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Abstract. This study uses correlation analyses to explore re-
lationships between the satellite-derived Evaporative Stress
Index (ESI) – which depicts standardized anomalies in an ac-
tual to reference evapotranspiration (ET) fraction – and vari-
ous land and atmospheric variables that impact ET. Correla-
tions between the ESI and forcing variable anomalies calcu-
lated over sub-seasonal timescales were computed at weekly
and monthly intervals during the growing season. Overall,
the results revealed that the ESI is most strongly correlated
to anomalies in soil moisture and 2 m dew point depression.
Correlations between the ESI and precipitation were also
large across most of the US; however, they were typically
smaller than those associated with soil moisture and vapor
pressure deficit. In contrast, correlations were much weaker
for air temperature, wind speed, and radiation across most of
the US, with the exception of the south-central US where cor-
relations were large for all variables at some point during the
growing season. Together, these results indicate that changes
in soil moisture and near-surface atmospheric vapor pressure
deficit are better predictors of the ESI than precipitation and
air temperature anomalies are by themselves. Large regional
and seasonal dependencies were also observed for each forc-
ing variable. Each of the regional and seasonal correlation
patterns were similar for ESI anomalies computed over 2-,
4-, and 8-week time periods; however, the maximum corre-
lations increased as the ESI anomalies were computed over
longer time periods and also shifted toward longer averaging
periods for the forcing variables.

1 Introduction

High-resolution monitoring of vegetation health conditions
using remote sensing observations provides valuable infor-
mation that is widely used for a variety of purposes, such
as drought monitoring (AghaKouchak et al., 2015), ecologi-
cal health assessments (Li et al., 2014), and crop yield fore-
casting (Huang and Han, 2014; Johnson, 2016). Vegetation
health and growth dynamics are influenced by a myriad of
factors such as the timing and amount of rainfall, changes in
evaporative demand due to anomalous weather conditions,
and the availability of sufficient root zone soil moisture to
meet the vegetation’s water requirements during different
stages of its growth. In addition, the potential exposure to
multiple or prolonged climate extremes (for example, more
than 1 year of drought) and other environmental factors, such
as insect infestations, disease, fires, and severe storms, influ-
ence the health and resiliency of vegetation.

In recent decades, numerous methods have been developed
to extract information about various biophysical and physio-
logical characteristics of vegetation using remote sensing ob-
servations from geostationary and low-earth-orbiting satellite
sensors. Early studies exploited differences in the observed
surface reflectance between red (visible) and near-infrared
bands in vegetated areas to derive a dimensionless estimate
of plant vigor and standing biomass referred to as the nor-
malized difference vegetation index (NDVI) (Tucker, 1979).
The NDVI has been extensively used for global drought
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monitoring given its ability to identify regions containing
poor vegetation health and its routine availability over many
decades. Subsequent studies have developed newer vegeta-
tion indices derived from the NDVI such as the vegetation
condition index (Liu and Kogan, 1996), enhanced vegetation
index (Huete et al., 2002), and drought severity index (Mu et
al., 2011). The availability of high-quality surface reflectance
observations from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) sensor starting in 2000 led to the
development of numerous products depicting various vegeta-
tion characteristics over the entire globe. These include quan-
tities such as the fraction of photosynthetically active radia-
tion, leaf area index, and gross primary productivity (Myneni
et al., 2002; Running et al., 2015). Other studies have used
data from satellite sensors such as the Greenhouse Gases Ob-
serving Satellite (GOSAT) to estimate solar-induced chloro-
phyll fluorescence (SIF) in terrestrial vegetation (Guanter et
al., 2007; Frankenberg et al., 2011; Joiner et al., 2011; Sun
et al., 2015). Though existing SIF datasets have coarse hor-
izontal resolution, SIF is a useful metric because it provides
direct information about the biochemical, physiological, and
metabolic functioning of the plant canopy. Indeed, recent
studies by Frankenberg et al. (2011) and Guanter et al. (2014)
have shown that SIF is highly correlated to the gross primary
production of terrestrial vegetation. In general, regions char-
acterized by higher-than-normal values for any of these veg-
etation metrics will typically contain healthier and more pro-
ductive vegetation.

Another measure that is widely used to monitor the over-
all health of vegetation is evapotranspiration (ET), which is a
key component of terrestrial ecosystems because it links the
carbon, energy, and hydrological cycles. Though ET repre-
sents the combination of evaporation from the surface and
transpiration from vegetation, prior work has shown that
transpiration is the dominant source of ET in vegetated ar-
eas (Budyko, 1974), thereby making it useful for monitoring
moisture stress in vegetation. The rate of transpiration is con-
trolled by the physiological characteristics of the plants; the
amount of soil moisture in the root zone accessible by the
plants; and various atmospheric factors, including the net ra-
diation at the land surface, vapor pressure deficit over the leaf
surface, and wind speed immediately above the land surface.
ET rates are also influenced by the timing and amount of
precipitation (or irrigation in managed landscapes) through
its recharge of soil moisture. If sufficient root zone soil mois-
ture is available, vegetation will typically increase its transpi-
ration rate in response to elevated evaporative demand; how-
ever, once soil moisture content reaches the wilting point,
vegetation will curtail its water usage. This transition from
an energy-limited regime to a moisture-limited regime will
result in an abrupt decrease in ET and the onset of moisture-
related stress. Because ET anomalies are driven by multiple
factors in addition to soil moisture status, it is often useful to
compare the observed ET to a reference ET that can account
for changes in the evaporative demand and solar radiation

load. Then, if the ratio of the actual to reference ET – known
as the reference ET fraction – is smaller (larger) than nor-
mal for a given location and time of year, this suggests that
moisture-related stress in vegetation is higher (lower) than
normal (Anderson et al., 2007a).

Various options are available for monitoring ET during the
growing season. For example, direct measurements of ET can
be obtained using flux tower networks such as AmeriFlux
and FLUXNET (Baldocchi et al., 2001); however, their util-
ity for large-scale monitoring is limited by their poor spatial
sampling. High-resolution ET datasets can be generated us-
ing sophisticated land surface models such as those included
in the North American Land Data Assimilation System (NL-
DAS) (Xia et al., 2012a, b). Though these datasets are spa-
tially and temporally continuous, their accuracy will depend
on the accuracy of the land surface models and the precip-
itation, atmospheric, soil property, and vegetation datasets
that drive them (Beljaars et al., 1996). High-resolution ET
datasets can also be generated using satellite observations by
linking instantaneous ET rates to observables such as vege-
tation cover fraction and land surface temperature. Because
ET estimates derived from infrared and visible satellite ob-
servations can only be computed when clouds do not obscure
the surface, more complete domain coverage can be obtained
by compositing clear-sky ET estimates over longer time pe-
riods (Anderson et al., 2013). Satellite-derived ET datasets
covering regional and global domains can be obtained from
a variety of sources, such as the MODIS Global Evapotran-
spiration Project (Mu et al., 2011), the Global Land Evap-
oration Amsterdam Model (Martens et al., 2017), and the
Atmosphere-Land Exchange Inverse (ALEXI) model used to
compute the Evaporative Stress Index (ESI) (Anderson et al.,
2007a, b, 2011).

Prior studies have shown that the ESI, representing stan-
dardized anomalies in the reference ET fraction, can pro-
vide early warning of drought development because veg-
etation often curtails its water usage before visible signs
of moisture stress become evident in the vegetation (Otkin
et al., 2013; Anderson et al., 2013). Though the ESI has
primarily been used to monitor agricultural and ecological
drought conditions (Anderson et al., 2007b, 2011; Otkin et
al., 2013), and is well suited for the early detection of rapid-
onset flash drought events (Anderson et al., 2013; Otkin et
al., 2015a, 2016, 2018), it can also be used to identify regions
with healthy vegetation as inferred by higher-than-average
ET rates. As such, it provides useful information about veg-
etation health under both favorable and unfavorable grow-
ing conditions and has been shown to have high correlations
to agricultural crop yields (Anderson et al., 2016a, b; Otkin
et al., 2016). Furthermore, Otkin et al. (2014, 2015a) have
shown that unusually rapid decreases in the ESI provide use-
ful information about the likelihood of drought development
over the next 1–2 months, presumably due to soil moisture
memory and its impact on vegetation. More recently, Lorenz
et al. (2017a, b, 2018) developed a hybrid statistical method
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that combines information from the ESI with precipitation
and soil moisture anomalies to predict changes in the US
Drought Monitor (Svoboda et al., 2002) over sub-seasonal
timescales. Their method had some forecast skill and was
shown to provide useful forecasts, especially during flash
drought events characterized by rapid intensification.

Given the drought monitoring capabilities of the ESI and
the desire within the agricultural and natural resources com-
munities for sub-seasonal drought intensification forecasts
during the growing season (Otkin et al., 2015b), it is pru-
dent to explore adaptation of the statistical method devel-
oped by Lorenz et al. (2017a, b) so that it can be used to
predict changes in the ESI rather than the US Drought Mon-
itor because the ESI is a more direct measure of vegetation
health. Such efforts would align with the increasing interest
within the forecasting community to produce sub-seasonal
forecasts that can fill the gap between medium-range weather
forecasts and seasonal forecasts (Vitart et al., 2017). As a
first step in this process, this study uses correlation analyses
to examine relationships between the ESI and various land
surface and atmospheric variables that control ET on sub-
seasonal timescales. The study explores regional and sub-
seasonal changes in the strengths of the correlations using
a version of the ESI that covers the contiguous US (CONUS)
with 4 km horizontal grid spacing. This study augments prior
analyses by Anderson et al. (2013) and McEvoy et al. (2016)
that examined correlations between the ESI and various soil
moisture, precipitation, evaporative demand, and vegetation
datasets over seasonal timescales. It also builds upon a re-
cent study by Hobbins (2016) that used a variability attri-
bution technique to assess the contribution of individual at-
mospheric drivers on the regional and seasonal variability in
reference ET across the US. Information from the correlation
analyses performed during this study will inform efforts to
develop sub-seasonal forecasts depicting changes in the ESI
or similar quantities. The paper is organized as follows. Sec-
tion 2 contains descriptions of the atmospheric, soil moisture,
and ET datasets used during this study. Results from corre-
lation analyses are shown in Sect. 3, with conclusions and a
discussion provided in Sect. 4.

2 Data and methodology

2.1 Evaporative Stress Index

The ESI shows standardized anomalies in a reference ET
fraction (ET/ETref), where ET is the actual ET flux and ETref
is a reference ET flux computed using a Penman–Monteith
formulation (Allen et al., 1998). Using a reference ET helps
minimize the impact of the seasonal cycle in net radiation
at the land surface when assessing anomalies in ET. As dis-
cussed in Anderson et al. (2007a), comparison of the ob-
served ET flux to a reference ET flux provides a more mean-
ingful depiction of moisture-related stress than ET alone be-

cause it places changes in actual ET in context with observed
changes in the evaporative demand and solar radiation forc-
ing. For example, lower-than-normal ET does not necessarily
mean that the vegetation is experiencing moisture stress if the
evaporative demand is also lower.

The actual ET flux is estimated using the ALEXI model
(Anderson et al., 2007a, 2011). ALEXI computes the ground,
latent, and sensible heat fluxes for bare soil and vegetated
components of the land surface using land surface temper-
atures retrieved from satellite thermal infrared imagery and
the Norman et al. (1995) two-source energy balance model.
The partitioning of the surface energy budget into its con-
stituent components is achieved through use of vegetation
cover fraction estimates derived from the MODIS leaf area
index product (Myneni et al., 2002). For each satellite pixel,
the total surface energy budget is computed using the ob-
served increase in land surface temperatures from 1.5 h af-
ter local sunrise until 1.5 h before local noon. The atmo-
spheric boundary layer growth model developed by Mc-
Naughton and Spriggs (1986) is used to provide closure for
the energy balance equations, with temperature profiles in the
lower troposphere used by the model obtained from the Cli-
mate Forecast System Reanalysis (CFSR) (Saha et al., 2010).
The ALEXI model is run daily on a 4 km resolution grid
covering CONUS using land surface temperature estimates
derived from the Geostationary Operational Environmental
Satellite (GOES) imager. The reader is referred to Anderson
et al. (2007a, 2013) for a complete description of the ALEXI
model.

Because ET estimates derived from satellite thermal in-
frared imagery can only be computed for pixels that remain
entirely clear during the morning integration period, the re-
sultant daily ET datasets often have extensive data gaps. This
issue is partially remedied by compositing the clear-sky ET
estimates and corresponding reference ET fluxes over multi-
week time periods. Standardized ET fraction anomalies, ex-
pressed as pseudo z scores normalized to a mean of 0 and a
standard deviation of 1, are then computed at weekly inter-
vals using data composited over 2-, 4-, and 8-week time pe-
riods. The mean and standard deviations for each week and
compositing period are computed separately for each grid
point using data from 2001 to 2015. Positive (negative) ESI
anomalies depict above (below) normal reference ET frac-
tions that typically correspond to better (worse) than average
vegetation health and higher (lower) than average soil mois-
ture content.

2.2 North American Land Data Assimilation System

The ESI anomalies were compared to modeled soil moisture
anomalies computed using data from three NLDAS-2 mod-
els (Xia et al., 2012a, b), including the Noah (Ek et al., 2003;
Barlage et al., 2010; Wei et al., 2013), Mosaic (Koster and
Suarez, 1996), and Variable Infiltration Capacity (Liang et
al., 1996) models. Each of these land surface models uses
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discretized forms of the energy and water balance equations
to simulate changes in soil moisture content in multiple lay-
ers. Though each model uses the same atmospheric and pre-
cipitation forcing datasets, the soil moisture response can dif-
fer between models because they may use different approxi-
mations to treat key processes such as evaporation, drainage,
canopy uptake, and vegetation rooting depth. Given these dif-
ferences, the ensemble average soil moisture is used here
to represent the spatial distribution of soil moisture condi-
tions. Xia et al. (2014) has shown that the ensemble aver-
age is more accurate than the individual models at depicting
drought conditions. Ensemble mean soil moisture analyses
generated each day for the topsoil (0–10 cm) and total col-
umn (0–200 cm) layers (hereafter referred to as TS and TC,
respectively) were averaged over 2-, 4-, and 8-week time
periods and then standardized anomalies were computed at
weekly intervals for each layer using data from 1979 to 2015.
These datasets are useful for this study because they provide
spatially and temporally continuous soil moisture informa-
tion across the entire CONUS.

2.3 Standardized Precipitation Index

Standardized Precipitation Index (SPI) (McKee et al., 1993)
anomalies were also computed over 4- and 8-week time pe-
riods to assess the relationship between the ESI and precipi-
tation. The SPI is a normalized variable such that anomalies
greater (less) than zero indicate that the observed precipita-
tion for a given location was more (less) than the climatolog-
ical mean for a given period of time. Gridded precipitation
analyses for 1948 to 2015 were obtained from the Climate
Prediction Center gauge-based analysis of daily precipitation
reports from cooperative observers and National Weather
Service stations (Higgins et al., 2000), with the 0.25◦ resolu-
tion daily precipitation analyses interpolated to the ESI grid
using a nearest-neighbor approach. The daily datasets were
summed to create 4- and 8-week accumulated precipitation
amounts prior to computing the SPI.

2.4 Atmospheric variables

The relationships between the ESI and near-surface atmo-
spheric conditions were evaluated using analyses from the
CFSR, which is a fully coupled atmosphere–land–ocean
modeling system (Saha et al., 2010). Given their importance
for driving changes in ET, this study focuses on 2 m tem-
perature, 2 m dew point depression, 10 m wind speed, and
downwelling shortwave radiation (hereafter referred to as
TEMP, DPD, WSPD, and DSW, respectively). Daily aver-
ages were computed for each variable using analyses avail-
able every 6 h on a 38 km resolution grid and then interpo-
lated to the ESI grid using a nearest-neighbor approach. Stan-
dardized anomalies were computed at weekly intervals for
2-, 4-, and 8-week averaging periods using data from 1979
to 2015. It should be noted that using different baseline peri-

ods when computing the ESI, soil moisture, SPI, and atmo-
spheric anomalies introduces some uncertainty in the correla-
tion analyses presented in Sect. 3 because of potential trends
in the data (especially for air temperature) during their re-
spective periods of record. However, because this study fo-
cuses on temporal correlations at the grid point scale, the re-
sults should not be strongly affected by the baseline period
because the anomaly computation is simply a linear rescal-
ing at each grid point. In addition, it is important to note
that, though all of the atmospheric variables are derived from
model output, they are constrained through the assimilation
of satellite and conventional observations within the CFSR
data assimilation system. Regional verification studies, such
as those performed by Bao and Zhang (2013), Lindsay et
al. (2014), Sharp et al. (2015), and Essou et al. (2016), have
shown that the accuracy of the CFSR near-surface variables
is comparable to those from other reanalysis datasets and rep-
resent an important improvement over previous generations
of reanalysis datasets. Fuka et al. (2013) have shown that,
when CFSR data were used to force a watershed model, it
produced stream discharge simulations that were as good or
better than models forced using weather station observations.
The use of reanalysis data introduces some uncertainty to the
evaluation performed during this study but it has the advan-
tage of providing uniform spatial resolution across the entire
region.

3 Results

3.1 Monthly correlation analysis

In this section, the relationship between the ESI and vari-
ous atmospheric and land surface variables is assessed dur-
ing the warm season using correlation analyses. Figures 1
and 2 show the Pearson correlation coefficients between the
4-week ESI and the corresponding 4-week SPI, TS, TC,
DPD, TEMP, WSPD, and DSW anomalies at monthly inter-
vals from April to September. Note that the sign is reversed
for the DPD, TEMP, WSPD, and DSW correlations given the
expectation that larger (smaller) values for each of these vari-
ables will typically be associated with higher (lower) mois-
ture stress and negative (positive) ESI anomalies when as-
sessed over long time periods. The correlations were com-
puted separately for each grid point and month using all of
the weekly analyses from 2001 to 2015 for which the end
of the 4-week period fell within a given month. This means
that the sample size (n) for each grid point is equal to 60 or
75 depending upon whether a given month contains the end
dates for four or five of these 4-week periods. The statistical
significance of the correlation at each grid point was deter-
mined using the “rtest” routine in the NCAR Command Lan-
guage (NCL) package, with the probability value (p) set to
0.1. Using 4-week periods for all of the datasets allows us to
examine the contemporaneous relationships between the ESI
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Figure 1. Pearson correlation coefficients between ESI anomalies computed over a 4-week time period and SPI, TS, and TC anomalies
computed over a 4-week time period. The correlations were computed separately for each grid point and month using all of the weekly
analyses from 2001 to 2015 for which the end of the 4-week period was within a given month. Correlations > 0.21 are significant at the
p = 0.1 level.

and the various forcing variables across the entire US during
different portions of the growing season. The 4-week ESI
was chosen for this part of the analysis because it provides
a balance between the fast response of the ESI to changing
conditions when it is computed over short time periods and
the seasonal moisture stress signals contained in longer-term
ESI anomalies (Otkin et al., 2013). A more comprehensive
assessment of the relationships between the various forcing
variables and ESI anomalies computed using different com-
positing lengths is presented in the regional analysis shown
in Sect. 3.2.

Inspection of Figs. 1 and 2 reveals that in most locations
the strongest correlations occur for the DPD, TS, TC, and SPI
variables. This combination indicates that anomalies in the
ESI are most closely related to anomalies in soil moisture and
near-surface humidity. The correlations for these variables
show that periods characterized by larger (smaller) DPD and
below (above) average TS, TC, and SPI often contain nega-
tive (positive) ESI values. In contrast, correlations for TEMP,

WSPD, and DSW are much weaker across most of the US,
with the exception of the south-central US where correlations
are large for each of these variables at some point during the
growing season. This region is located within an east–west
transition zone between arid climates to the west and humid
climates to the east where longitudinal shifts in the rainfall
gradient strongly impact the weather. It is also a well-known
hot spot for land–atmosphere coupling, which occurs when
soil moisture and vegetation anomalies influence the parti-
tioning of surface energy between sensible and latent heat
fluxes (Koster et al., 2004). The results also show that the
strengths of these relationships vary during the growing sea-
son across this region. For example, the correlations for DSW
are largest during the spring and early summer when positive
insolation anomalies due to reduced cloud cover can drive
rapid evaporative loss, leading quickly to lower-than-normal
ET fractions, whereas TEMP anomalies are more important
during the second half of the growing season when unusually
hot (cool) temperatures may hasten (delay) vegetation stress
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Figure 2. Same as Fig. 1, except for showing correlations between the ESI anomalies computed over a 4-week time period and DPD, TEMP,
WSPD, and DSW anomalies computed over a 4-week time period. Note that the sign has been reversed for the DPD, TEMP, WSPD, and
DSW correlations so that positive correlations indicative of enhanced drying are shown in yellow and red colors. Correlations > 0.21 are
significant at the p = 0.1 level.

and senescence. For the remaining variables (DPD, TS, TC,
and SPI), the correlations are large during most of the grow-
ing season. Together, this indicates that ET fraction anoma-
lies within this region of enhanced land–atmosphere cou-
pling are most closely related to variables capturing changes
in the supply and demand of surface moisture.

Unlike the south-central US where statistically significant
correlations exist between the ESI and each of the variables,
much weaker correlations occur across other parts of the US.
For example, very low (< 0.2) non-significant correlations
predominate across most of the northeastern US during the
spring and early summer. The strength of the correlations in-
creases during the second half of the growing season, with
the largest correlations found for DPD, SPI, TS, and TC;
however, they remain weaker than those found across the
south-central US. A similar evolution occurs within an east–
west band extending from the Pacific Northwest to the Great
Lakes, with the lowest correlations generally occurring in re-
gions containing extensive forests. The low correlations indi-
cate that there are no dominant drivers of normalized ET dur-
ing the first half of the growing season in these regions, pre-
sumably because of their relatively cool and moist climates
and the much deeper root structures in forests that allow trees

to tap into deeper soil moisture than other types of vegetation.
ET becomes more strongly coupled to the atmospheric and
land surface variables later in the growing season as these re-
gions move from being primarily energy-limited regimes to
potentially moisture-limited regimes.

Finally, the correlations over most of California have a dis-
tinct seasonal cycle that is opposite that found in the heavily
forested areas across the northern US. For example, with the
exception of WSPD, all of the variables are strongly cor-
related (> 0.6) to the ESI during the spring. These corre-
lations then rapidly decrease after June and are generally
non-significant across most of the state during August and
September. This sequence suggests that ET is strongly in-
fluenced by the amount of cool season precipitation, which
is a key component of the hydrological cycle in the region
(Neiman et al., 2008) and its subsequent impact on soil mois-
ture during the first half of the growing season. The results
indicate that a wetter (drier) than normal cool season that
then leads to wetter (drier) than normal soil moisture con-
ditions during the spring are typically associated with above
(below) normal ET. The results also show that anomalies in
evaporative demand strongly impact ET during this time pe-
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riod as evidenced by the large correlations between the ESI
and the DPD, TEMP, and DSW variables from April to June.

3.2 Regional correlation analysis

This section assesses changes in the correlations between
the ESI and the various forcing variables at weekly inter-
vals from March to October when different compositing and
averaging lengths are used to compute the anomalies for
each variable. This analysis will be used to assess relation-
ships between the ESI computed over short-to-intermediate
timescales (2, 4, and 8 weeks) and each of the forcing vari-
ables computed over similar time periods. To capture re-
gional differences in the relationships, the correlations were
computed separately for the western, south-central, north-
central, and eastern US using data from 2001 to 2015. The
outlines for each region are shown in Fig. 3. These regions
were chosen based on geography, climate, and inspection
of the spatial patterns in the correlations found in Figs. 1
and 2. In particular, the central US regions encompass the
meridional gradient between more arid climates to the west
and more humid climates to the east (Seager et al., 2018).
This area was further separated into south-central and north-
central regions to highlight the stronger correlations over the
south-central US and to account for large regional differences
in the variance of the atmospheric drivers of reference ET
noted by Hobbins (2016). Likewise, remaining areas were
simply grouped into western and eastern regions that gen-
erally encompass more arid and more humid climates, re-
spectively. By assessing the relationships over such large re-
gions, some of the local details discussed in Sect. 2.1 will
be lost; however, this approach makes discussion of the re-
sults more tractable while still preserving the most dominant
signals within these larger regions.

Figure 4 shows correlations between the 2-week ESI
anomalies and the various land surface and atmospheric vari-
ables for each region. The stippling on the figure denotes
the weeks and variables for which at least half of the grid
points in each region had a statistically significant correla-
tion. Note, however, that the correlations were computed us-
ing all grid points in a given region, including those that had
non-significant correlations. As was shown in the previous
section, the strength of the relationship between the ESI and a
given variable varies greatly across different parts of the US,
with large sub-seasonal fluctuations in the correlations also
apparent in many of the variables. For example, much lower
and generally non-significant correlations occur in the TS,
DPD, DSW, and SPI variables across the western US from
the middle of July to the end of August. Because this time
period corresponds to the climatological peak of the North
American monsoon (Adams and Comrie, 1997), it is possi-
ble that the weaker correlations are at least partially due to
the impacts of this climate feature on soil moisture and near-
surface atmospheric conditions across the region. Other ex-
amples of large sub-seasonal fluctuations include the much

Figure 3. Geographic domain covered by each of the regions in-
cluded in Figs. 4–6.

larger TEMP correlations from June to September and the
non-significant DSW correlations from mid-July to Septem-
ber across the south-central US. This pattern also occurs to a
lesser extent across the north-central US. The larger impact
of air temperature on ET during the summer across the cen-
tral US could be associated with the higher likelihood that
daytime temperatures will exceed the heat tolerance of the
vegetation. Likewise, in a predominantly moisture-limited
regime during the second half of summer, changes in cloud
cover and its impact on DSW become less important across
this region.

Comparison of the correlations for a given variable re-
veals a complex relationship where the maximum correla-
tions for some variables occur when anomalies are computed
over short time periods (e.g., 2 weeks), whereas in others the
correlations become larger as the averaging period increases.
For example, the largest correlations for DSW, TEMP, and
SPI occur for anomalies computed over an 8-week time pe-
riod. In contrast, the largest correlations for soil moisture oc-
cur when the TS and TC anomalies are computed over 2- and
4-week time periods. Meanwhile, the correlations for DPD
and WSPD are similar for all averaging periods. These pat-
terns are evident in each region, but are most conspicuous
across the south-central US, and remain consistent through-
out the entire growing season. Together, these results indi-
cate that ESI anomalies computed over short time periods
are most strongly influenced by short-to-intermediate fluc-
tuations in soil moisture that in turn are controlled by pre-
cipitation and evaporative demand anomalies occurring over
longer time periods. The more pronounced transition from
large to small correlations across the western and central US
as the averaging period increases for the TC and TS vari-
ables also shows that short-term ET anomalies in these drier
areas are fundamentally tied to the availability of soil mois-
ture over short time periods.

To assess how these relationships change when ESI
anomalies are computed over longer time periods, Figs. 5
and 6 show correlations between each variable and the 4- and
8-week ESI, respectively. Comparison to the 2-week ESI cor-
relations shown in Fig. 4 reveals that the seasonal patterns in
the correlations remain similar for each region and variable
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Figure 4. Weekly time series of correlations between the 2-week ESI and each forcing variable computed using all land grid points in the
western (WUS), eastern (EUS), south-central (SCUS), and north-central (NCUS) US and data from 2001 to 2015. Correlations to the 4-, 8-,
and 12-week SPI are shown in columns 1–3, with correlations to the 2-, 4-, and 8-week TS, TC, DPD, TEMP, WSPD, and DSW variables
shown in columns 4–6, 7–9, 10–12, 13–15, 16–18, and 19–21, respectively. Note that the sign has been reversed for the DPD, TEMP, WSPD,
and DSW correlations so that positive correlations indicative of enhanced drying are shown in yellow and red colors. The stippling denotes
the weeks and variables for which at least half of the grid points in a given region had a statistically significant correlation at the p = 0.1
level.

when the ESI anomalies are computed over longer time peri-
ods; however, the maximum correlations shift toward longer
averaging periods for most of the variables. This shift shows
that the longer-duration ESI anomalies are most closely re-
lated to atmospheric and land surface anomalies occurring
over similarly long timescales, while still having some sensi-
tivity to shorter fluctuations in these variables. The maximum
correlation for a given variable also tends to increase as the
ESI compositing period increases from 2 to 8 weeks, with the
DPD, TS, and TC variables having the largest correlations in
each region during most of the growing season regardless of
the length of time used to compute the ESI.

An interesting pattern emerges when comparing the cor-
relations for the DPD, TS, and TC variables. Whereas all
three variables had their largest correlations to the 2-week
ESI when their anomalies were computed over 2- and 4-
week time periods, their behavior diverges for the 8-week
ESI for which the maximum correlations shift to longer av-
eraging periods for the TS and DPD variables but remain
large for TC regardless of the length of time used to compute
anomalies for that variable. This pattern occurs in all of the
regions and shows that, as the ESI anomalies are computed
over longer time periods, they become most closely related to
TS and DPD anomalies occurring over similar timescales but
to TC anomalies occurring over all timescales. This behavior
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Figure 5. Same as Fig. 4, except for showing correlations computed with respect to 4-week ESI anomalies.

is likely due to the tendency for TC soil moisture to change
more slowly than DPD and TS soil moisture – both of which
are more strongly influenced by synoptic-scale (e.g., weekly)
weather features – and thus remain closely related to the ESI
over multiple timescales.

As was the case with the 2-week ESI, longer-term ESI
anomalies are most strongly correlated to DSW across the
central and western US during the first half of the growing
season. Likewise, SPI and WSPD correlations continue to
be the largest over the south-central U.S, with weaker cor-
relations found elsewhere. The relationship between the ESI
and TEMP also remains strong over the south-central US,
where correlations exceed 0.5 from June until the middle of
September. In all of the regions, the TEMP correlations for
a given averaging period are generally non-significant and
smaller than the corresponding DPD correlations during the
entire growing season for the 2-, 4-, and 8-week ESI. This
indicates that TEMP anomalies are not a dominant driver

of changes in ET; rather, it is near-surface humidity that is
most important. For example, a period characterized by hot
temperatures may not necessarily lead to increased moisture
stress (e.g., negative ESI) if it is also accompanied by heavy
rainfall, which is a common occurrence across the central
and eastern US during the summer. Instead, if hot tempera-
tures occur alongside lower dew point temperatures, the re-
sultant increase in the DPD will have a larger impact on ET
than the higher TEMP alone. The stronger relationship be-
tween the ESI and DPD is consistent with prior work that has
shown that stomatal conductance and the release of ET by
many plant species are strongly controlled by the vapor pres-
sure deficit (Oren et al., 1999). These results also suggest that
drought forecasts that rely upon monthly-to-seasonal temper-
ature outlooks to predict changes in vegetation health may be
more accurate if anomalies in near-surface humidity are also
considered.
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Figure 6. Same as Fig. 4, except for showing correlations computed with respect to 8-week ESI anomalies.

4 Conclusions and discussion

This study used correlation analyses to explore relationships
between the satellite-derived ESI – which depicts anomalies
in an actual to reference ET fraction – and a set of land and at-
mospheric variables that are known to influence ET through
their impact on soil moisture and evaporative demand. Over-
all, the results showed that anomalies in ET as expressed
by the ESI are most strongly correlated to anomalies in soil
moisture and near-surface humidity (TS, TC, and DPD) re-
gardless of the time period over which the anomalies are
computed. Correlations between the ESI and precipitation
(SPI) are also relatively large across most of the US; how-
ever, they are typically smaller than the TS, TC, and DPD
correlations for a given location and time of year. The strong
correlations to soil moisture over sub-seasonal timescales are
consistent with the seasonal correlation analyses described
in Anderson et al. (2011, 2013). In contrast, correlations are
relatively weak and often non-significant for TEMP, WSPD,

and DSW across most of the US, except for the south-central
US where correlations are strong for all of the variables at
some point during the growing season. The larger correla-
tions in this region of enhanced land–atmosphere coupling
are consistent with prior studies that have shown that the
strength of the coupling is influenced by a wide variety of
atmospheric and land surface processes. Unlike the south-
central US, the correlations are much weaker in forested re-
gions across the northern tier of the US. The correlations are
especially weak during the spring and then increase during
the second half of the growing season. The weak relation-
ships to the ESI indicate that there are no dominant drivers of
ET during the first half of the growing season in these north-
ern locations; however, ET becomes more strongly coupled
to the forcing variables later in the growing season as the re-
gions transition from energy-limited regimes to potentially
moisture-limited regimes.
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Large sub-seasonal fluctuations in the correlations are also
evident in some of the variables across parts of the US. For
example, correlations to DSW are large across the central US
during the spring and early summer, whereas TEMP anoma-
lies become more important during the second half of the
growing season. Over the western US, the correlations are
much lower for all variables during the climatological peak
of the North American monsoon during July and August
when compared to other parts of the year. California also has
a distinct seasonal pattern where the correlations are largest
during the spring and then rapidly diminish after June. Each
of the regional and seasonal patterns were similar for ESI
anomalies computed over 2-, 4-, and 8-week time periods;
however, the maximum correlations typically increased as
the ESI anomalies were computed over longer time periods
and also shifted toward longer averaging periods for the forc-
ing variables. This shift shows that ESI anomalies computed
over short (long) time periods are most strongly correlated to
atmospheric and land surface anomalies occurring over sim-
ilar timescales, while also having some sensitivity to anoma-
lous conditions occurring over longer (shorter) time periods.

Overall, the large regional and seasonal variability in the
correlation patterns found during this study are similar to the
analysis presented by McEvoy et al. (2016) that assessed the
relationship between the ESI and evaporative demand as ex-
pressed by the Evaporative Demand Drought Index (Hob-
bins et al., 2016). Their study showed that the largest cor-
relations occurred over the south-central US, with the small-
est correlations generally occurring across the northern US
during the spring. The broadly similar results in both stud-
ies demonstrate the important role that atmospheric evapora-
tive demand has in driving changes in actual ET; however,
the strong correlations between the ESI and soil moisture
found in this study also illustrate that the vegetation response
to anomalies in evaporative demand is strongly influenced
by soil moisture. For example, even if the atmospheric de-
mand is higher than normal, vegetation stress may not occur
if sufficient soil moisture is available to meet the increased
demand. These results show that it is important to monitor
anomalies not only in atmospheric demand but also in soil
moisture when assessing actual stress in vegetation.

Investigation of the monthly and regional correlations also
showed that anomalies in the ESI are typically much more
strongly correlated to anomalies in the DPD than they are to
anomalies in TEMP during the entire growing season across
most of the US. This indicates that in most situations it is
the vapor pressure deficit rather than air temperature that is
the most important driver of changes in ET; however, it is
reasonable to expect that large (small) vapor pressure deficit
anomalies are more likely to occur when air temperatures
are hotter (cooler) than normal. Likewise, though the corre-
lations for SPI are relatively large, they are still generally
smaller than those associated with the soil moisture vari-
ables. Together, these results indicate that fluctuations in soil
moisture and near-surface humidity are better predictors of

the ESI than are SPI and TEMP anomalies by themselves.
This is consistent with a recent study by Ford and Labosier
(2017) that showed that temperature and rainfall departures
by themselves were only weakly related to the occurrence
of rapid-onset flash droughts, whereas variables that explic-
itly account for changes in soil moisture content and near-
surface humidity were more closely linked to the develop-
ment of these features. It is also consistent with studies by
Irmak et al. (2006) and Hobbins (2016) that showed that sur-
face temperature is not always the most important driver of
temporal variability in reference ET. Their studies revealed
that other variables, such as net radiation, wind speed, and
water vapor mixing ratio, can have a larger impact than tem-
perature on reference ET and that the relative importance of
each variable changes during the year and across different
regions.

Together, these findings also illustrate that existing
monthly-to-seasonal outlooks that tend to focus on predict-
ing anomalies in air temperature and precipitation are insuf-
ficient for predicting changes in agricultural or ecological
drought conditions. Instead, greater focus should be placed
on predicting changes in soil moisture and vapor pressure
deficit given their more dominant influence on ET. Indeed,
a recent study by Lorenz et al. (2018) has shown that in-
clusion of vapor pressure deficit and soil moisture predic-
tions from climate models increased the accuracy of sub-
seasonal drought intensification forecasts generated using a
hybrid statistical method. This is also supported by a study by
Seager et al. (2015) that showed that large forest fires are of-
ten associated with very large vapor pressure deficits caused
by antecedent surface drying and large-scale subsidence.

Data availability. Datasets generated during this study will be
made available upon request.

Author contributions. JO and YZ conceived the project. YZ per-
formed the analysis and JO wrote the manuscript. MA and CH gen-
erated the ESI dataset. All of the authors discussed the results and
contributed to the manuscript.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The authors would like to acknowledge
support provided by the NOAA Climate Program Office (CPO)
Modeling, Analysis, Predictions, and Projections program under
grant NA14OAR4310226 and the NOAA CPO Sectoral Applica-
tions Research Program under grant NA16OAR4310130.

Edited by: Shraddhanand Shukla
Reviewed by: two anonymous referees

www.hydrol-earth-syst-sci.net/22/5373/2018/ Hydrol. Earth Syst. Sci., 22, 5373–5386, 2018



5384 J. A. Otkin et al.: ESI correlations with soil moisture and weather anomalies

References

Adams, D. K. and Comrie, A. C.: The North American Monsoon,
B. Am. Meteorol. Soc., 78, 2197–2213, 1997.

AghaKouchak, A., Farahmand, A., Melton, F., Teixeira, J., Ander-
son, M., Wardlow, B., and Hain, C.: Remote sensing of drought:
progress: challenges and opportunities, Rev. Geophys., 53, 452–
480, 2015.

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapo-
transpiration: Guidelines for computing crop water requirements,
FAO Irrigation and Drainage Paper 56, 300 pp., 1998.

Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A.,
and Kustas, W. P.: A climatological study of evapotranspiration
and moisture stress across the continental U.S. based on thermal
remote sensing: 1. Model formulation, J. Geophys. Res., 112,
D10117, https://doi.org/10.1029/2006JD007506, 2007a.

Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and
Kustas, W. P.: A climatological study of evapotranspiration and
moisture stress across the continental U.S. based on thermal re-
mote sensing: 2. Surface moisture climatology, J. Geophys. Res.,
112, D11112, https://doi.org/10.1029/2006JD007507, 2007b.

Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski,
J. R., and Kustas, W. P.: Evaluation of drought indices based on
thermal remote sensing and evapotranspiration over the continen-
tal United States, J. Climate, 24, 2025–2044, 2011.

Anderson, M. C., Hain, C., Otkin, J. A., Zhan, X., Mo, K., Svo-
boda, M., Wardlow, B., and Pimstein, A.: An intercomparison of
drought indicators based on thermal remote sensing and NLDAS
simulations, J. Hydrometeorol., 14, 1035–1056, 2013.

Anderson, M. C., Hain, C., Jurecka, F., Trnka, M., Hlavinka, P., Du-
laney, W., Otkin, J. A., Johnson, D., and Gao, F.: An energy bal-
ance approach for mapping crop water stress and yield impacts
over the Czech Republic, Clim. Res., 70, 215–230, 2016a.

Anderson, M. C., Zolin, C., Sentelhas, P., Hain, C., Semmens, K.,
Yilmaz, M. T., Gao, F., Otkin, J. A., and Tetrault, R.: Assess-
ing correlations of satellite-derived evapotranspiration, precipita-
tion, and leaf area index anomalies with yields of major Brazilian
crops, Remote Sens. Environ., 174, 82–99, 2016b.

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running,
S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J.,
Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T.,
Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H.
P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.:
FLUXNET: A new tool to study the temporal and spatial variabil-
ity of ecosystem-scale carbon dioxide, water vapor, and energy
flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.

Bao, Z. and Zhang, F.: Evaluation of NCEP–CFSR, NCEP–NCAR,
ERA-Interim, and ERA-40 Reanalysis Datasets against Indepen-
dent Sounding Observations over the Tibetan Plateau, J. Climate,
26, 206–214, 2013.

Barlage, M., Chen, F., Tewari, M., Ikeda, K., Gochis, D., Dudhia, J.,
Rasmussen, R., Livneh, B., Ek, M., and Mitchell, K.: Noah land
surface model modifications to improve snowpack prediction in
the Colorado Rocky Mountains, J. Geophys. Res., 115, D22101,
https://doi.org/10.1029/2009JD013470, 2010.

Beljaars, A., Viterbo, P., Miller, M., and Betts, A.: The anoma-
lous rainfall over the US during July 1993: sensitivity to land-
surface parameterization and soil moisture, Mon. Weather Rev.,
124, 362–383, 1996.

Budyko, M. I.: Climate and Life, Academic Press, New York,
508 pp., 1974.

Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Ko-
ren, V., Gayno, G., and Tarpley, J. D.: Implementation of Noah
land surface model advances in the National Centers for Environ-
mental Prediction operational mesoscale Eta model, J. Geophys.
Res., 108, 8851, https://doi.org/10.1029/2002JD003296, 2003.

Essou, G. R., Sabarly, F., Lucas-Picher, P., Brissette, F., and Poulin,
A.: Can Precipitation and Temperature from Meteorological Re-
analyses Be Used for Hydrological Modeling?, J. Hydrometeo-
rol., 17, 1929–1950, 2016.

Ford, T. W. and Labosier, C. F.: Meteorological conditions
associated with the onset of flash drought in the east-
ern United States, Agr. Forest Meteorol., 247, 414–423,
https://doi.org/10.1016/j.agrformet.2017.08.031, 2017.

Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi,
S. S., Lee, J.-E., Toon, G. C., Butz, A., Jung, M., Kuze, A.,
and Yokota, T.: New global observations of the terrestrial car-
bon cycle from GOSAT: Patterns of plant fluorescence with
gross primary productivity, Geophys. Res. Lett., 38, L17706,
https://doi.org/10.1029/2011GL048738, 2011.

Fuka, D., Walter, M. T., MacAlister, C., Degaetano, A. T.,
Steenhuis, T. S., and Easton, Z. M.: Using the Cli-
mate Forecast System Reanalysis as weather input data
for watershed models, Hydrolog. Process., 28, 5613–5623,
https://doi.org/10.1002/hyp.10073, 2013.

Guanter, L., Alonso, L., Gomez-Chova, L, Amoros-Lopez, J., Vila,
J., and Moreno, J.: Estimation of solar-induced vegetation flu-
orescence from space measurements, Geophys. Res. Lett., 34,
L08401, https://doi.org/10.1029/2007GL029289, 2007.

Guanter, L., Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt,
M., Berry, J. A., Frankenberg, C., Huete, A. R., Zarco-Tejada,
P., Lee, J.-E., Moran, M. S., Ponce-Campos, G., Beer, C.,
Camps-Valls, G., Buchmann, N., Gianelle, D., Klumpp, K.,
Cescatti, A., Baker, J. M., and Griffis, T. J.: Global and time-
resolved monitoring of crop photosynthesis with chlorophyll
fluorescence, P. Natl. Acad. Sci. USA, 111, E1327–E1333,
https://doi.org/10.1073/pnas.1320008111, 2014.

Higgins, R. W., Shi, W., Yarosh, E., and Joyce, R.: Improved
United States Precipitation Quality Control System and Anal-
ysis, NCEP/NWS/NOAA, Camp Springs, MD, NCEP/Climate
Prediction Center ATLAS No. 7, 40 pp., 2000.

Hobbins, M. T.: The variability of ASCE standardized reference
evapotranspiration: A rigorous, conus-wide decomposition and
attribution, T. ASABE, 59, 1–16, 2016.

Hobbins, M. T., Wood, A., McEvoy, D. J., Huntington, J. L., Mor-
ton, C., and Verdin, J.: The Evaporative Demand Drought Index.
Part I: Linking drought evolution to variations in evaporative de-
mand, J. Hydrometeorol., 13, 1195–1214, 2016.

Huang, J. and Han, D.: Meta-analysis of influential factors on crop
yield estimation by remote sensing, Int. J. Remote Sens., 35,
2267–2295, 2014.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Fer-
reira, L. G.: Overview of the radiometric and biophysical perfor-
mance of the MODIS vegetation indices, Remote Sens. Environ.,
83, 195–213, 2002.

Irmak, S., Payero, J. O., Martin, D. L., Irmak, A., and Howell,
T. A.: Sensitivity analyses and sensitivity coefficients of stan-

Hydrol. Earth Syst. Sci., 22, 5373–5386, 2018 www.hydrol-earth-syst-sci.net/22/5373/2018/

https://doi.org/10.1029/2006JD007506
https://doi.org/10.1029/2006JD007507
https://doi.org/10.1029/2009JD013470
https://doi.org/10.1029/2002JD003296
https://doi.org/10.1016/j.agrformet.2017.08.031
https://doi.org/10.1029/2011GL048738
https://doi.org/10.1002/hyp.10073
https://doi.org/10.1029/2007GL029289
https://doi.org/10.1073/pnas.1320008111


J. A. Otkin et al.: ESI correlations with soil moisture and weather anomalies 5385

dardized daily ASCE-Penman-Monteith equation, J. Irrig. Drain.
Eng., 132, 564–578, 2006.

Johnson, D. M.: A comprehensive assessment of the correlations
between field crop yields and commonly used MODIS products,
Int. J. Appl. Earth Obs., 52, 65–81, 2016.

Joiner, J., Yoshida, Y., Vasilkov, A. P., Yoshida, Y., Corp, L. A.,
and Middleton, E. M.: First observations of global and seasonal
terrestrial chlorophyll fluorescence from space, Biogeosciences,
8, 637–651, https://doi.org/10.5194/bg-8-637-2011, 2011.

Koster, R. D. and Suarez, M. J.: Energy and water balance calcu-
lations in the Mosaic LSM, Technical Report Series on Global
Modeling and Data Assimilation, NASA Tech. Memo 104606,
9, 66 pp., 1996.

Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox,
P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu,
P., Lu, C.-H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko,
D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M.,
Verseghy, D., Vasic, R., Xue, Y., and Yamada, T.: Regions of
strong coupling between soil moisture and precipitation, Science,
305, 1138–1140, 2004.

Li., Z., Xu, D., and Guo, X.: Remote sensing of ecosystem health:
Opportunities, challenges, and future perspectives, Sensors, 14,
21117–21139, https://doi.org/10.3390/s141121117, 2014.

Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface and soil
moisture parameterization of the VIC-2L model: Evaluation and
modifications, Global Planet. Change, 13, 195–206, 1996.

Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Eval-
uation of seven different atmospheric reanalysis products in the
Arctic, J. Climate, 27, 2588–2606, 2014.

Liu, W. T. and Kogan, F. N.: Monitoring regional drought using
the Vegetation Condition Index, Int. J. Remote Sens., 17, 2761–
2782, 1996.

Lorenz, D. J., Otkin, J. A., Svoboda, M., Hain, C., Anderson, M.
C., and Zhong, Y.: Predicting U.S. Drought Monitor states us-
ing precipitation, soil moisture, and evapotranspiration anoma-
lies. Part I: Development of a non-discrete USDM index, J. Hy-
drometeorol., 18, 1943–1962, 2017a.

Lorenz, D. J., Otkin, J. A., Svoboda, M., Hain, C., Anderson, M.
C., and Zhong, Y.: Predicting U.S. Drought Monitor states us-
ing precipitation, soil moisture, and evapotranspiration anoma-
lies. Part 2: Intraseasonal drought intensification forecasts, J. Hy-
drometeorol., 18, 1963–1982, 2017b.

Lorenz, D. J., Otkin, J. A., Svoboda, M., Hain, C., Anderson, M. C.,
and Zhong, Y.: Forecasting rapid drought intensification using
the Climate Forecast System (CFS), J. Geophys. Res.-Atmos.,
123, 8365–8373, https://doi.org/10.1029/2018JD028880, 2018.

Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de
Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A.,
and Verhoest, N. E. C.: GLEAM v3: satellite-based land evapora-
tion and root-zone soil moisture, Geosci. Model Dev., 10, 1903–
1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.

McEvoy, D. J., Huntington, J. L., Hobbins, M. T., Wood, A.,
Morton, C., Anderson, M., and Hain, C.: The Evaporative De-
mand Drought Index. Part II: CONUS-wide assessment against
common drought indicators, J. Hydrometeorol., 17, 1763–1779,
2016.

McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of
drought frequency and duration to time scale, in: 8th Conference

on Applied Climatology, 17–22 January, Anaheim, California,
American Meteorological Society, Boston, 179–184, 1993.

McNaughton, K. G. and Spriggs, T. W.: Amixed-layer model for
regional evaporation, Bound.-Lay. Meteorol., 34, 243–262, 1986.

Mu, Q. Z., Zhao, M. S., and Running, S. W.: Improvements to a
MODIS global terrestrial evapotranspiration algorithm, Remote
Sens. Environ., 115, 1781–1800, 2011.

Myneni, R. B., Hoffma, S., Knyazikhin, Y., Privette, J. L., Glassy,
J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch,
A., Friedl, M., Morisette, J. T., Votava, P., Nemani, R. R., and
Running, S. W.: Global products of vegetation leaf area and frac-
tion absorbed PAR from year one of MODIS data, Remote Sens.
Environ., 83, 214–231, 2002.

Neiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D.,
and Dettinger, M. D.: Meteorological characteristics and over-
land precipitation impacts of atmospheric rivers affecting
the West Coast of North America based on eight years of
SSM/I satellite observations, J. Hydrometeorol., 9, 22–47,
https://doi.org/10.1175/2007JHM855.1, 2008.

Norman, J. M., Kustas, W. P., and Humes, K. S.: A two-source ap-
proach for estimating soil and vegetation energy fluxes from ob-
servations of directional radiometric surface temperature, Agr.
Forest Meteorol., 77, 263–292, 1995.

Oren, R., Sperry, J. S., Katul, G. G., Pataki, D. E., Ewers, B. E.,
Phillips, N., and Schäfer, K. V.: Survey and synthesis of intra-
and interspecific variation in stomatal sensitivity to vapour pres-
sure deficit, Plant Cell Environ., 22, 1515–1526, 1999.

Otkin, J. A., Anderson, M. C., Hain, C., Mladenova, I., Basara, J.,
and Svoboda, M.: Examining flash drought development using
the thermal infrared based Evaporative Stress Index, J. Hydrom-
eteor., 14, 1057–1074, 2013.

Otkin, J. A., Anderson, M. C., Hain, C., and Svoboda, M.: Exam-
ining the relationship between drought development and rapid
changes in the Evaporative Stress Index, J. Hydrometeorol., 15,
938–956, 2014.

Otkin, J. A., Anderson, M. C., Hain, C., and Svoboda, M.: Us-
ing temporal changes in drought indices to generate probabilistic
drought intensification forecasts, J. Hydrometeorol., 16, 88–105,
2015a.

Otkin, J. A., Shafer, M., Svoboda, M., Wardlow, B., Anderson, M.
C., Hain, C., and Basara, J.: Facilitating the use of drought early
warning information through interactions with agricultural stake-
holders, B. Am. Meteorol. Soc., 96, 1073–1078, 2015b.

Otkin, J. A., Anderson, M. C., Hain, C., Svoboda, M., Johnson, D.,
Mueller, R., Tadesse, T., Wardlow, B., and Brown, J.: Assessing
the evolution of soil moisture and vegetation conditions during
the 2012 United States flash drought, Agr. Forest Meteorol., 218–
219, 230–242, 2016.

Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M.
C., Hain, C., and Basara, J. B.: Flash droughts: A review and
assessment of the challenges imposed by rapid onset droughts in
the United States, B. Am. Meteorol. Soc., 99, 911–919, 2018.

Running, S., Mu, Q., and Zhao, M.: MOD17A2 MODIS/Terra
Gross Primary Productivity 8-Day L4 Global 1 km SIN
Grid, NASA LP DAAC, http://www.ntsg.umt.edu/files/modis/
MOD17UsersGuide2015_v3.pdf (last access: 16 October 2018),
2015.

www.hydrol-earth-syst-sci.net/22/5373/2018/ Hydrol. Earth Syst. Sci., 22, 5373–5386, 2018

https://doi.org/10.5194/bg-8-637-2011
https://doi.org/10.3390/s141121117
https://doi.org/10.1029/2018JD028880
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.1175/2007JHM855.1
http://www.ntsg.umt.edu/files/modis/MOD17UsersGuide2015_v3.pdf
http://www.ntsg.umt.edu/files/modis/MOD17UsersGuide2015_v3.pdf


5386 J. A. Otkin et al.: ESI correlations with soil moisture and weather anomalies

Saha, S., Moorthi, S., Pan, H., et al.: The NCEP Climate System
Forecast Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057,
2010.

Seager, R., Hooks, A., Williams, A. P., Cook, B., Nakamura, J., and
Henderson, N.: Climatology, variability, and trends in the U.S.
vapor pressure deficit: An important fire-related meteorological
quantity, J. Appl. Meteorol. Clim., 54, 1121–1141, 2015.

Seager, R., Feldman, J., Lis, N., Ting, M., Williams, A. P., Naka-
mura, J., Liu, H., and Henderson, N.: Whither the 100th merid-
ian? The once and future physical and human geography of
America’s arid-humid divide. Part II: The meridian moves east,
Earth Interact., 22, 1–24, 2018.

Sharp, E., Dodds, P., Barrett, M. and Spataru, C.: Evaluating the
accuracy of CFSR reanalysis hourly wind speed forecasts for the
UK using in situ measurements and geographical information,
Renew. Energ., 77, 527–538, 2015.

Sun, Y., Fu, R., Dickinson, R., Joiner, J., Frankenberg, C., Gu, L.,
Xia, Y., and Fernando, N.: Drought onset mechanisms revealed
by satellite solar-induced chlorophyll fluorescence: Insights from
two contrasting extreme events, J. Geophys. Res.-Biogeo., 120,
2427–2440, https://doi.org/10.1002/2015JG003150, 2015.

Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K.,
Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D.,
Miskus, D., and Stephens, S.: The Drought Monitor, B. Am. Me-
teorol. Soc., 83, 1181–1190, 2002.

Tucker, C. J.: Red and photographic infrared linear combinations
for monitoring vegetation, Remote Sens. Environ., 8, 127–150,
1979.

Vitart, F., Ardilouze, C., Bonet, A., et al.: The Subseasonal to Sea-
sonal (S2S) Prediction Project Database, B. Am. Meteorol. Soc.,
98, 163–173, 2017.

Wei, H., Xia, Y., Mitchell, K. E., and Ek, M. B.: Improvement of the
Noah land surface model for warm season processes: Evaluation
of water and energy flux simulation, Hydrol. Process., 27, 297–
303, https://doi.org/10.1002/hyp.9214, 2013.

Xia, Y., Ek, M. B., Wei, H., and Meng, J.: Comparative analysis
of relationships between NLDAS-2 forcings and model outputs,
Hydrol. Process., 26, 467–474, 2012a.

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood,
E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Letten-
maier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko,
D.: Continental-scale water and energy flux analysis and val-
idation of the North American Land Data Assimilation Sys-
tem project phase 2 (NLDAS-2): 1. Intercomparison and ap-
plication of model products, J. Geophys. Res., 117, D03109,
https://doi.org/10.1029/2011JD016048, 2012b

Xia, Y., Sheffield, J., Ek, M. B., Dong, J., Chaney, N., Wei, H.,
Meng, J., and Wood, E. F.: Evaluation of multi-model sim-
ulated soil moisture in NLDAS-2, J. Hydrol., 512, 107–125,
https://doi.org/10.1016/j.jhydrol.2014.02.027, 2014.

Hydrol. Earth Syst. Sci., 22, 5373–5386, 2018 www.hydrol-earth-syst-sci.net/22/5373/2018/

https://doi.org/10.1002/2015JG003150
https://doi.org/10.1002/hyp.9214
https://doi.org/10.1029/2011JD016048
https://doi.org/10.1016/j.jhydrol.2014.02.027

	Abstract
	Introduction
	Data and methodology
	Evaporative Stress Index
	North American Land Data Assimilation System
	Standardized Precipitation Index
	Atmospheric variables

	Results
	Monthly correlation analysis
	Regional correlation analysis

	Conclusions and discussion
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	References

