flash drought. Low RZSM, high PEVP
and high VPD conditions force the rapid transition from an
energy limited environment to a water limited environment,

TABLE 1. SMVI–NASS and SMVI–NDVI summary hit–miss statistics for the 2012 central region flash drought showing the
geographically dominant crops and observed soil moisture conditions.

Corn Range Soybean Subsoil Topsoil Avg crop condition NDVI

ACC 0.74 0.74 0.78 0.84 0.77 0.75 0.68
CSI 0.71 0.73 0.76 0.84 0.76 0.73 0.63
FDR 0.21 0.07 0.16 0.05 0.05 0.11 0.26
FNR 0.12 0.22 0.10 0.13 0.21 0.20 0.19
FPR 0.65 0.55 0.64 0.50 0.38 0.51 0.60
PPV 0.79 0.93 0.84 0.95 0.95 0.89 0.74
TNR 0.35 0.45 0.36 0.50 0.62 0.49 0.40
TPR 0.88 0.78 0.90 0.87 0.79 0.80 0.81

TABLE 2. As in Table 1, but for the 2017 northern High Plains region flash drought.

Barley Oats Spring wheat Winter wheat Subsoil Topsoil Avg crop condition NDVI

ACC 0.80 0.73 0.76 0.78 0.84 0.84 0.72 0.56
CSI 0.79 0.72 0.75 0.77 0.83 0.83 0.70 0.48
FDR 0.09 0.15 0.12 0.08 0.03 0.02 0.18 0.50
FNR 0.15 0.18 0.16 0.17 0.15 0.16 0.17 0.07
FPR 0.55 0.73 0.65 0.61 0.29 0.25 0.72 0.72
PPV 0.91 0.85 0.88 0.92 0.97 0.98 0.82 0.50
TNR 0.45 0.27 0.35 0.39 0.71 0.75 0.28 0.28
TPR 0.85 0.82 0.84 0.83 0.85 0.84 0.83 0.93
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leading to rapid drought onset and loss of green cover (Otkin
et al. 2018b). This elevated PEVP only leads to an increase in
actual evapotranspiration (EVP) in regions with greater water
variability}e.g., the Midwest and Great Lakes regions. In

more water limited environments the EVP anomalies are neg-
ative in the predrought and onset periods, as elevated PEVP
cannot translate into an increase in EVP. As described later,
this distinction is important when considering process-based

FIG. 3. Composite maps of standardized anomalies of climate conditions for selected atmospheric variables (TEMP:
2-m above ground temperature, PRCP: precipitation, RZSM: root-zone soil moisture, EVP: actual evapotranspiration,
PEVP: potential evapotranspiration, SPRESS: surface pressure, TCC: total cloud cover, WS: 10-m above ground wind
speed, CAPE: convective available potential energy, VPD: vapor pressure deficit) based on the full SMVI flash
droughts inventory from 1979 to 2018 for severity higher than 2, during onset, recovery, and onset minus 3 pentads.
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flash drought classification: the concept that elevated PEVP
leads to elevated EVP, drying the soil column, is an important
aspect of some theories of vegetation-mediated flash drought
intensification (Otkin et al. 2018b), but it is not a feature of all
events in our inventory.

Other potential predictor variables show regionally variable
signals. Temperature (TEMP), often identified as a driver of
flash drought, is generally elevated in the predrought period,
but the anomalies are weak, and the sign of anomaly is not
entirely consistent. It is only during the onset pentad that ele-
vated temperatures are observed over most regions (though
even then the southeast is not particularly anomalously
warm). Surface pressure (SPRES) might be expected to be
anomalously high in the lead-up to a drought, but the anoma-
lies are weak and mixed over much of the country, as is the
average near-surface wind speed (WS). TCC tends toward
negative anomalies in predrought and onset periods, matching
expectation, but again there are weak or mixed anomalies for
a number of regions.

Considering the recovery pentad, which is defined as the
first pentad in which any of the onset conditions is violated, it
is evident that the role of rainfall is significant in ending the
flash drought. Both PRCP and TCC show strong positive
anomalies in recovery, which stands in contrast to the modest
anomalies seen during the predrought and onset periods.
Rain breaks the flash drought cycle, quickly switching envi-
ronmental conditions to a non-water-limited status, provided
that the volume of rain is sufficient. TEMP, PEVP, EVP,
VPD, and SPRES anomalies are mixed during the recovery
period. RZSM anomalies are still strongly negative, reflecting
the fact that we have defined the recovery (end of flash
drought period) based on the change in rate of declination or
if RZSM higher than the 20th percentile, which are still below
normal conditions but no longer a flash drought. It is worth
emphasizing that these composites are based on our SMVI

flash drought definition; analyses that use different definitions
might lead to different conclusions. That said, Ford and Lab-
osier (2017) examine some of the same variables and found
broadly similar patterns using a different flash drought defini-
tion formulation based on the drop in RZSM from the 40th to
the 20th percentile in a period that does not exceed four
pentads.

c. Flash drought classification

The composite analysis of conditions at different stages of
flash droughts shown in the previous section provides a useful
perspective on the flash drought development process; how-
ever, it does not consider the possibility that the inventoried
flash droughts consist of distinct forms of drought develop-
ment. It is therefore possible that the weak or mixed anoma-
lies found for certain proposed drivers are simply an artifact
of averaging across different types of events, blurring the
influence of hydrometeorological drivers in different drying
scenarios.

To test this hypothesis, we perform K-means classification
on our SMVI-based flash drought inventory. We use onset
pentad standardized anomalies for the nine variables applied
in composite analysis (TMP, PRCP, RZSM, EVP, PEVP,
SPRES, TCC, WS, CAPE, and VPD) as the basis for classifi-
cation, and first mask out unvegetated classes (bare soil and
urban classes) and potentially deep-rooted vegetation classes
(forest and woodland classes) according to the University of
Maryland (UMD) Land Cover Classification (Fig. S2). Only
events with severity greater than 2 are included in the classifi-
cation, and we perform principal component analysis on
meteorological variables prior to classification. Using the
elbow method (Thorndike 1953), we find that three classes
are optimal (Fig. S3). We emphasize that our classification is
intended to draw out indicative patterns and is not meant to

FIG. 4. Boxplot of the standardized anomalies of atmospheric variables and root zone soil
moisture averaged for the three pentads before drought onset for each class for the full SMVI
inventory from 1979 to 2018. A separate figure for each of the fields’ variability across years is
shown in Fig. S4. Maps of the anomalies averaged over the three pentads prior to onset are
shown in Fig. S5.

J OURNAL OF HYDROMETEOROLOGY VOLUME 23282

Brought to you by UNIVERSITY OF WISCONSIN MADISON | Unauthenticated | Downloaded 03/24/22 02:47 PM UTC



imply that the three classes are entirely separable or indepen-
dent phenomena. The use of a different dataset of meteoro-
logical variables, study region, or flash droughts identification
method may lead to a different number of classes.

The character of each class with respect to precursor soil
moisture conditions and meteorology in the pentads leading up
to event onset is shown in Fig. 4. Notably, classes 2 and 3 are
characterized by elevated air temperature (TMP) and vapor
pressure deficit (VPD) prior to flash drought onset, while class
1 is not. And while classes 2 and 3 have similar TMP anomalies,
class 2 exhibits substantially more severe antecedent VPD than
class 3, as well as stronger positive potential evapotranspiration
(PEVP) anomalies and stronger negative root zone soil mois-
ture (RZSM) and total cloud cover (TCC) anomalies. Class 3,
meanwhile, is the only class that shows positive anomalies in
antecedent actual evapotranspiration (EVP) and in CAPE, and

its negative precipitation (PRCP) anomalies are modest relative
to the other two classes.

These systematic differences between classes suggests that
flash droughts can be triggered by a diversity of meteorologi-
cal conditions. Class 2 bears the most classic signatures of
drought, with its dry antecedent conditions, high temperature
and evaporative demand conditions, low cloud cover, and
reduced total evapotranspiration. From a flash drought per-
spective, these can be thought of as “dry and demanding”
events, in which atmospheric evaporative demand combines
with low rainfall and dry predrought conditions to allow for
rapid intensification of already dry conditions. Notably,
PEVP anomalies for these events tend to be quite high, but
EVP anomalies are strongly negative on account of the pre-
vailing dry conditions prior to drought onset. It is important
to emphasize that our interpretation of the different classes is

FIG. 5. Daily time series plots of selected atmospheric variables and RZSM from four pentads
prior to drought onset to one pentad after onset for (a) class 1, (b) class 2, and (c) class 3 events.
For each class, the time series of each variable represents an average of 20 grid cells, each
selected from the core area of a separate flash drought event. The y axis shows the standard devi-
ation for the normalized variables’ values.
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based on the mean value, which adds a margin of uncertainty
in classifying an identified flash drought event. Figure 5b
shows composite time series of key variables for 20 grid cells
picked from the core of different class 2 drought events. As
indicated in these time series, TMP, VPD, and PEVP are all
elevated in the four pentads before flash drought onset while
EVP anomalies are consistently negative over this period.
PRCP anomalies are generally negative, with some noise evi-
dent in this 20 grid cell sample, while NDVI and RZSM
anomalies are strongly negative even four pentads before
onset date.

In contrast to the classic drought character of class 2, class 3
bears some surprising features. The fact that the events inten-
sify rapidly even though, on average, the antecedent PRCP
anomalies are modest and CAPE is enhanced, suggest that
for these events rapid drying is largely driven by evaporative
demand (positive VPD and PEVP anomalies) combined with
sufficient moisture access to support elevated EVP. This com-
bination makes class 3 the only class to exhibit anomalies con-
sistent with the hypothesis that vegetation can contribute to
flash drought onset by responding to elevated temperature
and evaporative demand with increased evapotranspiration,
accelerating depletion of root zone soil moisture. Based on
these characteristics, we term class 3 events “evaporative”
flash droughts. As shown in Fig. 5c for a random sample of
points from different class 3 events, PRCP anomalies are
mixed, with a negative signal only evident in the 2 pentads
before onset, and positive anomalies seen at longer leads and
even after flash drought onset. EVP is consistently elevated
before and during onset, while strongly positive TMP, VPD,
and PEVP anomalies emerge only in the two pentads before
onset. Interestingly, RZSM and NDVI anomalies are, on
average for this sample, positive until two pentads before
onset, such that the rapid decline observed just before onset
leads to negative anomalies that are substantially smaller than
those observed for class 2 events at date of onset.

Class 1, for its part, is noteworthy for the fact that air tem-
perature and evaporative demand preceding flash drought
onset are unremarkable compared to average conditions. Pre-
cipitation is below average in the predrought period, skies are
relatively clear (low TCC), and convective potential is low
(negative CAPE anomaly). But anomalies in all other varia-
bles commonly invoked to explain the rapidity of flash
drought intensification are modest, i.e., there is a near-zero
temperature, PEVP and VPD predrought anomalies. In this
sense, class 1 flash droughts appear to be dominated by pre-
cipitation deficit forcing rather than evaporative demand forc-
ing, placing them at a far end of the PEVP versus PRCP
balance of flash drought forcings described by Christian et al.
(2021). As described later, class 1 events are, on average,
slightly less severe than other classes, but they are not always
low severity events. We will refer to these events as “stealth”
flash droughts in that they have characteristics that would
make them difficult to forecast: where classes 2 and 3 show
meteorological drivers that might be forecasted with skill at
extended weather to subseasonal time scales, class 1 appears
to be the product almost solely of moderately dry antecedent
soil moisture and below average rainfall, which can be difficult

to predict with precision more than a few days in advance
(Tian et al. 2017). The sample time series shown in Fig. 5a
indicates that positive anomalies in VPD and PEVP are mod-
est and emerge only within two pentads of onset, and TMP
anomalies are essentially neutral. Interestingly, the decline in
NDVI is dramatic for this class, suggesting that these events
strike vegetation that is particularly sensitive to drought stress
on account of vegetation type or timing. The fact that NDVI
anomalies are strongly positive at three and four pentad leads,
and that negative EVP signals are not evident at longer leads,
suggests that these events might be associated with favorable
early season growing conditions leading to structural over-
shoot in vegetation (Zhang et al. 2021).

At the national scale, 45% of all flash drought events in our
inventory are class 1, 31% are class 2, and 22% are class 3.

FIG. 6. Frequency (% of years with an event) for each flash
drought class at each grid point for the period 1979 to 2018, based
on the SMVI flash droughts definition.
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But there are distinct geographic patterns for each (Fig. 6).
Class 1 events are most common in the western High Plains,
class 2 are dominant in the southern Great Plains and Texas,
and class 3 are the most common type in the upper Midwest.
This is not a deterministic split}all three classes are found in
all regions}but the geographic distribution aligns with expec-
tation. In the relatively humid and cool upper Midwest, one
might expect that high TMP and VPD can trigger elevated
EVP even when soils are somewhat dry relative to their aver-
age state, while in the warmer and drier southern Great Plains
those conditions are less likely to be met with increased EVP:

conditions are simply too dry. The prevalence of class 1 events
in the western High Plains is less easily explained, but it is
consistent with experience in that the iconic 2017 flash
drought that affected Montana and North Dakota was a nota-
bly poorly predicted event (Jencso et al. 2019; Hoell et al.
2019b).

Indeed, if we map the class associations of the 2017 flash
drought event, along with the seminal flash drought events of
2011 and 2012 (Fig. 7), we see that 2017 was almost entirely
class 1. The 2011 event, focused on Texas and Oklahoma, is
predominantly class 2. The widespread event of 2012 is a mix

FIG. 7. Classification maps of the 2011, 2012, and 2017 flash drought events.
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of class 2 and class 3, consistent with the fact that this was a
hot event affecting a broad swath of the Great Plains and
Midwest, including a diversity of climate zones and land cover
types.

Seasonally, all three flash drought classes can be observed in
any month included in our analysis (March–November; Fig. 8).
Class 2 shows a dramatic peak in June, coincident with the
onset of summer heat and dryness over much of the drought-
susceptible United States. Class 3 shows a similar, albeit more
muted June peak. This is the least common flash drought class
on average, but in the spring it does show slightly greater total
area than class 2, and the drop in area after June is dramatic.
This is consistent with a drought process that includes sufficient
available soil moisture to support elevated EVP. Class 1,

meanwhile, is the most widespread drought class in all months
except for June, when it is briefly exceeded by class 2. The fact
that class 1 events continue to be relatively common in late
summer is in part a reflection of geography, since these events
dominate in some of the coolest portions of the analysis
domain. The drivers of flash drought risk, then, appear to vary
by both region and season, a fact that is relevant for the devel-
opment of flash drought risk monitoring and forecasting sys-
tems. We note that these seasonal patterns are sensitive to our
inventory method, which is subject to the previously discussed
assumptions, and clustering may vary accordingly. We note that
our inventory method, which includes only the first instance of
flash drought in each grid cell in each year, may slightly under-
represent late season flash droughts in general, since in cases of

FIG. 8. Average area in each flash drought class in each month included in this study. Average is calculated for the 1979–2018 period.

FIG. 9. Boxplots of the flash droughts average severity categories in the three classes after fil-
tering out events of severity category less than 2 (box widths are proportional to the square root
of the total number of grid points in each class).
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two flash droughts in the same location in the same year (which
are rare) the second event would not be captured by our
method.

Finally, we find that all three diagnosed classes of flash
drought include cases of severe drought [according to our cre-
ated inventory of flash droughts severity from Eqs. (1) and
(2)], but that there are statistical differences in severity
between classes, as estimated using the SMVI severity classes
defined in this study (Fig. 9). There is a slight tendency for
greater severity in class 2, the dry and demanding droughts,
and the most severe events in the record are dominated by
class 2, followed by slightly decreased average severity for
class 3 and class 1. The differences in severity between classes
are statistically significant, as evaluated using a Welch’s t test,
for both raw and log transformed data, and confirmed with a
nonparametric Wilcoxon signed-rank test. This result empha-
sizes the potential severity of flash droughts that develop
under the combined conditions of high evaporative demand,
low precipitation, and dry antecedent conditions. Neverthe-
less, the distribution of event severities shown in Fig. 9 makes
it clear that all three classes contain severe events. This is also
clear from our analysis of seminal flash droughts (Fig. 1). We
note that Fig. 9 shows results for events filtered for severity
greater than 2, but that the same general pattern is observed
when we do not apply a severity threshold.

4. Conclusions

Flash drought has proven to be a challenging phenomenon
for both monitoring and prediction. These challenges have
been associated with the rapidly evolving nature of the events
and, perhaps, with the fact that they depend on processes that
may not be explicitly resolved, or may be poorly predicted, in
standard subseasonal-to-seasonal forecast systems. But termi-
nology and definitions have also been challenging (Lisonbee
et al. 2021), and the difficulty of establishing consistent and
agreed-upon definitions is also a significant contributor to
associated challenges in prediction. If the physical interpreta-
tion of a flash drought inventory is not sufficiently clear, then
it is also not clear what one is predicting with a statistical
model trained using that inventory, or what one is evaluating
when considering a dynamically based forecast of an event.

Here, we have examined meteorological drivers associated
with events inventoried using an SMVI-based definition of
flash drought events, and then classified all events in the
inventory on the basis of precursor meteorological and sur-
face conditions. We found three classes of flash droughts in
our inventory based on k-means clustering. We refer to these
classes as: dry and demanding droughts, with high evaporative
demand and antecedent low soil moisture levels; evaporative
droughts, which initiate under conditions of high demand and
when elevated evapotranspiration accelerates soil drying; and
stealth droughts, which may be hard to predict due to the lack
of a clear temperature or evaporative demand signal prior to
initiation. These classes are associated with different meteoro-
logical variables, regional distributions, seasonality, and cli-
matic and land surface risk factors, suggesting that there are
distinct forms of flash drought development.

We emphasize that the classes defined here are representative
of a continuum of processes associated with flash drought devel-
opment. We choose to work with three classes because it proved
to be a stable, separable, and interpretable number of classes in
our analysis, but the result does not imply that there are only
three pathways that can lead to flash drought, or that an event
cannot exhibit a mix of properties from two or three classes. The
contrasting meteorological and surface process signatures of the
three classes do, however, indicate that events identified as flash
drought using a reasonable definition, including events that have
been widely reported as seminal flash droughts, represent a
diversity of onset and intensification processes. Our results sug-
gest that recognizing this diversity is critical to advance our
understanding and ability to predict these events.
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