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ABSTRACT

In this study, the ability of a new drought metric based on thermal infrared remote sensing imagery to

provide early warning of an elevated risk for drought intensification is assessed. This new metric, called the

rapid change index (RCI), is designed to highlight areas undergoing rapid changes in moisture stress as

inferred from weekly changes in the evaporative stress index (ESI) generated using the Atmosphere–Land

Exchange Inverse (ALEXI) surface energy balancemodel. Two case study analyses across the central United

States revealed that the initial appearance of negative RCI values indicative of rapid increases in moisture

stress preceded the introduction of severe-to-exceptional drought in the U.S. Drought Monitor (USDM) by

more than 4 weeks. Using data from 2000 to 2012, the probability of USDM intensification of at least one, two,

or three categories over different time periods was computed as a function of the RCI magnitude. Compared

to baseline probabilities, the RCI-derived probabilities often indicate a much higher risk for drought de-

velopment that increases greatly as theRCI becomesmore negative.When theRCI is strongly negative,many

areas are characterized by intensification probabilities that are several times higher than the baseline cli-

matology. The highest probabilities encompass much of the central and eastern United States, with the

greatest increase over climatology within regions most susceptible to rapid drought development. These

results show that the RCI provides useful drought early warning capabilities that could be used to alert

stakeholders of an increased risk for drought development over subseasonal time scales.

1. Introduction

Extreme drought events in recent decades have caused

extensive damage to natural ecosystems and have con-

tributed to lower agricultural productivity across large

areas of the United States. Because droughts collectively

impact more people than any other type of natural di-

saster and can lead to extensive economic losses (Lott

and Ross 2006), the development of robust drought early

warning indicators is necessary to assist drought mitiga-

tion and climate adaptation efforts (e.g., Wilhite et al.

2000; Wilhite and Pulwarty 2005). Early warning of an

increased likelihood for drought initiation and inten-

sification fromweekly to seasonal time scales can be used

by vulnerable stakeholders to implement proactive miti-

gation measures, such as increased water conservation,

preemptive culling of livestock herds, and exploration of

alternative pricing strategies for grain and other farm
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products. Indeed, one of the goals of the National Inte-

grated Drought Information System (NIDIS) is to create

a drought early warning system capable of providing

accurate information on current drought conditions

and associated risks at spatial scales sufficient to allow

users to make informed management decisions.

Although drought is often viewed as a slowly evolving

climate phenomenon that requires several months or

longer to reach its maximum intensity and geographic

extent, its onset and development can be very rapid if

extreme atmospheric anomalies remain over the same

area for several weeks (Otkin et al. 2013). Intense heat

waves and below-normal rainfall combined with strong

winds and sunny skies can quickly deplete root zone soil

moisture and lead to rapidly deteriorating vegetation

health due to increasing moisture stress (Mozny et al.

2012). Because this scenario is most likely to occur during

the growing season when potential evaporation is highest,

agricultural interests are often most strongly affected.

Significant yield loss may result if intense moisture stress

occurs during crop emergence, pollination, or grain filling

stages, with the combined effects of extreme heat stress

and depleted soil moisture especially damaging (e.g.,

Rotter and van de Geijn 1999; Saini and Westgate 1999;

Ciais et al. 2005; Mittler 2006; Barnab�as et al. 2008; Li

et al. 2009;Mishra andCherkauer 2010; Prasad et al. 2011;

Swain et al. 2011; Kebede et al. 2012; Pradhan et al. 2012).

In recent years, the term ‘‘flash drought’’ has been

used to better distinguish rapid onset drought events

from those that develop more slowly (e.g., Otkin et al.

2013; Svoboda et al. 2002). This terminology captures the

distinguishing characteristic of these droughts, namely,

their unusually rapid rate of intensification. However,

flash droughts can also transition into longer-term hy-

drological drought if large moisture anomalies persist for

many months. In 2011 and 2012, extreme heat and low

rainfall created conditions conducive to flash drought

development across parts of the central United States,

with severe-to-exceptional drought conditions becoming

entrenched across the region (e.g., Blunden and Arndt

2012). According to weekly drought analyses from the

U.S. Drought Monitor (USDM; Svoboda et al. 2002),

drought intensification was so rapid in some locations

that up to a three-category increase in drought severity

occurred over periods as short as 1 month. The extreme

drought conditions led to widespread crop failure and

large reductions in livestock populations across the

south-central United States and to lower grain yields

across the Midwestern Corn Belt (USDA 2012, 2013).

The large agricultural losses and reduced economic

output, along with increases in grassland and forest fires,

the implementation of severe water restrictions, and

other socioeconomic displacements, demonstrate the

continued vulnerability of the United States to severe

droughts.

An accurate representation of current drought condi-

tions is a prerequisite for producing useful drought in-

tensification forecasts. A plethora of drought indicators

with varying complexity and spatiotemporal resolutions

have been developed over the past several decades to

monitor drought severity and its spatial extent. Often,

a suite of indices is necessary to provide a comprehensive

assessment of drought conditions. Two of themost widely

used indices include the Palmer drought severity index

(PDSI; Palmer 1965) and the standardized precipitation

index (SPI; McKee et al. 1993, 1995). Precipitation is the

only input to the SPI, whereas both precipitation and

temperature observations are used to compute the PDSI.

A new index known as the standardized precipitation

evaporation index (SPEI; Vicente-Serrano et al. 2010)

was designed to combine the sensitivity of the PDSI to

changes in evaporative demand with the simplicity of the

SPI. Sun et al. (2012) describe a multi-index drought

model used to assess drought risk to spring wheat yield on

the Canadian prairies using a combination of drought

indices, including the SPI and PDSI. Drought indices can

also be computed using model output, such as soil mois-

ture, precipitation, and surface runoff, from the North

American Land Data Assimilation System (NLDAS;

Xia et al. 2012a,b; Mo 2008).

Remote sensing observations of green biomass can be

used to identify areas characterized by poor plant health

or reduced vegetation cover, as employed in drought

indices such as the vegetation drought response index

(Brown et al. 2008) and the vegetation condition index

(Kogan 1990). However, plant stress during the early

stages of drought development is difficult to identify

using vegetation indices because signals of increasing

moisture stress only become apparent after substantial

damage has already occurred to the vegetation (Moran

2003). A more reliable signal of incipient drought stress

may be derived using land surface temperature (LST)

observations retrieved using satellite thermal infrared

(TIR) imagery. As root zone soil moisture decreases,

canopy temperatures rise in comparison with unstressed

vegetation under the same atmospheric conditions be-

cause less energy is used for evapotranspiration (ET).

The Atmosphere–Land Exchange Inverse (ALEXI;

Anderson et al. 2007b) surface energy balance model

uses this relationship and remotely sensed LST to estimate

ET. Drought severity can be inferred from reductions in

the ratio of actual to potential ET, as represented by the

ALEXI-based evaporative stress index (ESI; Anderson

et al. 2007c, 2011). Drought metrics such as the ESI are

uniquely sensitive to rapid changes in soil moisture con-

tent and plant water usage because an energy balance
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approach accounts not only for the impact of rainfall

departures, but also to temperature, radiation, and wind

anomalies often associated with flash drought develop-

ment (Otkin et al. 2013).

In this paper, the ability of rapid changes in the ESI to

provide early warning of worsening drought conditions,

as depicted by weekly USDM analyses, will be explored

for the nominal growing season (April–October) during

2000–12. The fast response of the ESI to increasing

moisture stress provides a fundamental opportunity for

improved drought predictions from weekly to monthly

time scales. Lyon et al. (2012) have recently shown that

even when information on seasonal anomalies in future

precipitation is unavailable, skillful drought predictions

are still possible if the current drought state is accurately

monitored. Knowledge of seasonal precipitation char-

acteristics and the current drought status, combinedwith

the inherent predictive skill associated with drought

persistence, has been used to develop autoregressive

models to predict future drought conditions (e.g., Mishra

and Desai 2005; Sen and Boken 2005). The National

Oceanic and Atmospheric Administration employs a

similar approach to produce the qualitative drought

outlook forecast product that identifies areas likely to

experience changing drought conditions. This product

is created by propagating the existing drought state as

embodied by the USDM into the next season using

seasonal predictions of temperature and precipitation

anomalies combined with other relevant information.

Here we evaluate the potential utility of a rapid change

index (RCI) product designed to highlight areas under-

going rapid changes in the ESI to provide early warning

of incipient or worsening drought conditions across the

contiguous United States (CONUS). Section 2 contains

a description of the ALEXImodel and the ESI, RCI, and

USDM datasets. Results are shown in section 3, with

conclusions given in section 4.

2. Data and methodology

a. ALEXI model

ALEXI is a two-source energy balance (TSEB)model

used to compute energy fluxes for bare soil and vege-

tated components of the land surface (Norman et al.

1995). Remotely sensed LST observations are used to

constrain the sensible heat flux, with the latent heat flux

lE [Wm22; where E is ET (mms21 or kg s21m22) and

l is the latent heat of evaporation (J kg21)] computed as

a residual of the overall energy balance equation. Esti-

mates of leaf area index or vegetation cover fraction are

used to partition the LST and energy fluxes between the

soil and vegetation components. ALEXI infers the

surface energy budget using the observed rise in LST

from;1.5 h after local sunrise to 1.5 h before local noon

as measured with geostationary satellites. By employing

the TSEB in time differential mode, sensitivity to LST

errors resulting from errors in sensor calibration and at-

mospheric correction is reduced (Anderson et al. 1997).

A simple model of atmospheric boundary layer (ABL)

growth developed by McNaughton and Spriggs (1986)

provides closure to the energy balance equations over the

morning integration period.

ALEXI is run daily over the CONUS with 10-km

horizontal resolution using hourly LST fields retrieved

from Geostationary Operational Environmental Satellites

(GOES) sounder data, vegetation cover fraction derived

from the 8-day Moderate Resolution Imaging Spectror-

adiometer (MODIS) leaf area index product (Myneni et al.

2002), and insolation estimates from the GOES imager

(Otkin et al. 2005). The ABLmodel also uses temperature

lapse rate information from the North American Regional

Reanalysis (Mesinger et al. 2006). Daily ET errors are

typically less than 10%–15%of themean observed flux for

a variety of climate conditions and vegetation types. The

reader is referred to Anderson et al. (2007a) for a com-

plete description of the ALEXI model.

b. Evaporative stress index

The ESI represents standardized anomalies in ET

fraction (ETALEXI/Fref), where ETALEXI is the actual ET

from the ALEXI model and Fref is a reference ET flux

based on the Penman–Monteith formulation as codi-

fied in the Food and Agriculture Organization (FAO)

FAO-56 standard (Allen et al. 1998). An ET fraction is

used when computing the ESI to minimize the impact

of non-moisture-related drivers on ET, such as sea-

sonal changes in radiation. Because the ALEXI model

uses the morning rise in LST to compute ET, it can only

be applied to satellite pixels that remain clear during

the morning hours used to compute the change in LST.

Most cloudy pixels are successfully removed using a

cloud mask algorithm; however, optically thin clouds

are occasionally missed, which can lead to spurious ET

retrievals. A temporal smoothing algorithm is used to

reduce random noise in daily ET retrievals caused by

incomplete cloud screening (Anderson et al. 2013). Daily

ET values, on average, are computed at least once per

week for 75% of the CONUS domain, with 95% of the

grid points updated at least once every 20 days (Anderson

et al. 2007b). To achieve more complete domain cover-

age, daily clear-sky ET estimates can be composited over

longer multiweek periods:

hy(w, y)i5 1

nc
�
n
c

n51

y(n, y) , (1)
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where hy(w, y)i is the composite value for week w and

year y at a given grid point, y(n, y) is the ET fraction on

day n, and nc is the number of clear days during the

composite time interval. Though temporal compositing

of the clear-sky retrievals will reduce the ESI response

time to changing surface moisture conditions, this re-

duction should be minor because droughts are usually

associated with predominantly clear skies, thereby pro-

moting frequent ET updates.

ESI anomalies, expressed as pseudo z scores normal-

ized to a mean of 0 and a standard deviation of 1, are

routinely computed each week for 2-, 4-, and 8-week

composite periods during the nominal growing season

(April–October) across the CONUS (http://hrsl.arsusda.

gov/drought). The mean ET fraction and standard de-

viation is computed at each grid point for each com-

posite period using data from the 2000–12ALEXI period

of record. Standardized anomalies are subsequently

computed as

ESI(w, y)5

hy(w, y)i2 1

ny
�
n
y

y51

hy(w, y)i

s(w)
, (2)

where the second term in the numerator represents the

mean conditions averaged over all years and the de-

nominator is the standard deviation. Negative values

depict reduced soilmoisture availability and poorer-than-

average vegetation health. ESI values less than 21 rep-

resent dry conditions exceeding 1s, which should occur

;16% of the time, assuming a normal distribution.

Recent work byOtkin et al. (2013) andAnderson et al.

(2013) has shown that temporal changes in multiweek

ESI composites often convey useful information about

the rate at which moisture stress is increasing and can

provide early warning of drought initiation and intensi-

fication. To aid identification of regions experiencing rapid

changes in ET, ESI change anomalies, denoted DESI, are
computed by differencing composites of ET fraction over

1-, 2-, 3-, and 4-week periods for each of theESI composite

periods (2, 4, and 8 weeks) and then computing stan-

dardized anomalies in the difference products:

DESI(w1,w2, y)

5

hy(w2, y)2 y(w1, y)i2
1

ny
�
n
y

y51

hy(w2, y)2 y(w1, y)i

s(w1,w2)
,

(3)

wherew1 andw2 are the two weeks used in the difference

computation. The different compositing and differencing

intervals create a set of 12DESI variables that can provide

early warning of drought intensification across multiple

time scales. Large negative DESI anomalies indicate that

moisture stress is increasing rapidly relative to average

conditions experienced during the 2000–12 ALEXI base-

line period of record.

c. Rapid change index

Because anomalous weather patterns conducive to

either drought development or drought recovery can

persist for many weeks, large DESI anomalies can also

occur for an extended period of time as the ESI com-

posites respond to sustained changes in moisture stress

and vegetation health. Thus, it may be helpful to express

the cumulative magnitude of the weekly DESI anoma-

lies in the form of an RCI that encapsulates the anom-

alous rate of moisture stress change for the full duration

of a rapid change event. As such, the RCI may provide

additional information about the likelihood of future

changes in drought severity that weekly DESI anomalies

alone may not be able to provide. Because the response

time to changing moisture stress varies among the 12

DESI variables, with the shorter compositing and dif-

ferencing intervals typically exhibiting faster response

times (Otkin et al. 2013), individual RCI values were

computed for each DESI variable. Some combination of

the resultant set of 12 RCI values could also be con-

structed, but that is beyond the scope of this study. As

described in the remainder of this section, the RCI is de-

signed so that it can be used to identify areas experiencing

unusually rapid increases or decreases in moisture stress;

however, the primary focus of this studywill be to examine

the utility of the RCI as a drought early warning tool.

At a date preceding the beginning of each growing

season, nominally defined as 1March, each of the 12 RCI

variables is set to 0. TheRCI only increases (decreases) in

subsequent weeks if the corresponding DESI value is

above (below) a certain threshold. To highlight areas of

unusually large moisture stress changes, this threshold

was set to 60.75, which occurs ;22% of the time in

a normal distribution and is similar to that used by prior

studies to define the occurrence of drought in soil mois-

ture percentiles (e.g., Mo 2008). For a given week, the

RCI is computed as

RCI5RCIprev2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abs(DESI)2 0:75

p

if DESI,20:75 and (4)

RCI5RCIprev1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DESI2 0:75

p

if DESI. 0:75, (5)

where RCIprev is the RCI value from the previous

week. Thus, negative RCI values correspond to rapidly
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increasing moisture stress, whereas positive values in-

dicate improving conditions. TheRCI resets to zero if the

sign of theDESI anomaly for the current week is opposite

that of the prior week, but remains negative (positive) if

theDESI anomaly has the same sign as the prior week but

is above (below) the chosen threshold. The RCI is not

reset to zero in these situations to account for short-term

breaks in the occurrence of largeDESI values of the same

sign, thereby preventing the erroneous separation of a

discrete, long-duration drying or moistening event into

several shorter events. Sensitivity tests showed that using

a square root of the difference between the DESI and

threshold values provided better agreement between the

RCI and changes in drought severity as depicted by the

USDM. Herein, the 12 RCI variables are denoted as

RCI_(change interval)_(DESI composite length), such

that the RCI_CH1_02WK variable is computed using 1-

week changes in the 2-week DESI composites. The 12

RCI variables were computed for each week during the

2000–12 ALEXI period of record.

d. U.S. Drought Monitor

The USDM is created each week through expert syn-

thesis of pertinent drought information from multiple

data streams, including rainfall and soil moisture per-

centiles; surface streamflow departures; existing drought

diagnostic metrics; crop conditions; and local observa-

tions, data, and impact reports from observers across the

country (Svoboda et al. 2002). The USDM classifies

drought severity into four categories ranging from mod-

erate to exceptional drought. There is also a fifth category

that reflects abnormally dry conditions. For this study,

USDM analyses provided by the National Drought Mit-

igation Center in shape area format were interpolated to

the 10-km ALEXI grid by assigning numerical values to

each drought category, with no drought 5 21, abnor-

mally dry (D0) 5 0, moderate drought (D1) 5 1, severe

drought (D2) 5 2, extreme drought (D3) 5 3, and ex-

ceptional drought (D4) 5 4. Though the USDM should

not be considered an absolute measure of drought se-

verity because it conveys information about drought at

multiple time scales and for a variety of impacts (agri-

cultural, hydrological, and socioeconomic), comparisons

with the USDM are still useful for evaluating the drought

early warning capability of the ESI.

3. Results

a. Drought case studies

To illustrate the spatial and temporal congruence be-

tween theRCI andUSDMdatasets, a detailed evaluation

of two rapid onset drought events that occurred across the

central United States is presented in this section. Figure 1

shows the evolution of the 2-week accumulated rain-

fall, 2-week ESI composite anomalies (ESI_2WK),

RCI_CH1_2WK, and USDM analyses at 2-week inter-

vals from 8 July to 16 September 2003. For brevity, only

the RCI_CH1_2WK data are shown as this index typi-

cally responds fastest to changing soilmoisture conditions

(refer to section 3c). Daily rainfall from the Climate

Prediction Center’s 0.258-resolution precipitation analy-

sis (Higgins et al. 2000) was summed to create 2-week

rainfall totals.

At the beginning of July, the drought situation across

the central United States was rather complex, with several

pockets of abnormal dryness evident in the ESI_2WK

and USDM analyses. Large positive RCI_CH1_2WK

values had developed across the western Corn Belt in

response to widespread beneficial rainfall during pre-

vious weeks that had greatly improved soil moisture

conditions. Further to the south, however, persistent low

rainfall led to rapid increases in moisture stress across

a large portion of the central and southern plains, as in-

dicated by the development of large negative ESI_2WK

and RCI_CH1_2WK values by 22 July. The USDM de-

piction across this region rapidly transitioned fromhaving

only scattered areas of abnormal dryness to widespread

moderate-to-severe drought conditions several weeks

later, with some areas experiencing up to a three-category

increase in drought severity over a 4-week period. By the

middle of August, the period of rapid intensification had

ended across the southern half of the region as indicated

by the lack of negative RCI_CH1_2WK values. Farther

to the north, however, very low rainfall and unusually

warm temperatures (not shown) during August provided

suitable conditions for rapid drought development from

Nebraska and South Dakota eastward toWisconsin, with

large negative ESI_2WK anomalies encompassing the

region by 2 September. The initial appearance of large

negative RCI_CH1_2WK values on 5 August indicates

that conditions were deteriorating rapidly and presaged

the introduction of moderate-to-severe drought in the

USDMby several weeks. Finally, a band of heavy rainfall

provided drought relief from Kansas eastward to the

Ohio River Valley by the end of August. Though late in

the growing season, the vegetation responded well to the

improved moisture conditions, with a large band of pos-

itive RCI_CH1_2WK values on 16 September collocated

with the region of heavy precipitation. This demonstrates

the potential utility of the RCI as an indicator of both

rapid increases and rapid decreases in moisture stress.

The second case study shown in Fig. 2 depicts the

evolution of the severe flash drought event that impacted

the central United States during the summer of 2012.

Record warm temperatures during the spring combined
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FIG. 1. Temporal evolution of 2-week accumulated precipitation, ESI_2WK composites, RCI_CH1_2WK, and USDM drought depiction

from 8 Jul to 16 Sep 2003.
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FIG. 2. Temporal evolution of 2-week accumulated precipitation, ESI_2WK composites, RCI_CH1_2WK, and USDM drought depiction

from 2 Jun to 11 Aug 2012.
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with normal to slightly below normal rainfall allowed

abnormally dry conditions to prevail across much of the

region at the beginning of summer. Though not evident

in the USDM analysis on 2 June, the large negative

ESI_2WK and RCI_CH1_2WK values across the south-

central United States indicate that moisture stress had

already substantially increased by this time. Continued

dryness and extreme heat during June and July led to

unprecedented moisture stress (within the 2000–12

ALEXI period of record) characterized by extensive

areas with ESI_2WK anomalies more than three stan-

dard deviations below the climatological mean. The im-

pressive scope of the unusually rapid decrease in the

ESI_2WK anomalies is clearly depicted by the exten-

sive region of large negative RCI_CH1_2WK values on

2 June that then spread to surrounding areas during

subsequent weeks. In many locations, the initial appear-

ance of negative RCI_CH1_2WK values preceded the

introduction of severe-to-exceptional drought in the

USDM by more than 4 weeks. For instance, the USDM

depiction over southwesternMissouri and easternKansas

transitioned from abnormally dry conditions to excep-

tional drought (D4) during the 2-month period follow-

ing the largest RCI_CH1_2WK values on 2 June. Other

places, such as southernWisconsin and western Indiana,

also experienced rapid increases in USDM-depicted

drought severity after the initial appearance of large

RCI_CH1_2WK values. These case study results indicate

that temporal changes in the ESI composites can provide

critical drought early warning information that could

alert stakeholders of an enhanced risk for rapid drought

development.

b. Drought intensification probabilities

To more thoroughly investigate the drought early

warning capability of the RCI variables during the nom-

inal growing season (from 15April to 30 September), the

probability of future deterioration in the USDM severity

assessment was evaluated as a function of RCI magni-

tude for each grid point in the ALEXI domain. For this

FIG. 3. Probability that the USDM depiction will increase by at least (a) one, (b) two, or (c) three categories during a 2-week

period. (d)–(f) As in (a)–(c), but for increases occurring during a 4-week period. (g)–(i) As in (a)–(c), but for increases occurring

during an 8-week period. All probabilities are computed using weekly data from 15 Apr to 30 Sep during the 2000–12 ALEXI period

of record.
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analysis, negative RCI values during the 2000–12 ALEXI

period of record were separated into four bins, including

RCI,23,23,RCI,22,22,RCI,21, and21,
RCI , 0. To eliminate the possibility of including more

than 1 week from a given rapid drying event within each

RCI bin, the probabilities were computed using data only

from the first week that the RCI is in each bin. For each

week that satisfies this constraint, the maximum increase

in drought severity during subsequent 2-, 4-, and 8-week

periods was determined, and then the full sample ob-

tained for each bin was used to compute the probability

that theUSDMwill increase by at least one, two, or three

categories during each time period. These probabilities

were computed separately for each RCI variable. With

this information, the likelihood of future drought in-

tensification can be assessed for different forecast periods

based on the value of the RCI in any given week.

Because some areas of the United States are more

susceptible to drought development, it is important to

compare the RCI-based drought intensification proba-

bilities to those derived from local climatology. Figure 3

shows the baseline probability that the USDM severity

FIG. 4. Ratio of observed to climatological probabilities that the USDM depiction will increase by at least (a) one, (b) two, or (c) three

categories during a 2-week period if21,RCI, 0. (d)–(f)As in (a)–(c), but for probabilities corresponding to22,RCI,21. (g)–(i) As

in (a)–(c), but for probabilities corresponding to23,RCI,22. (j)–(l) As in (a)–(c), but for probabilities corresponding to RCI,23.

Probabilities are computed for the RCI_CH1_2WK variable using weekly data from 15 Apr to 30 Sep during the 2000–12 ALEXI period

of record.
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depiction will increase by at least one, two, or three

categories during any 2-, 4-, or 8-week period from 15

April to 30 September, based on USDM data from the

2000–12 period. Given the limited length of the dataset,

it is possible that these probabilities will differ slightly if

a longer-term climatology were used; however, to be

consistent with the ESI dataset, it is necessary to limit

the evaluation to the same time period. As expected, the

likelihood of drought intensification increases for longer

time periods and decreases for larger USDM severity

changes. The highest probabilities encompass much of

the central and southeastern United States, with lower

probabilities across the western United States and from

eastern Iowa northeastward toNewEngland. Across the

central United States, the north–south band of higher

probabilities lies within a sharp east–west gradient in

precipitation and vegetation cover that is characterized

by strong interannual and seasonal variability in ET and

soil moisture availability (Guo and Dirmeyer 2013).

Lower probabilities over the western United States re-

flect the propensity for the USDM to depict slowly

evolving, hydrological droughts related primarily to

changes in seasonal snowpack conditions, whereas over

the northeastern United States, drought is less common

because of reduced water demand associated with

cooler temperatures and generally adequate rainfall.

In the remainder of this section, drought intensi-

fication probabilities computed using data from the

FIG. 5. As in Fig. 4, but for a 4-week period.

JUNE 2014 OTK IN ET AL . 947



RCI_CH1_2WK variable are compared to the baseline

probabilities shown in Fig. 3 to assess its drought early

warning capabilities. To more easily account for regional

variations in drought intensification, Fig. 4 shows the ratio

between the RCI-derived and climatological probabili-

ties for USDM changes occurring over a 2-week period

computed for each RCI bin. With this depiction, a value

of 2 shows that a given drought intensity change occurs

twice as often when the RCI is within a specific bin, in-

dicating a much higher risk for deteriorating conditions

than climatology would suggest. White areas denote re-

gions where either no additional skill is gained with the

RCI data or there are simply no cases with the specified

USDM changes (e.g., refer to white areas in Fig. 3).

Overall, Fig. 4 demonstrates that for these short fore-

cast lead times, much higher probabilities of drought

intensification are indicated across most of the country

when the RCI , 0. The probability ratios increase sub-

stantially for decreasing RCI values and for increasing

USDM intensity changes, with many areas characterized

by probability ratios .3 for the two-category changes

in the USDM. The probability ratios for longer 4- and

8-week periods shown in Figs. 5 and 6 remain high but are

lower than those obtained for 2-week periods because

the baseline drought intensification probabilities are

higher (refer to Fig. 3). If this is taken into account, the

RCI-derived probabilities are actually quite large across

much of the central and eastern United States, with

FIG. 6. As in Fig. 4, but for an 8-week period.
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probabilities often in excess of 50% for the larger RCI

values. The drought early warning signal may be weaker

over parts of the western United States because of the

tendency for more persistent droughts and a greater

emphasis on winter precipitation in the USDM depic-

tion that reduces the relevance of rapid changes in ET

during summer. Furthermore, because the ET signal is

inherently low in the west, sensitivity in ESI to changing

moisture conditions is lower than in the eastern United

States (Anderson et al. 2013).

As was the case with the 2-week probabilities, large

two- and three-category increases in USDM severity are

much more likely to occur during 4- and 8-week periods

when the RCI is negative, with the probability ratios

becoming progressively larger as the RCI decreases.

The higher ratios for the larger RCI values indicate that

the accumulated time rate of moisture stress change en-

capsulated by the RCI can serve as a useful predictor

of future increases in USDM-depicted drought severity

and can provide effective early warning of an increased

probability for rapid drought development. Comparison

to Fig. 3 shows that the ratios are especially large over

regions that are most susceptible to rapid drought in-

tensification over the central and eastern United States.

c. Regional drought probabilities

In this section, the ability of each of the 12 RCI vari-

ables to provide early warning of an above-average risk

FIG. 7. Probability of at least a (top) one-, (middle) two-, or (bottom) three-category increase in the USDM

severity during (left) 2-, (middle) 4-, and (right) 8-week periods, averaged over all grid points in eastern Oklahoma

and western Arkansas. Probabilities are computed for each of the 12 RCI variables, with the climatological prob-

ability also indicated. Within each set of columns, the probabilities are computed for21, RCI, 0,22, RCI,21,

23 , RCI , 22, and RCI , 23.
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for drought development is assessed for three regions of

the United States characterized by different land use

patterns and vegetation types, ranging from amixture of

pasture and forest cover over eastern Oklahoma and

western Arkansas to landscapes dominated by corn and

soybeans in the Midwest. As described in the previous

section, the probability of at least a one-, two-, or three-

category increase in the USDM depiction during 2-, 4-,

and 8-week periods was computed for each RCI variable.

Domain-average probabilities were then computed for

each RCI bin using all grid points located within a given

region. Because of the large sample of probabilities, a

new visualization method was devised to more easily

display the extensive information conveyed by these

datasets. An example image displaying the probabilities

for drought intensification over eastern Oklahoma and

western Arkansas during 2000–12 is shown in Fig. 7. The

probabilities are organized into three columns corre-

sponding to 2-, 4-, and 8-week periods, respectively, with

each column further divided to show the probabilities

for each RCI bin. The 12 RCI variables, along with the

baseline intensification probabilities, are then grouped

into three sets of rows corresponding to one-, two-, and

three-category increases in the USDM.

Inspection of Fig. 7 reveals that, compared to clima-

tology, all of the RCI variables indicate a higher prob-

ability of drought intensification for all time and drought

intensity change categories within this region. Consistent

with the results shown in Figs. 4–6 for theRCI_CH1_2WK

variable, the likelihood of drought intensification for the

other RCI variables generally increases as they become

more negative. The probabilities also tend to increase for

longer time periods and for smaller USDM category

changes. Though all of the RCI variables exhibit similar

FIG. 8. As in Fig. 7, but for probabilities computed for eastern Indiana and western Ohio.

950 JOURNAL OF HYDROMETEOROLOGY VOLUME 15



qualitative behavior, large numerical differences are also

apparent, with the probabilities generally increasing as

the composite period length decreases from 8 weeks to 2

weeks. Within each composite period, the probabilities

also tend to increase as the differencing interval decreases

from 4 weeks to 1 week (e.g., from CH4 to CH1), though

for the smallest RCI values, longer differencing intervals

often exhibit higher probabilities. Because the USDM

tends to be conservative when depicting rapid changes in

drought severity, it is possible that shorter differencing

intervals have lower probabilities for smaller RCI values

because they are reflective of short-term changes in vege-

tation health that are simply not resolved by the USDM.

This suggests that using different threshold values for

each RCI variable may help refine these probabilities.

For larger RCI values, the superior performance of the

RCI variables computed using DESI data from shorter

composite and time differencing intervals is consis-

tent with the results shown by Otkin et al. (2013) and

Anderson et al. (2013) for individual flash drought events

and provides further evidence that rapid changes in ET

over short time periods often serve as a precursor of

drought development.

Figure 8 shows the drought intensification probabili-

ties computed for the region encompassing the eastern

half of Indiana and the western third of Ohio. In com-

parison to Fig. 7, lower probabilities occur over this re-

gion; however, all of the RCI variables still indicate an

increased risk for drought development compared to

climatology, especially for one-categoryUSDMchanges

at all time scales and for two-category changes over

8-week periods. Overall, there is less sensitivity to the

ESI composite period length as all RCI variables pro-

duce similar probabilities in each RCI bin. The lower

FIG. 9. As in Fig. 7, but for probabilities computed for northwestern Iowa.
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probabilities over this region are not necessarily in-

dicative of a higher false alarm rate in the RCI data.

Instead, the RCI is predictive primarily because of the

accumulated impact of moisture deficiencies that con-

tribute to drought persistence and intensification. Thus,

in regions with cooler temperatures and more frequent

rainfall, such as the eastern Corn Belt, short-term periods

of unusually rapid drying leading to the development of

negativeRCI values are often terminated by heavy rainfall

that prevents further drought development. Combining

the inferred rate of drying from the weekly RCI data

with medium-range rainfall forecasts could potentially

help to delineate those areas most susceptible to drought

development.

Average drought intensification probabilities for the

northwestern corner of Iowa are displayed in Fig. 9. As

will be shown in the next section, this area lies within

a region of lower correlations between the RCI and

changes in the USDM depiction. The RCI probabilities

in this region show no additional skill over the baseline

FIG. 10. Correlation between themaxRCI value for each rapid change event and themaxUSDMcategory change from the beginning of

the event until 2 weeks after its end for the (a) RCI_CH1_2WK, (b) RCI_CH1_4WK, (c) RCI_CH1_8WK, (d) RCI_CH2_2WK,

(e) RCI_CH2_4WK, (f) RCI_CH2_8WK, (g) RCI_CH3_2WK, (h) RCI_CH3_4WK, (i) RCI_CH3_8WK, (j) RCI_CH4_2WK,

(k) RCI_CH4_4WK, and (l) RCI_CH4_8WK variables. The vertical white line in (a) denotes the edge of the western and eastern U.S.

regions used to compute the average correlations shown in Tables 1–3. The white box over the central United States denotes the core

drought region.
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climatology for USDM changes greater than or equal to

two categories and in some cases actually indicate a

reduced risk for drought development. Much higher

RCI-based probabilities occur, however, for one-category

USDM changes, especially for longer 4- and 8-week pe-

riods. The smaller improvements compared to clima-

tology are partially due to the propensity for this region

to experience frequent wetting/drying cycles during the

growing season. Short-term dry spells accompanied by

high temperatures can lead to the development of large

negative RCI values indicative of rapidly deteriorating

conditions; however, heavy rainfall associated with me-

soscale convective systems often prevents further drought

intensification. In addition, Anderson et al. (2013) have

shown that the annual ET cycle is narrower in this part of

theUnited States where the vegetation cycle is intensively

managed. Thus, in addition to variations in soil moisture

status, ET anomalies are likely influenced by changes in

crop emergence and growth rate that may not be related

to changes in soil moisture. Phenology-based timing ad-

justments to the normal curves used to compute the ESI

anomalies may improve the information content within

agricultural areas dominated by corn and soybean culti-

vation. Though some of the negative RCI values likely

represent false alarms due to these complications, the

local rainfall climatology and the conservative nature of

the USDM response to rapid changes in moisture stress

also contribute to the lower RCI probabilities.

d. RCI–USDM change correlations

The relationship between theRCI andUSDManalyses

was further investigated by computing the correlation

between the maximum value of the RCI at the end of

each rapid change event and the associated increase in

the USDM severity from the beginning of a given event

until 2, 4, or 8 weeks after an event ended. The corre-

lations were computed separately for each grid point

and RCI variable using data from all rapid change

events during 2000–12. Figure 10 shows the correlations

between eachRCI variable and the maximum increase in

drought severity from the beginning of an event until

2 weeks after the event ends. The average correlation for

the western, eastern, and central U.S. ‘‘core’’ regions

denoted in Fig. 10a are shown in Table 1. Because the 2-,

4-, and 8-week correlations have similar spatial charac-

teristics, for brevity, only the average correlations for

the 4- and 8-week periods are shown in Tables 2 and 3,

respectively.

Overall, each of the RCI variables exhibits a similar

spatial structure, with the highest correlations occurring

in the south-central United States (Fig. 10). This spatial

distribution is consistent with the higher probability ra-

tios shown in section 3b. The large negative correlations

across the eastern two-thirds of the United States reveal

that a close correspondence exists between the RCI

magnitude and drought intensification in highly vege-

tated areas. Average correlations across the eastern

and central regions are generally between 20.40 and

20.55 at 2 weeks and then decrease slightly by 4 and

8 weeks (Tables 1–3). Across the western United States,

however, much lower correlations occur within areas

containing lower vegetation cover fractions. As discussed

in section 3b, the poor performance of the RCI in these

areas is partially due to a reduced sensitivity of the

TABLE 1. Correlation between themax value for eachRCI variable and themax change in theUSDM from tbeg to tend1 2 weeks (where

t indicates time) for each rapid change event, averaged over the western and easternUnited States and the central U.S. core area. The first

column denotes the RCI change interval (1, 2, 3, or 4 weeks).

Western United States Eastern United States Central U.S. core area

2 weeks 4 weeks 8 weeks 2 weeks 4 weeks 8 weeks 2 weeks 4 weeks 8 weeks

CH1 20.09 20.14 20.17 20.35 20.41 20.46 20.45 20.52 20.56

CH2 20.10 20.15 20.19 20.37 20.41 20.45 20.48 20.52 20.53

CH3 20.12 20.16 20.19 20.39 20.41 20.44 20.50 20.51 20.50

CH4 20.14 20.17 20.19 20.41 20.41 20.43 20.51 20.50 20.48

TABLE 2. As in Table 1, but for correlations computed from tbeg to tend 1 4 weeks.

Western United States Eastern United States Central U.S. core area

2 weeks 4 weeks 8 weeks 2 weeks 4 weeks 8 weeks 2 weeks 4 weeks 8 weeks

CH1 20.08 20.13 20.14 20.34 20.39 20.41 20.45 20.50 20.51

CH2 20.09 20.14 20.17 20.34 20.39 20.41 20.46 20.50 20.50

CH3 20.10 20.15 20.17 20.36 20.39 20.40 20.48 20.49 20.48

CH4 20.12 20.16 20.16 20.37 20.39 20.40 20.48 20.48 20.46
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ALEXImodel to changes in ET in arid areas where ET is

intrinsically low. Indeed, higher correlations are present

within many of the more heavily forested areas across the

western United States, such as over the northern Rocky

Mountains and along the Mogollon Rim in Arizona.

Comparison of the RCI variables shows similar correla-

tions at 4 and 8 weeks, with larger differences occurring in

the 2-week correlations (Tables 1–3). For most of the

United States, the largest correlations are found in the

RCI variables based on the 8-week DESI composites, al-

though in the central United States, large correlations are

also evident for shorter composite periods if longer dif-

ferencing intervals are used (e.g., the RCI_CH4_2WK

variable). These results are opposite those found for the

probabilities, where the shortest composite and differ-

encing intervals generally had a higher probability of

drought intensification. The lower correlations for the

shorter RCI variables may be due to their greater sensi-

tivity to short-term moisture fluctuations that can lead to

large DESI anomalies that do not have sufficient time to

develop into more severe drought conditions because of

adequate rainfall in subsequent weeks.

4. Conclusions and discussion

This study examined the ability of rapid changes in the

TIR-based ESI drought product to provide early warn-

ing of an increased risk for drought intensification across

theUnited States during the growing season.A newRCI

metric encapsulating the accumulated magnitude of

unusually rapid changes in ET as depicted by largeDESI
anomalies was developed and compared to weekly

drought severity analyses from the USDM. The RCI can

be used to highlight areas experiencing either rapid in-

creases or rapid decreases in moisture stress; however,

the primary focus of this study is on its drought early

warning capabilities. Because response times to changing

moisture stress varywith theESI composite period length

and time differencing interval, individual RCI values

were computed for each DESI variable using data from
2000 to 2012.

Overall, the results revealed that the RCI variables

provide useful drought early warning capabilities that

could be used to alert vulnerable stakeholders of an

increased potential for drought development over sub-

seasonal time scales. Two case study analyses showed

that the initial appearance of negative RCI values pre-

ceded the introduction of severe-to-exceptional drought

in the USDM by more than 4 weeks. To further assess

the predictive ability of the RCI, drought intensification

probabilities were computed for different lead times and

intensification changes as a function of the RCI magni-

tude. Compared to the baseline USDM intensification

probabilities, the RCI-derived probabilities often in-

dicate a much higher risk for drought development that

increases greatly as the RCI becomes more negative.

The highest probabilities encompass much of the central

and eastern United States, with lower probabilities in

the western United States. When the RCI is strongly

negative, many areas are characterized by intensifica-

tion probabilities that are several times higher than the

baseline climatology. The probabilities generally increase

for larger USDM changes occurring over longer time

periods, with the greatest enhancement over climatology

within regions most susceptible to rapid drought devel-

opment. Though all 12 RCI variables were well correlated

with changes in the USDM depiction, those variables

computed using shorter ESI composite and differencing

intervals generally contained the highest probabilities.

Future work will explore alternative RCI formulations

that address the needs of specific stakeholder groups,

such as ranchers and farmers across the central and

eastern United States. Studies will be undertaken to

assess how these and other socioeconomic groups re-

spond to drought onset and intensification when they

have access to early warning tools that can potentially

be used to lessen the adverse effects of drought. Flash

droughts may be especially disruptive because there is

less time for stakeholders to respond to changing con-

ditions; thus, improved early warning would be espe-

cially useful in those situations. To better capture local

and seasonal variations in vegetation emergence and

growth rates, it may be advantageous to use a start date

that varies with season and location. The incorporation

of vegetation cover fraction anomalies or process-based

models into the RCI formulation would help remove

TABLE 3. As in Table 1, but for correlations computed from tbeg to tend 1 8 weeks.

Western United States Eastern United States Central U.S. core area

2 weeks 4 weeks 8 weeks 2 weeks 4 weeks 8 weeks 2 weeks 4 weeks 8 weeks

CH1 20.08 20.11 20.11 20.30 20.34 20.34 20.42 20.45 20.43

CH2 20.08 20.12 20.14 20.30 20.34 20.35 20.43 20.45 20.43

CH3 20.08 20.12 20.14 20.31 20.34 20.35 20.44 20.45 20.43

CH4 20.09 20.13 20.14 20.31 20.33 20.34 20.43 20.43 20.41
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change signals that are due to delays in vegetation growth

rather than to increasing drought stress. Other studies

will seek to develop synergistic methods for combining

drought early warning signals from the ESI and other

drought indicators, such as SPI andNLDAS soilmoisture

anomalies. A blended approach may improve the ro-

bustness and accuracy of the RCI drought early warning

signals by providing additional data masks that can be

used to identify areas susceptible to rapid drought de-

velopment. Finally, other studies will be used to explore

optimal ways to combine the RCI-based drought inten-

sification probabilities to create weekly maps displaying

the likelihood of drought development over different time

periods based on current conditions. Further refinements

could be made to these drought forecasts by combining

this information with weekly-to-monthly temperature and

rainfall forecasts.
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