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[1] A regional-scale Observing System Simulation Experiment was used to examine
the impact of water vapor (WV) sensitive infrared brightness temperature observations on
the analysis and forecast accuracy during a high impact weather event across the central
U.S. Ensemble data assimilation experiments were performed using the ensemble Kalman
filter algorithm in the Data Assimilation Research Testbed system. Vertical error profiles at
the end of the assimilation period showed that the wind and temperature fields were
most accurate when observations sensitive to WV in the upper troposphere were
assimilated; however, the largest improvements in the cloud and moisture analyses
occurred after assimilating observations sensitive to WV in the lower and middle
troposphere. The more accurate analyses at the end of these cases lead to improved
short-range precipitation forecasts compared to the Control case in which only
conventional observations were assimilated. Equitable threat scores were consistently
higher for all precipitation thresholds during the WV band forecasts. These results
demonstrate that the ability of WV-sensitive infrared brightness temperatures to improve
not only the 3D moisture distribution, but also the temperature, cloud, and wind fields,
enhances their utility within a data assimilation system.
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1. Introduction

[2] Atmospheric water vapor (WV) is a critical component
of the hydrological cycle and exerts a strong influence on
sensible weather through its effect on cloud cover and pre-
cipitation processes. Small changes in the spatial distribution
of WV can have a profound impact on the generation and
subsequent evolution of high-impact weather events, such as
severe thunderstorms, winter storms, heavy rainfall, and
tropical cyclones. For instance, dry air in the lower tropo-
sphere during the winter often delays the onset of surface
precipitation associated with extratropical cyclones and can
lead to challenging snowfall forecasts due to the potential
impact of evaporative cooling on precipitation type. Prior
studies [e.g., Sanders and Gyakum, 1980] have also shown
that latent heat release induced by a burst of heavy precipi-
tation can lead to a period of very rapid cyclogenesis and the
development of hazardous weather conditions. Excessive
rainfall can occur in the presence of abundant moisture
(hereafter, used interchangeably with “WV”) and persistent
moisture convergence. For thunderstorms, the magnitude of

the convective available potential energy that a storm can
access is determined by the vertical distribution of WV and
temperature. Dry air in the middle troposphere associated
with an elevated mixed layer often prevents the initiation of
widespread deep convection, yet its presence can lead to
more destructive thunderstorms if the capping inversion can
be eliminated [e.g., Carlson et al., 1983]. The WV distri-
bution also plays an important role during the development
of tropical cyclones by modulating the amount and location
of latent heat release [Palmen, 1948; Riehl, 1948; McBride
and Zehr, 1981].
[3] Accurate forecasts of cloud cover, surface precipita-

tion, and storm evolution are more likely to occur when the
spatial distribution of WV is accurately specified in the ini-
tialization data sets used by numerical weather prediction
models. Unfortunately, WV is highly variable in both space
and time and is poorly sampled by in situ observations.
Radiosonde humidity profiles are very valuable, but typi-
cally are available only twice per day, are unevenly distrib-
uted, and have limited accuracy in the upper troposphere
[Miloshevich et al., 2006]. Surface observations are avail-
able more often, but do not provide any direct information
about the vertical structure of the WV distribution. The
scarcity of conventional WV observations, particularly over
the oceans, enhances the value of remotely sensed satellite
observations that are sensitive to WV, such as those from
infrared and microwave sensors. Thermal infrared imagers
and sounders onboard geosynchronous satellites, such as the
Geostationary Operational Environmental Satellites (GOES),
are especially useful because of their high spatial and
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temporal resolution and large coverage area. A comprehen-
sive study of the global impact of the primary humidity
observing systems by Andersson et al. [2007] found that WV
observations have a significant impact on the accuracy of
forecasts generated by the European Centre for Medium-
Range Weather Forecasts model. Radiosonde and surface
station observations were dominant over land, whereas
microwave sensors had their greatest impact over the oceans
and infrared sounders were most important in the upper tro-
posphere. The efficient use of satellite WV observations in
modern data assimilation systems whether as radiances or
WV profile retrievals has the potential to greatly reduce
uncertainties in the initial WV distribution that adversely
affect model forecast accuracy [Fabry and Sun, 2010].
[4] Early studies obtained useful information about the

moisture field from infrared observations by generating
derived quantities, such as vertical profiles of latent heating,
dew point depression, and cloud liquid water, that were
based on diagnosed cloud types [Krishnamurti et al., 1984;
Donner, 1988; Puri and Miller, 1990; Puri and Davidson,
1992; Wu et al., 1995]. These data were especially useful
for limiting the time required by a model to spin-up realistic
cloud features after its initialization. Subsequent work by
Schmit et al. [2002] and Zapotocny et al. [2005] found that
directly assimilating three-layer precipitable water (PWAT)
retrievals from the GOES sounder over land improved Eta
model humidity and precipitation forecasts for up to 48 h.
These studies also showed that the higher temporal resolu-
tion of the GOES observations provided a larger forecast
impact than was achieved using observations from polar
orbiting sensors. Raymond et al. [2004] used a suboptimal
assimilation approach to extract information from the WV
band brightness temperatures on the GOES imager. Even
with their simple approach, modest improvements were
made to the upper level moisture field.
[5] Recent studies have used advanced assimilation

methods to directly assimilate WV sensitive infrared radian-
ces and WV profile retrievals. Li and Liu [2009] and Liu
et al. [2011] found that WV and temperature retrievals
from the Advanced Infrared Sounder (AIRS) and the
Moderate-resolution Imaging Spectroradiometer (MODIS)
reduced hurricane forecast intensity and track errors when
assimilated using an ensemble Kalman filter (EnKF)
[Evensen, 1994] assimilation system. Hurricane forecasts
were also improved when AIRS WV retrievals were assim-
ilated using a 3DVAR assimilation system [Pu and Zhang,
2010]. Precipitation forecasts for an extremely heavy rain-
fall event were more accurate when AIRS WV profiles were
assimilated [Singh et al., 2008]. Direct radiance assimilation
using both 3DVAR and 4DVAR systems has also been shown
to improve the analysis and forecast accuracy [Köpken et al.,
2004; Munro et al., 2004; Stengel et al., 2010; Singh et al.,
2010, 2011].
[6] In this study, a regional-scale Observing System

Simulation Experiment (OSSE) is used to evaluate the
impact of WV-sensitive infrared brightness temperatures
from the Advanced Baseline Imager (ABI) on the analysis
and forecast accuracy during a high-impact weather event.
The ABI is a 16-band imager that will be launched onboard
the GOES-R geosynchronous satellite in 2016 [Schmit et al.,
2005]. Accurate radiance and reflectance measurements with
high spatial and temporal resolution will provide detailed

information about surface temperatures and the tropo-
spheric WV and cloud distributions over a large geographic
domain. The paper is organized as follows. The ensemble
data assimilation system and the methodology used to
generate the simulated observations are described in Section
2. A brief overview of the meteorological conditions during
the case study is given in Section 3. Analysis and forecast
results are shown in Sections 4 and 5, with conclusions
presented in Section 6.

2. Experimental Design

2.1. Forecast Model

[7] Version 3.3 of the Weather Research and Forecasting
(WRF) numerical weather prediction model was used during
this study. The WRF model solves the compressible non-
hydrostatic Euler equations presented in flux form on a mass-
based terrain-following vertical coordinate system. Predicted
variables include the WV mixing ratio, vertical and hori-
zontal wind components, the mixing ratios and number
concentrations for several cloud microphysical species, and
perturbations in potential temperature, surface pressure of
dry air, and geopotential height. The reader is referred to
Skamarock et al. [2005] for a detailed description of theWRF
modeling system.

2.2. Data Assimilation System

[8] Ensemble data assimilation experiments were per-
formed using the Data Assimilation Research Testbed
(DART) [Anderson et al., 2009] system developed at the
National Center for Atmospheric Research. The ensemble
adjustment Kalman filter algorithm [Anderson, 2001] used
during this study processes observations serially and is
mathematically equivalent to the ensemble square root filter
developed by Whitaker and Hamill [2002]. Temporally and
spatially varying covariance inflation values at each grid
point are automatically computed during the assimilation
step using the methodology described by Anderson [2007,
2009]. Sampling errors resulting from the rank-deficient
ensemble size are reduced using vertical and horizontal
covariance localization [Mitchell et al., 2002; Hamill et al.,
2001; Houtekamer et al., 2005] based on a compactly sup-
ported fifth-order correlation function [Gaspari and Cohn,
1999].

2.3. Satellite Brightness Temperature Forward
Model Operator

[9] Simulated infrared brightness temperatures are com-
puted using the Successive Order of Interaction (SOI) for-
ward radiative transfer model [Heidinger et al., 2006; O’Dell
et al., 2006]. The SOI model uses CompactOPTRAN code
from the Community Radiative Transfer Model (CRTM)
[Han et al., 2006] to compute gas optical depths for each
model layer. Absorption and scattering properties, such as
the full scattering phase function, single scatter albedo, and
extinction efficiency, for each frozen hydrometeor species
(i.e., ice, snow, and graupel) are obtained from Baum et al.
[2005], whereas a lookup table based on Lorenz-Mie cal-
culations is used for the liquid species (i.e., cloud water and
rainwater). Visible cloud optical depths are calculated for
each microphysical species based on Han et al. [1995] and
Heymsfield et al. [2003], and then converted into infrared
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cloud optical depths by scaling the visible optical depths by
the ratio of the extinction efficiencies. The surface emissivity
for each ABI infrared band is obtained from the Seemann
et al. [2008] global emissivity database for land grid points;
however, for water points, the CRTM Infrared Sea Surface
Emissivity Model is used to compute the surface emissivity.
WRF model data used by the SOI model to compute simu-
lated brightness temperatures includes the WV mixing ratio,
atmospheric temperature, surface skin temperature, 10-m
wind speed, and the mixing ratios for each hydrometeor
species predicted by the microphysics parameterization
scheme. Previous studies have shown that the SOI model
computes accurate infrared brightness temperatures for both
clear and cloudy sky conditions [Otkin and Greenwald,
2008; Otkin et al., 2009].
[10] To assimilate satellite observations, Otkin [2010]

wrote an interface between the SOI forward model and the
DART system. Although the SOI model is very complex, it
is still treated the same as any other observation operator in
DART, which is an important benefit of using ensemble data
assimilation systems to assimilate complex observations. At
the end of each forecast cycle, output from the nearest model
grid point to a given observation location is passed from
each ensemble member to the forward model, which is then
used to compute the simulated brightness temperatures for the
entire ensemble. These values are subsequently returned to the
main DART program used to assimilate all observations.

2.4. Simulated Observations

[11] Data from the high-resolution (6-km) “truth” simula-
tion described in Section 3 was used to generate simulated
observations for the ABI sensor and three conventional in
situ observing systems, including radiosondes, the Aircraft
Communications Addressing and Reporting System (ACARS),
and the Automated Surface Observing System (ASOS).
Simulated surface pressure, 2-m temperature and relative
humidity, and 10-m wind speed and direction observations
were computed for each ASOS station. Vertical profiles of
temperature, relative humidity, and horizontal wind speed
and direction were generated for mandatory and significant
levels at each radiosonde location following standard

reporting conventions. Simulated ACARS wind and tem-
perature observations were computed for the same flight
level and location as the real pilot reports listed in the
Meteorological Assimilation Data Ingest System files during
the case study period.
[12] The SOI forward radiative transfer model was used to

compute simulated infrared brightness temperatures for three
ABI bands that are sensitive to the WV content in the upper
troposphere (band 8; 6.19 mm), middle troposphere (band 9;
6.95 mm), and lower troposphere (band 10; 7.34 mm). These
bands are also sensitive to clouds if they are located near or
above the peak in the weighting function profile for each
band (refer to Figure 1). For comparison to prior work by
Otkin [2010, 2012], simulated brightness temperatures were
also computed for band 11 (8.5 mm), which is a standard
window channel that is sensitive to cloud top properties
when clouds are present or to the surface when the sky is
clear. Figure 1 shows the theoretical weighting function
profiles for each band under clear sky conditions for a
midlatitude cool season atmosphere at a satellite zenith angle
of 40�. A weighting function profile specifies the relative
contribution from each atmospheric layer to the radiation
emitted to space and thereby determines those regions of the
atmosphere that are sensed from space at a given wave-
length. The ABI observations were computed on the 6-km
“truth” grid and were then averaged to 30 km resolution
prior to assimilation. Averaged observations were only used
if all of the grid points within each averaging area on the
truth domain were either clear or cloudy, thus partly cloudy
averaged observations were not assimilated during this
study. A grid point was considered cloudy if the cloud
optical thickness for any of the predicted microphysical
species was greater than zero.

2.5. Measurement and Observation Errors

[13] Realistic measurement errors drawn from an uncor-
related and unbiased Gaussian error distribution with unit
variance were added to each observation. Table 1 shows the
maximum measurement errors allowed for each observation
type. Measurement errors can be due to systematic biases
resulting from limited sensor accuracy in some or all situa-
tions or they can be due to random errors in the observations.
To account for other sources of uncertainty, such as
numerical model bias and representativeness errors, the
observation errors used during the assimilation step are
typically much larger than the actual measurement errors,
particularly for observations that are sensitive to the WV and
cloud fields. For the conventional observations, the obser-
vation errors are similar to those used operationally at the
National Center for Environmental Prediction (NCEP). The
temperature and wind component errors for the ACARS
observations were set to 1.8 K and 3.8 m s�1. At the surface,
errors for the ASOS observations were set to 1.5 hPa for the
surface pressure, 2 K and 18% for the 2-m temperature and
relative humidity, and 3.5 m s�1 for the 10-m zonal and
meridional wind components. The radiosonde errors were a
function of height and varied from 10 to 15% for relative
humidity, 0.8–1.2 K for temperature, and 1.4–3.2 m s�1 for
the zonal and meridional wind components. For the ABI
brightness temperatures, the observation error was set to
2.5 K, 2.8 K, 3.5 K, and 5 K for bands 8, 9, 10, and 11,
respectively, for both clear and cloudy observations. These

Figure 1. Clear-sky weighting function profiles for ABI
bands 8–11 plotted for a midlatitude winter atmosphere at
a satellite zenith angle of 40�. The weighting functions were
calculated using simulated spectral response functions based
on proposed ABI bandwidths.
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values were chosen after evaluating results from sensitivity
tests in which the observation errors were systematically
varied. The observation error used for the 8.5 mm brightness
temperatures (band 11) is similar to that used by prior
assimilation studies [e.g., Seaman et al., 2010; Otkin, 2010,
2012]. Larger observation errors are necessary for bands
with weighting functions peaking lower in the troposphere
(refer to Figure 1) since their sensitivity to a greater depth of
the atmosphere results in a greater range in brightness
temperature values and thus potentially to larger represen-
tativeness errors.

3. Truth Simulation

[14] A truth simulation depicting the evolution of a strong
midlatitude cyclone and associated areas of heavy precipi-
tation across the central U.S. on 24 December 2009 was
performed using the WRF model. Global 0.5�FNL (final)
analyses from NCEP were used to initialize the simulation at
00 UTC on 23 December 2009 on a 1100 � 750 grid point
domain covering the contiguous U.S. with 6-km horizontal
grid spacing and 52 vertical levels (Figure 2). The vertical
grid spacing in the model decreased from <100 m in the
lowest km to �700 m near the model top at 10 hPa. A larger
horizontal domain was used for the truth simulation than for
the assimilation experiments to reduce the impact of the
lateral boundary conditions on the atmospheric state over the
contiguous U.S. The WRF Single Moment 6-Class mixed-
phase microphysics scheme [Hong and Lim, 2006], the
Yonsei University planetary boundary layer scheme [Hong
et al., 2006], the Kain-Fritsch cumulus scheme [Kain and
Fritsch, 1993; Kain, 2004], and the RRTMG longwave
and shortwave radiation schemes [Iacono et al., 2008] were
used to parameterize sub-grid scale processes. Heat and
moisture fluxes at the surface were computed using the Noah
land surface model.
[15] The evolution of the height and wind fields in the

lower and upper troposphere, along with the simulated
PWAT and cloud top pressure, for a 12-h period during the
truth simulation starting at 06 UTC on 24 Dec 2009 is shown
in Figure 3. Simulated observations from the first six hours
will be assimilated during the experiments presented in
Section 4, whereas the last six hours will be used to assess
the forecast impact of the observations. At 06 UTC, a deep
upper level trough was located across the western U.S.
(Figure 3a) with a seasonably strong jet streak (55 m s�1)

extending from northern Mexico into the southern U.S.
Widespread ascent ahead of the trough led to an extensive
area of cloud cover across the central U.S. Strong southerly
winds in the lower troposphere were rapidly transporting
very moist air northward across the lower Mississippi River
Valley with PWAT values >2 cm as far north as southern
Wisconsin (Figure 3b). By 12 UTC, a strong shortwave
disturbance was emerging from the base of the trough over
Texas (Figure 3c), while extensive moisture continued to
stream northward into the central U.S. (Figure 3d). During
the ensuing six hours, the shortwave trough acquired a large
negative tilt (Figure 3e), while an intense surface cyclone
and a well-defined low-level circulation developed across
the Southern Plains (Figure 3f). A sharp moisture gradient
occurred to the south of the cyclone as a strong cold front
and much drier air moved across eastern Texas and the
northern Gulf of Mexico.

4. Assimilation Results

4.1. Initial Ensemble and Model Configuration

[16] The assimilation experiments presented later in this
section start at 06 UTC on 24 December 2009. Initial con-
ditions valid at this time were created for a 60-member WRF
model ensemble by adding perturbed initial and lateral

Figure 2. Geographical coverage of the 6-km truth
domain. The shaded area corresponds to the domain used
during the assimilation experiments. The inner black rectan-
gle encloses the region used for the forecast verification in
Section 5.

Table 1. Maximum Measurement Errors Used for Each Observation Typea

Sensor Observation Type Maximum Measurement Error

ABI Brightness Temperature 1 K
Radiosonde Temperature 0.2 K

Relative Humidity 2%
Wind Speed 0.3 m s�1

Wind Direction 0.15 degrees
ASOS Temperature 0.8 K

Dew Point Temperature (Td) 2.6 K for Td > 273 K; 4.4 K for Td < 273 K
Wind Speed 1.0 m s�1 or 5% of the wind speed, whichever is greater
Wind Direction 10 degrees for wind speeds <2.5 m s�1; 5 degrees for wind speeds >2.5 m s�1

Surface Pressure 0.67 hPa
ACARS Temperature 0.6–0.9 K

Wind Speed 1.4–2.4 m s�1

aThe errors were drawn from an uncorrelated and unbiased Gaussian error distribution with unit variance.
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boundary perturbations to 0.5�FNL analyses at 00 UTC on
23 Dec and then integrating the ensemble for 30 h to
increase the ensemble spread. Covariance statistics provided
by the WRF-Var data assimilation system were used to
generate the ensemble perturbations similar to the approach
described by Torn et al. [2006]. The assimilation experi-
ments were performed on a 272 � 216 grid point domain
with 15-km horizontal grid spacing and 37 vertical levels.
The assimilation domain covered a subset of the geographic
domain used during the truth simulation (refer to Figure 2).
Sub-grid scale processes were parameterized using the same
parameterization schemes as in the truth simulation.
[17] In the remainder of this section, results from five

assimilation experiments that were designed to evaluate the
impact ofWV sensitive infrared brightness temperatures on the
analysis and forecast accuracy will be compared to data from
the truth simulation. Simulated conventional observations

were the only observations assimilated during the Control
case, while both conventional observations and clear and
cloudy-sky brightness temperatures were assimilated during
the other cases. Observations from the ABI 6.19 mm,
6.95 mm, 7.34 mm, and 8.5 mm spectral bands were assimi-
lated separately during the Band-08, Band-09, Band-10, and
Band-11 cases, respectively. Simulated radiosonde observa-
tions were assimilated at 12 UTC, whereas all other obser-
vations were assimilated every 30 min during a 6-h period
from 06 UTC until 12 UTC on 24 Dec. The horizontal and
vertical covariance localization radii were set to 600 km
and 6 km, respectively, for the conventional observations.
Sensitivity tests revealed that much smaller horizontal radii
were necessary for the brightness temperature observations
to account for their higher spatial resolution and the
potential for larger uncertainties in the representativeness of
small-scale cloud and WV features detected by infrared

Figure 3. (a) Simulated cloud top pressure (hPa; color filled), 300 hPa geopotential height
(m; contoured) and 300 hPa winds (m s�1) valid at 06 UTC on 24 December 2009. Each wind barb
equals 5 m s�1. (b) Simulated total precipitable water (mm; color filled) and 700 hPa winds (m s�1) valid
at 06 UTC on 24 December 2009. Each wind barb equals 5 m s�1. (c and d) Same as Figures 3a and 3b
except for 12 UTC on 24 December 2009. (e and f) Same as Figures 3a and 3b except for 18 UTC on
24 December 2009.
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sensors. The chosen radii are consistent with the results
shown in Otkin [2012]. For these observations, the hori-
zontal localization radius was set to 100 km for band 11 and
to 200 km for bands 8, 9, and 10. Vertical covariance
localization was not used for the brightness temperature
observations since they are sensitive to broad layers of the
atmosphere. The model state vector includes the surface
pressure, WV mixing ratio, temperature, horizontal and
vertical wind components, and the mixing ratios for cloud
water, rainwater, pristine ice, snow, and graupel. Covari-
ance inflation at each grid point was computed using the
time and spatially varying inflation scheme developed by
Anderson et al. [2009].

4.2. Time Series Error Analysis

[18] Figure 4 shows the temporal evolution of the prior
and posterior root mean square errors (RMSE) for the ABI
6.19 mm, 6.95 mm, 7.34 mm, and 8.5 mm bands for each
assimilation cycle during the 6-h assimilation period. Output
from the truth simulation was averaged to 15-km resolution
prior to computing the statistics in order to match the reso-
lution of the assimilation grid. Although the magnitude of
the error statistics will decrease for each case due to the
removal of the local maxima and minima in the truth simu-
lation, this is acceptable since it will lessen the impact of
small-scale cloud and WV features in the truth simulation
that are simply not reproducible on the coarser resolution
assimilation grid. Overall, the RMSE was much lower

during the brightness temperature assimilation cases, with
the smallest errors for a given band occurring when obser-
vations from that band were assimilated. Large error reduc-
tions occurred during the first several assimilation cycles
with nearly constant errors after 09 UTC. The lower errors
during the brightness temperature assimilation cases are
partially due to a more accurate cloud top pressure analysis
and a concomitant reduction in the negative bias that was
present in the initial ensemble (not shown). Additional
information about the moisture field contained in the Band-08,
Band-09, and Band-10 observations; however, led to even
lower errors for the WV sensitive bands (Figures 4a–4c)
during those cases.
[19] To more closely examine the impact of the observa-

tions on the column-integrated cloud and moisture analyses,
the evolution of the prior and posterior RMSE for the cloud
water path (CWP) and PWAT fields is shown in Figure 5.
Comparison of the brightness temperature assimilation cases
shows that large improvements were made to the moisture
and cloud analyses at each assimilation time regardless of
which band was assimilated; however, the smallest errors
tended to occur when Band-10 (7.34 mm) observations were
assimilated. Given that the PWAT magnitude is closely
related to the moisture content in the lower troposphere, it is
not surprising that the RMSE decreases as the sensitivity of
the WV bands moves from the upper troposphere (Band-08)
to the lower troposphere (Band-10) simply because the
lower-peaking channels will have a stronger influence where

Figure 4. Time evolution of the ensemble mean forecast and analysis (sawtooth pattern) brightness tem-
perature root mean square error (RMSE; K) from 06 UTC on 24 December to 12 UTC on 24 December for
the ABI (a) 6.19 mm, (b) 6.95 mm, (c) 7.34 mm, and (d) 8.5 mm bands. Results are shown for the Band-08
(green), Band-09 (blue), Band-10 (red), Band-11 (dashed black) and Control (solid black) experiments.
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most of the WV is located. Even though Band-11 observa-
tions are not sensitive to moisture, their greater sensitivity to
low-level clouds still led to lower PWAT errors due to the
close relationship between clouds and moisture. The Band-08
errors are slightly larger than the Band-11 errors because they
are not sensitive to clouds or WV in the lower troposphere,
which makes it more difficult for them to have a larger impact
on the integrated WV content. The especially large reduction
in the PWAT RMSE at 12 UTC is due to the radiosonde
humidity observations, which illustrates their important
influence on the moisture analysis. All of the WV band
experiments contained lower CWP errors (Figure 5b) than
the Band-11 and Control cases, which is encouraging since
this indicates that improvements made to the moisture field
by these observations also contribute to a more accurate
cloud analysis.

4.3. Regional Cloud and WV Analysis

[20] To further investigate the impact of the observations
on the horizontal structure of the cloud and WV analyses,
Figure 6 shows the CWP and PWAT differences for each
assimilation case computed by subtracting the posterior
ensemble mean from the truth simulation after the first
assimilation cycle at 06 UTC. The CWP and PWAT differ-
ences for the prior ensemble mean used by all of the
assimilation cases are also shown. Several large errors were
present in the prior ensemble mean (Figures 6a and 6b),
including large areas of excessive moisture surrounding
eastern Kansas, along the Gulf Coast, and over parts of
Georgia and South Carolina. Erroneously dry air was located
over most of Texas with several smaller areas of drier air
scattered across the domain. The cloud field associated with
the developing cyclone over the central U.S. contained
excessive cloud condensate along its northern periphery,
especially over eastern Kansas, and insufficient CWP within
the region of deeper moisture and convective activity over
Arkansas. Assimilation of conventional observations during
the Control case (Figures 6c and 6d) reduced the areal extent
of the erroneously moist atmosphere surrounding eastern
Kansas, but had minimal impact on the PWAT field else-
where. Small improvements were also made to the CWP
field, especially over eastern Kansas and the lower Ohio

River Valley. More substantial improvements were made to
the cloud and WV analyses when the WV-sensitive bright-
ness temperatures were assimilated (Figures 6e–6j). For
instance, these observations were able to more efficiently
reduce the cloud condensate errors in the northwestern third
of the cloud shield over the central U.S., while simulta-
neously increasing the CWP magnitude within the convec-
tive band further to the southeast. Compared to the Control
case, additional drying also occurred within the erroneously
moist areas over eastern Kansas and along the Gulf Coast,
while some moistening occurred within the drier air over
Texas. Several small areas of slight degradation occurred in
the PWAT field over southern Missouri and Arkansas where
the observations exacerbated errors present in the prior
ensemble analysis. When Band-11 observations were
assimilated (Figures 6k and 6l), similar improvements were
noted in the CWP and PWAT fields; however, the errors
tended to be slightly larger than occurred during the WV
assimilation cases.
[21] By the end of the assimilation period at 12 UTC

(Figure 7), large PWAT errors, both negative and positive,
remained across the southern half of the domain during the
Control case (Figure 7a). Excessive cloud condensate also
persisted across the northwestern half of the cloud shield
from Oklahoma to southern Wisconsin, while a narrow
band associated with a line of deep convection along the
Mississippi River contained too little CWP (Figure 7b).
Overall, these errors were much smaller when the WV sen-
sitive observations were assimilated during the Band-08,
Band-09, and Band-10 cases (Figures 7c–7h). Although the
locations and spatial extent of the PWAT errors were
very similar in the WV cases, their magnitude generally
decreased from the Band-08 to Band-10 cases, which is
consistent with the time series results in Figure 5. Over the
southeastern U.S., this tendency was beneficial for most
areas, but did lead to the removal of too much PWAT over
western Georgia during the Band-10 case due to excessive
drying in the lower troposphere. The WV-sensitive bright-
ness temperatures were also able to effectively remove most
of the dry bias across Texas. Inspection of the Band-11
results (Figures 7i and 7j) shows that the final PWAT and
CWP analyses were generally better than the Control case,

Figure 5. Time evolution of the ensemble mean forecast and analysis (sawtooth pattern) root mean
square error (RMSE) from 06 UTC on 24 December to 12 UTC on 24 December for (a) precipitable water
(PWAT; mm), and (b) cloud water path (CWP; mm). Results are shown for the Band-08 (green), Band-09
(blue), Band-10 (red), Band-11 (dashed black) and Control (solid black) experiments.
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but not as accurate as the WV band assimilation cases. This
behavior again indicates that WV sensitive infrared bright-
ness temperatures are able to positively impact the cloud
field as much as 8.5 mm observations, yet also provide much
more information about the moisture distribution.

4.4. Final Analysis Accuracy

[22] The accuracy of the final analysis obtained after 6 h of
assimilation is assessed in this section. Figure 8 shows ver-
tical profiles of RMSE for relative humidity, total cloud
hydrometeor mixing ratio (QALL; sum of the cloud water,
rainwater, pristine ice, snow, and graupel mixing ratios),
temperature, and vector wind speed. The statistics were com-
puted for each case using data from the posterior ensemble
mean at 12 UTC on 24 Dec, excluding the outermost 25 grid

points of the assimilation domain. Compared to the Control
case, the relative humidity, QALL, and vector wind analyses
were all greatly improved during the brightness temperature
assimilation cases. With the exception of the upper tropo-
sphere, the temperature analysis was alsomore accurate during
these cases. The relatively weak sensitivity of the infrared
observations in the upper troposphere (as inferred from the
weighting function profiles in Figure 1) likely contributed to
the presence of less accurate temperature analyses, particularly
for infrared bands peaking lower in the troposphere, such as
Band-10 and Band-11. Overall, the analyses for the WV band
assimilation cases were better than those for the Band-11 case,
particularly in the middle and upper troposphere. Comparison
of the WV band results shows that the temperature and vector

Figure 6. (a) Precipitable water (mm) and (b) cloud water path (mm; sum of cloud water, rainwater,
pristine ice, snow, and graupel) analysis errors computed by subtracting the prior ensemble mean analysis
from the truth simulation at 06 UTC on 24 December 2009. (c and d) Same as Figures 6a and 6b except
for the Control case posterior ensemble mean analysis. (e and f) Same as Figures 6c and 6d except for the
Band-08 case. (g and h) Same as Figures 6a and 6b except for the Band-09 case. (i and j) Same as
Figures 6c and 6d except for the Band-10 case. (k and l) Same as Figures 6c and 6d except for the
Band-11 case.
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wind analyses were most improved when Band-08 observa-
tions were assimilated; however, the errors were smaller for
the cloud and moisture fields during the Band-09 and Band-10
cases. Aside from the QALL analysis, the improvements
during the Band-08 case were especially large above 400 hPa,
most likely due to the greater sensitivity of these observations
to WV in the upper troposphere.
[23] In summary, the results from Section 4 indicate that

the 6.95 mm (Band-09) and 7.34 mm (Band-10) WV sensi-
tive brightness temperature observations had the largest
positive impact on the moisture and cloud fields, while the
thermodynamic fields were most accurate when the 6.19 mm
(Band-08) brightness temperatures were assimilated. All of
the WV band cases were generally more accurate than the
8.5 mm (Band-11) results and were much more accurate than

when only conventional observations were assimilated dur-
ing the Control case.

5. Forecast Impact

5.1. Mean Error Profiles

[24] To assess the impact of the observations on the short-
range model forecast skill during this high-impact weather
event, 6-h ensemble forecasts were performed for each case
using the final ensemble analyses from 12 UTC on 24 Dec.
Figure 9 shows vertical profiles of RMSE for temperature,
relative humidity, and vector wind speed for the 1, 3, and
6-h forecast times. Data from the ensemble mean for the
sub-domain shown in Figure 2 were used to compute the sta-
tistics. A smaller area was used to evaluate the forecast accu-
racy to limit the impact of the lateral boundary conditions on

Figure 7. (a) Precipitable water (mm) and (b) cloud water path (mm; sum of cloud water, rainwater,
pristine ice, snow, and graupel) errors for the Control case computed by subtracting the posterior ensemble
mean analysis from the truth simulation at 12 UTC on 24 December 2009. (c and d) Same as Figures 7a
and 7b except for the Band-08 case. (e and f) Same as Figures 7a and 7b except for the Band-09 case.
(g and h) Same as Figures 7a and 7b except for the Band-10 case. (i and j) Same as Figures 7a and 7b
except for the Band-11 case.
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the forecast statistics. Overall, improvements made to the
moisture and thermodynamic analyses during the brightness
temperature assimilation cases persisted during the forecast
period. For the WV band cases, the most accurate analyses in
the upper troposphere occurred during the Band-08 case;
however, the errors were smaller in the lower troposphere
during the Band-09 and Band-10 cases, which is consistent
with the analysis results shown in Figure 8. Errors during the
WV band forecasts were generally less than those during the
Band-11 and Control cases, especially for the temperature and
relative humidity fields. Since the error spread between theWV
band and Control cases tended to increase with time, this indi-
cates that the error growth was better constrained when WV-
sensitive infrared brightness temperatures were assimilated.
[25] Vertical profiles showing the reduction in the mois-

ture flux convergence (MFC) RMSE for each brightness
temperature assimilation case relative to the Control case are
displayed in Figure 10 for the beginning, middle, and end of
the forecast period. Improved MFC forecasts require a more
accurate depiction of the moisture and wind fields and are

necessary to better predict the location and intensity of sur-
face precipitation. The MFC RMSE was much lower during
the brightness temperature assimilation cases at all levels
and for all forecast times, with error reductions >10% com-
mon throughout the depth of the troposphere. Although large
improvements occurred during the Band-11 case, the errors
were even lower during the WV band forecasts, which is
consistent with the more accurate moisture and wind fore-
casts during these cases. Comparison of the WV band results
shows that the MFC errors were typically lowest for the
Band-09 and Band-10 cases. Their superior performance
compared to the Band-08 case indicates that the larger
improvements in the relative humidity field during these
cases were more important for the MFC forecast than the
more accurate vector wind forecast was during the Band-08
case.

5.2. Accumulated Precipitation Forecasts

[26] The 6-h accumulated precipitation from 12 UTC until
18 UTC on 24 Dec is shown in Figure 11 for the truth

Figure 8. Vertical profiles of root mean square error for (a) relative humidity (%), (b) total cloud hydro-
meteor mixing ratio (g kg�1; sum of cloud water, rainwater, cloud ice, snow, and graupel), (c) temperature
(K), and (d) vector wind speed (m s�1). The profiles were computed using data from the posterior ensem-
ble mean at 1200 UTC on 24 January 2009. Results are shown for the Band-08 (green), Band-09 (blue),
Band-10 (red), Band-11 (dashed black) and Control (solid black) experiments.
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simulation and for each assimilation case. Two areas of
heavier precipitation were present in the truth simulation
(Figure 11a), including a narrow band of snow extending
from north central Texas to eastern Iowa, and an elongated
area of very heavy rainfall associated with deep convection
along the Mississippi River. The combination of very heavy
snowfall and strong winds across north central Texas and
Oklahoma lead to the development of extremely dangerous
blizzard conditions that severely impacted holiday travel
across the region. During the Control case (Figure 11b), the
magnitude and spatial extent of the heavy rainfall area was
generally well predicted; however, the precipitation forecast
was too low across the heavy snowfall area and too high
further to the north over northeastern Kansas and Iowa. The

precipitation forecasts across the heavy snowfall area were
much better during the WV band cases (Figures 11c–11e).
Similar improvements occurred during the Band-11 case
(Figure 11f), though the heaviest snowfall area was shifted
too far to the north. Much less snowfall occurred over
northern Missouri and Iowa during the brightness tempera-
ture assimilation cases, which improved forecasts of the
aerial coverage of the heaviest snowfall band, but led to
maximum precipitation amounts that were slightly less than
observed. Close inspection of the heavy rainfall area along
the Mississippi River shows that some improvements also
occurred across this region during the WV band cases. For
instance, the rainfall band was narrower across northeastern
Arkansas, yet the heaviest precipitation area to the south was

Figure 9. Temperature forecast root mean square error (K) profiles valid at (a) 13 UTC, (b) 15 UTC, and
(c) 18 UTC on 24 December 2009. (d, e, and f) Same as Figures 9a, 9b, and 9c except for relative humidity
(%). (g, h, and i) Same as Figures 9a, 9b, and 9c except for vector wind (m s�1). Statistics were computed
using data from the ensemble mean. Results are shown for the Band-08 (green), Band-09 (blue), Band-10
(red), Band-11 (dashed black) and Control (solid black) experiments.
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wider than occurred during the Control case, both of which
more closely resembled the truth simulation.
[27] To provide a quantitative measure of the precipitation

forecast skill for each case, equitable threat scores [Gandin
and Murphy, 1992] are shown for multiple precipitation
thresholds in Table 2. As expected, the forecast skill was
consistently higher for all precipitation thresholds during the
WV band cases. For the lowest thresholds, the highest skill
occurred during the Band-08 case; however, for heavier
precipitation amounts, the skill was higher during the Band-
09 and Band-10 cases. The reversal in skill scores between
lower and higher precipitation thresholds during the WV
band cases may be indicative of the relative influence of the
moisture and thermodynamic fields during precipitation
generation processes. For instance, the more accurate mois-
ture and MFC forecasts during the Band-09 and Band-10
cases likely improved the forecast skill for heavier precipi-
tation thresholds more than the Band-08 case by modifying
the amount of moisture available for cloud and precipitation
development in the lower and middle troposphere. More
accurate temperature and wind forecasts during the Band-08
case, however, may have exerted a stronger influence on
the lighter precipitation amounts by improving the spatial

coverage of the entire precipitation field due to a more
accurate depiction of the large-scale forcing mechanisms.

6. Conclusions and Discussion

[28] In this study, results from a regional-scale OSSE were
used to examine how infrared brightness temperatures that
are sensitive to atmospheric WV and clouds impact the
analysis and forecast accuracy during a high impact weather
event. The OSSE case study tracked the evolution of a
strong midlatitude cyclone and associated areas of heavy
precipitation that developed across the central U.S. during
24 Dec 2009. A high-resolution “truth” simulation contain-
ing realistic cloud, moisture, and thermodynamic features
was performed using the WRF model. Data from this sim-
ulation was used to generate synthetic ABI brightness tem-
peratures for three bands that are sensitive to the WV content
in the upper troposphere (band 8; 6.19 mm), middle tropo-
sphere (band 9; 6.95 mm), and lower troposphere (band 10;
7.34 mm), and for one band that is sensitive to cloud top
properties when clouds are present or to the surface when
clouds are absent (band 11; 8.5 mm). Each WV band is also
sensitive to the cloud field if the top of a cloud is located

Figure 10. (a) Vertical profiles of moisture flux vector root mean square error reduction (kg kg�1 m s�1)
computed by subtracting the error profile for a given case from the Control case profile shown on the left
side of the panel. The profiles were computed using data from the 0-h ensemble mean analysis valid at
1200 UTC 24 December 2011 in the forecast verification region shown in Figure 2. (b) Same as Figure 10a
except valid at 1500 UTC 24 December. (c) Same as Figure 10a except valid at 1800 UTC 24 December.
Results are shown for the Band-08 (green), Band-09 (blue), Band-10 (red), and Band-11 (dashed black)
experiments.

OTKIN: ASSIMILATION OF INFRARED OBSERVATIONS D19203D19203

12 of 16



near or above the peak in the weighting function profile
for a given band. Synthetic radiosonde, surface, and aircraft
observations were also generated. Realistic errors based on
a given sensor’s accuracy specifications were added to each
observation. Five assimilation experiments were performed
using the EnKF algorithm in the DART assimilation
system. Conventional observations were assimilated during
the Control case, whereas both conventional and clear and
cloudy-sky brightness temperatures were assimilated during
the Band-08, Band-09, Band-10, and Band-11 cases.
Observations were assimilated every 30 min during a 6-h
period, with 6-h ensemble forecasts performed using the final
ensemble analyses at the end of the assimilation period.

[29] Overall, the results showed that the analysis and fore-
cast accuracy was greatly improved when infrared bright-
ness temperatures were assimilated simultaneously with
conventional observations. Comparison of the brightness
temperature assimilation cases showed that large improve-
ments were made to the WV analysis regardless of which
band was assimilated; however, the smallest errors typically
occurred during the Band-09 (6.95 mm) and Band-10
(7.34 mm) cases because of their greater sensitivity to
moisture in the lower troposphere. Large WV errors present
in the initial ensemble across the southern half of the domain
were more effectively removed when WV-sensitive bright-
ness temperatures were assimilated. Vertical error profiles at

Figure 11. Accumulated precipitation (mm) from 12 UTC on 24 December to 18 UTC on 24 December
for the (a) truth simulation, and for ensemble mean forecasts from the (b) Control, (c) Band-08, (d) Band-09,
(e) Band-10, and (f) Band-11 experiments.

OTKIN: ASSIMILATION OF INFRARED OBSERVATIONS D19203D19203

13 of 16



the end of the assimilation period showed that the final
temperature and vector wind analyses were most accurate
during the Band-08 (6.19 mm) case; however, the cloud
analysis was most improved during the Band-09 and
Band-10 cases. The analyses for the Band-11 (8.5 mm) case
were more accurate than the Control case, but were not as
good as the WV band results. These results indicate that
compared to the 8.5 mm brightness temperatures, the
enhanced ability of the WV-sensitive brightness tempera-
tures to improve not only the cloud field, but also the
moisture, wind, and temperature fields, increases their utility
within a data assimilation system.
[30] Inspection of the subsequent short-range ensemble

forecasts showed that the improved moisture and thermo-
dynamic analyses at the end of the WV band assimilation
cases persisted during the forecast period. Although the most
accurate forecasts in the upper troposphere occurred during
the Band-08 case, assimilation of Band-09 and Band-10
observations lead to better forecasts in the lower tropo-
sphere. Because the wind and moisture forecasts were more
accurate during the WV band cases, better MFC forecasts
also occurred, with error reductions >10% over much of
the troposphere. The MFC errors were smallest during the
Band-09 and Band-10 cases, which indicates that the larger
improvements in the relative humidity forecasts during these
cases had a greater impact on the MFC forecast than the
more accurate wind forecast did during the Band-08 case.
The more accurate forecasts of the moisture and thermody-
namic fields controlling the cloud evolution lead to consis-
tently higher equitable threat scores for all precipitation
thresholds during the WV band cases. The Band-08 case had
the highest skill scores for the lower thresholds; however, for
higher precipitation amounts, the forecast skill was better
during the Band-09 and Band-10 cases.
[31] Overall, the results showed that the assimilation of

WV-sensitive infrared brightness temperatures had a large
positive impact on both the analysis and forecast accuracy
during this high-impact weather event. Since the OSSE
framework adopted during this study provides a controlled
environment with an absolute measure of the true state of the
atmosphere (i.e., the truth simulation), it aids and simplifies
the investigation of the observation impact, but it does not
fully represent an operational environment. For instance, only
a small subset of the observation types routinely assimilated
at operational forecast centers were employed during this
study and no attempt was made to assimilate observations
from microwave sounders or hyperspectral infrared sensors

onboard polar-orbiting satellites. Although observations from
these sensors have been shown to exert a positive impact on
global numerical weather prediction, their utility within
regional- and local-scale assimilation systems may decrease
due to their much lower temporal sampling frequency. The
value of geostationary sensors will increase for models with
higher spatial resolution and more frequent assimilation
cycles that better utilize their information content. Another
important difference between this OSSE study and an oper-
ational environment is the treatment of surface emissivity
over land, which can introduce significant errors for channels
that are sensitive to the lower troposphere. This complication
was avoided by using the same surface emissivity data set to
generate the simulated ABI observations as was used during
the assimilation experiments. Since errors in the specification
of surface emissivity are most important for clear sky radi-
ance assimilation, their negative impact would have been
smaller during this study even if real observations had been
assimilated simply because a majority of the infrared obser-
vations were cloudy and thus not sensitive to the surface
characteristics. Last, it may also be necessary to account for
observation bias, spatial error correlations between neigh-
boring observations, and spectral correlations between chan-
nels with overlapping weighting function profiles when
assimilating real satellite observations.
[32] Additional studies assimilating real infrared observa-

tions from the GOES imager and sounder are necessary to
further enhance the utility of these important data sets for
cloud and precipitation forecasting during high impact
weather events. Attention should also be directed toward
improving how observation errors are specified for clear and
cloudy sky infrared observations. Prior work by Otkin
[2012] indicated that the optimal error values for clear and
cloudy observations may differ because of differences in
their spatial variability and uncertainty in the underlying
atmospheric fields. Similar results have also been found for
cloudy sky microwave radiances [Bormann et al., 2011;
Geer and Bauer, 2011]. Last, given that infrared observa-
tions are most sensitive to the cloud top properties, whereas
radar reflectivity and radial velocity observations are most
sensitive to the internal cloud structure, a study is currently
underway to explore the synergistic nature of these obser-
vations within an ensemble data assimilation system.
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