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ABSTRACT

In this study, an Observing System Simulation Experiment was used to examine how the assimilation of

temperature, water vapor, and wind profiles from a potential array of ground-based remote sensing boundary

layer profiling instruments impacts the accuracy of atmospheric analyses when using an ensemble Kalman

filter data assimilation system. Remote sensing systems evaluated during this study include the Doppler wind

lidar (DWL), Raman lidar (RAM), microwave radiometer (MWR), and the Atmospheric Emitted Radiance

Interferometer (AERI). The case study tracked the evolution of several extratropical weather systems that

occurred across the contiguous United States during 7–8 January 2008. Overall, the results demonstrate that

using networks of high-quality temperature, wind, and moisture profile observations of the lower troposphere

has the potential to improve the accuracy of wintertime atmospheric analyses over land. The impact of each

profiling system was greatest in the lower and middle troposphere on the variables observed or retrieved by

that instrument; however, some minor improvements also occurred in the unobserved variables and in the

upper troposphere, particularly when RAM observations were assimilated. The best analysis overall was

achieved when DWL wind profiles and temperature and moisture observations from the RAM, AERI, or

MWR were assimilated simultaneously, which illustrates that both mass and momentum observations are

necessary to improve the analysis accuracy.

1. Introduction

Accurate observations of the atmosphere provide the

framework to understand physical processes at various

scales and are essential for weather forecasting applications

and long-term trend analysis. Environmental observa-

tions play a significant role in our lives, as weather and

climate impact agriculture, transportation, personal safety,

dispersion modeling, and homeland security. As such, a

large number of private companies, universities, and state

and federal government agencies have developed and

deployed meteorological instruments across the United

States in order to collect data to support these and other

applications.
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The National Research Council (NRC) recently issued

a report on the existing array of meteorological observing

networks distributed across the United States (National

Research Council 2009). In this report, the NRC found

that the current surface-based meteorological observa-

tion capabilities are energetic, but also chaotic and driven

mainly by local needs without adequate coordination

between networks. To remedy this situation, the report

called for a more comprehensive and adaptive national

strategy for ground-based observations, with an em-

phasis on the planetary boundary layer (PBL) where

existing observation capabilities were found to be par-

ticularly inadequate. The PBL is very difficult to accu-

rately characterize from space, and the current ground-

based networks are too sparse and unevenly distributed

to adequately describe the wind, temperature, and mois-

ture structure of the boundary layer at high temporal

and spatial resolution. Thus, the NRC suggested that a

new coordinated network of ground-based profiling in-

struments should be deployed across the United States

to address these observational deficiencies. In particu-

lar, the NRC recommended the creation of a network

consisting of approximately 400 stations with instruments

capable of profiling the humidity, wind, and temperature

in and above the PBL over the complete diurnal cycle.

The NRC considered this new network to be of the highest

priority because these observations are essential to improv-

ing many applications such as the performance of high-

resolution numerical weather prediction (NWP) models.

The University of Wisconsin—Madison has extensive

experience with both active and passive ground-based

thermodynamic profiling instruments (e.g., Feltz et al.

1998, 2003; Turner and Goldsmith 1999; Turner et al.

2000, 2002). To perform an analysis of different instru-

ments that could potentially compose this network, an

ensemble Kalman filter (EnKF; Evensen 1994) data as-

similation system was used to conduct an Observing

System Simulation Experiment (OSSE) for a cool-season

weather event. Each profiling technique evaluated dur-

ing the OSSE is sensitive to different components of the

atmosphere with varying accuracy and resolution, and is

characterized by different initial (e.g., purchase and in-

stallation) and long-term (e.g., maintenance and per-

sonnel) expenses. OSSEs have been used for decades to

evaluate the merit of different observing strategies in

a controlled and cost-effective manner (e.g., Arnold and

Dey 1986; Kuo et al. 1987; Kuo and Guo 1989; Benjamin

et al. 1991; Moninger et al. 2010), however, few studies

have focused on the impact of locally concentrated re-

motely sensed profiler observations of the PBL over land.

An EnKF assimilation system was chosen for this study

because unlike variational methods it provides a time-

varying estimate of the background error covariances

used during the assimilation step and is also able to ac-

count for nonlinear processes in both the assimilation

model and the forward observation operator. Flow-

dependent error covariances are most useful when

assimilating observations within regions that depart

substantially from a climatological or static background

field or are characterized by sharp gradients.

Several considerations were made when determining

the parameters of this OSSE. First, because of timing

restrictions by the funding agency and by hardware lim-

itations, the impact of the additional observational net-

work was limited to a single case study. Second, to reduce

the potential installation and operation costs relative to

establishing a set of new instrument sites, it was decided

to locate the ground-based remote sensors at each of the

Weather Surveillance Radar-1988 Doppler (WSR-88D)

sites since they are relatively evenly distributed across the

contiguous United States and already have the necessary

infrastructure and manpower to operate additional in-

struments. The resultant 140 ground-based boundary layer

profiling sites is less than the 400 recommended by the

NRC; however, this analysis provides a reasonable first

attempt to evaluate the impact of the additional profiler

observations. Last, since the instruments deployed in the

potential network must be run operationally, the anal-

ysis primarily considers commercially available systems

proven to operate routinely over long time periods with

little manual intervention. Profile observations were cre-

ated to emulate the Doppler wind lidar (DWL), micro-

wave radiometer (MWR), and Atmospheric Emitted

Radiance Interferometer (AERI) sensors. Observations

were also created to emulate the state-of-the-art Raman

lidar (RAM) system run operationally at the Department

of Energy’s Atmospheric Radiation Measurement (ARM)

site in north-central Oklahoma (Goldsmith et al. 1998;

Turner et al. 2000, 2002); however, this sensor is currently

not commercially available and requires greater manual

intervention than the other sensors.

The paper is organized as follows. Section 2 contains

a description of the forecast model, data assimilation

system, and simulated observations. An overview of the

case study is provided in section 3, results are shown in

section 4, and conclusions are presented in section 5.

2. Experimental design

a. Forecast model

Version 3.0.1.1 of the Weather Research and Fore-

casting (WRF) model was used for this study. WRF is

a sophisticated NWP model that solves the compressible

nonhydrostatic Euler equations cast in flux form on a

mass-based terrain-following vertical coordinate system.

Prognostic variables include the horizontal and vertical
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wind components, various microphysical and thermody-

namic parameters, and the perturbation potential tem-

perature, geopotential, and surface pressure of dry air.

The reader is referred to Skamarock et al. (2005) for

a complete description of the WRF modeling system.

b. Data assimilation system

Assimilation experiments were conducted using the

EnKF algorithm implemented in the Data Assimilation

Research Testbed (DART) system developed at the

National Center for Atmospheric Research (Anderson

et al. 2009). The assimilation algorithm is based on

the ensemble adjustment Kalman filter described by

Anderson (2001), which processes a set of observations

serially and is mathematically equivalent to the ensem-

ble square root filter described by Whitaker and Hamill

(2002). The DART system includes tools that auto-

matically compute temporally and spatially varying co-

variance inflation values during the assimilation step

(Anderson 2007, 2009). To reduce sampling error result-

ing from a small ensemble size, horizontal and vertical

covariance localization (Mitchell et al. 2002; Hamill et al.

2001) is performed using a compactly supported fifth-

order correlation function following Gaspari and Cohn

(1999).

c. Simulated observations

Simulated observations were generated for three con-

ventional observing systems and four potential surface-

based boundary layer profiler systems using data from

the high-resolution ‘‘truth’’ simulation described in section

3. Conventional observations include those from the Au-

tomated Surface Observing System (ASOS), the Aircraft

Communications Addressing and Reporting System

(ACARS), and radiosondes. As mentioned in the intro-

duction, profile observations were created to emulate DWL,

RAM, MWR, and AERI sensors, with the profilers lo-

cated at existing WSR-88D locations in order to leverage

existing infrastructure and personnel resources. Figure 1

shows the geographical distribution of the observations.

The methodology used to generate the simulated obser-

vations is discussed in the remainder of this section.

1) CONVENTIONAL OBSERVATIONS

Simulated 10-m wind speed and direction along with

2-m temperature and relative humidity observations were

computed at existing ASOS station locations whereas

vertical profiles of temperature, relative humidity, and

horizontal wind speed and direction were produced for

each radiosonde station location. Standard reporting

conventions were followed so that each radiosonde pro-

file contains not only mandatory level data, but also sig-

nificant level data corresponding to features such as

temperature inversions and rapid changes in wind speed

and direction. Simulated ACARS temperature and wind

observations were produced at the same locations as the

real pilot reports listed in the Meteorological Assimila-

tion Data Ingest Files (MADIS) for the OSSE case study

period. Realistic measurement errors drawn from an

uncorrelated Gaussian error distribution and based on a

given sensor’s accuracy specification were added to each

observation.

2) DWL PROFILER OBSERVATIONS

A DWL transmits a series of short infrared laser

pulses (typically at 1.5 mm) into the atmosphere and

FIG. 1. Geographical region covered by the truth simulation and assimilation experiments.

The ASOS (crisscross), radiosonde (open circle), and boundary layer profiler (filled triangle)

station locations are also indicated.
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then measures the intensity and frequency of the back-

scattered radiation relative to the outgoing laser energy.

Aerosol particles with diameters close to the DWL

wavelength are the primary scatterers of the emitted

radiation. Given the small size of these particles, they

are sufficiently small to be advected by the wind and

serve as tracers of wind velocity. Thus, the Doppler shift

in the frequency of the backscattered radiation is used to

compute the radial wind velocity as a function of height

above the sensor. A typical accuracy of the radial ve-

locity is ;0.15 m s21, which is achieved by adding the

return signal from thousands of laser pulses collected

over several seconds. DWLs transmit pulses at different

angles relative to zenith (e.g., 58–158 off zenith in the

north, south, east, and west directions) and from these

observations the horizontal components of the wind field

are computed. Since there is little molecular scattering at

1.5 mm, the signal-to-noise ratio drops off precipitously

above the boundary layer where there are relatively few

aerosol particles, therefore, the DWL is only able to

provide high temporal (;10 s) and vertical (;30 m)

resolution wind data in the boundary layer. Additional

information about DWL performance can be found in

Pearson et al. (2009).

Simulated DWL wind profile observations were gen-

erated by adding an uncorrelated Gaussian random error

(1s value of 0.3 m s21) to the wind magnitude at each

level in the truth profile at a given profiler location. In

clear-sky conditions, the profiles extend from the surface

to the top of the BL whereas under cloudy conditions, the

profiles are truncated at the cloud base if the cloud is

located within the BL. The BL height was identified as

the first location that the potential temperature increased

by more than 1.5 K over a 100-m-deep layer in a given

profile.

3) RAM PROFILER OBSERVATIONS

A research-grade RAM similar to the profiler currently

deployed by the ARM Program at Lamont, Oklahoma,

was chosen for this study. This system transmits pulses of

355-nm light into the atmosphere and then records the

backscattered photons due to the vibrational-rotational

Raman shift by water vapor and nitrogen molecules, with

a maximum resolution of 7.5 m and 10 s (Goldsmith et al.

1998; Turner and Goldsmith 2005). The signal-to-noise

ratio has a large diurnal cycle with greater noise occurring

during the day as a result of the contamination by the

background solar radiation. RAM profiles can extend

through the entire troposphere at night but are generally

limited to the lowest several kilometers during the day

(Ferrare et al. 2006).

Prior studies (e.g., Turner and Goldsmith 1999; Ferrare

et al. 2004) have shown that the water vapor mixing ratio

is proportional to the ratio of the water vapor to nitrogen

signals. The ambient temperature can also be inferred

using measurements of the pure rotational Raman scat-

tering by nitrogen and oxygen molecules since the shape of

the rotational Raman spectrum changes with temperature.

Two channels with slightly different spectral bandpasses

can be used to measure this shape and thus determine the

temperature. Following Di Girolamo et al. (2004), the

ARM RAM profiles temperature by taking the ratio of

the measured signal in the channels at 353 and 354 nm.

Simulated RAM temperature and water vapor profiles

were calculated at each location by adding uncorrelated

Gaussian random errors to the truth profiles that are

a function of height and time of day (refer to Fig. 2 for 1s

error values). The simulated clear-sky nocturnal profiles

extended to the tropopause (defined as 300 hPa) while

the daytime profiles were truncated at 4-km AGL. Since

the RAM laser beam is highly attenuated by clouds, the

simulated profiles were terminated at the cloud base

when clouds were present in the truth simulation.

4) AERI OBSERVATIONS

The AERI is a fully automated, commercially available

passive spectrometer that measures downwelling atmo-

spheric infrared radiation in the 3.3–19-mm range with

very high spectral (1 cm21) and temporal (,30 s) reso-

lution and better than 1% absolute radiometric accuracy

(Knuteson et al. 2004a,b). The high-spectral resolution of

the AERI provides sensitivity to the vertical distribution

of moisture and temperature, which allows it to resolve

up to 10 independent levels in the lower troposphere

(Löhnert et al. 2009). The vertical resolution is much

higher near the surface, with the number of independent

levels decreasing with increasing water vapor content

(e.g., Feltz et al. 1998, 2003).

Simulated AERI temperature and water vapor mixing

ratio profiles were calculated at each location with the

number of independent levels determined by the pre-

cipitable water vapor content. Random error profiles con-

taining a correlated component were then added to the

simulated AERI retrievals (refer to Fig. 2 for 1s error

values). For cloudy regions, the simulated profiles were

calculated from the surface to 500 m below the cloud base

while in clear-sky conditions the retrievals extended to

4 km AGL. Bias and root-mean-square difference pro-

files were computed for the simulated retrievals minus

the truth profiles for both moist and dry conditions to

ensure that the statistical profiles agreed with the anal-

ysis of Löhnert et al. (2009).

5) MWR OBSERVATIONS

An MWR is designed to measure the downwelling

microwave radiation in several channels along the side
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of a water vapor absorption line and several channels

along the side of an oxygen absorption feature. Most com-

mercially available MWR systems contain 5–7 channels

near the 22.2-GHz water vapor absorption line and 5–7

channels near the 60-GHz oxygen absorption band.

Measurements along these absorption features provide

information about the thermodynamic structure of the

atmosphere, with more opaque channels (i.e., where the

atmosphere has a larger optical depth) sensitive to near-

surface conditions while more transparent channels are

sensitive to conditions farther away from the radiometer.

Ground-based MWRs have been used for many years

to retrieve profiles of temperature and humidity (e.g.,

Solheim et al. 1999). A detailed analysis by Löhnert et al.

(2009) indicates that in clear-sky conditions the MWR

provides 2 or 3 independent pieces of information in the

humidity profile and 2–4 pieces in the temperature pro-

file. An important advantage of the microwave profiling

technique is that it is able to retrieve profiles in all sky

conditions (i.e., the method is able to retrieve tempera-

ture and humidity profiles in clear and cloudy scenes)

except for when liquid precipitation is present. The

MWR profiles can also be used to provide an accurate

‘‘first guess’’ to improve higher-resolution AERI profile

retrievals.

Simulated MWR temperature and humidity profiles

were computed in a similar manner to the AERI profiles

with both correlated and uncorrelated error components,

including accounting for the change in the number of in-

dependent levels due to the total water vapor content.

Unlike the AERI retrievals, however, the simulated MWR

retrievals extend to 4 km AGL since nonprecipitating

clouds do not interfere with the MWR signal. Figure 2

shows the 1s errors that were added to each profile.

6) OBSERVATION ERRORS

Observation errors used during the assimilation exper-

iments include instrument and representativeness error

components. For the conventional observations, the er-

rors were based on those found in the operational dataset

from the National Centers for Environmental Prediction.

For the ASOS observations, the error was set to 2 K for

temperature, 18% for relative humidity, and 2.5 m s21 for

the horizontal wind. Errors of 1.8 K and 3.8 m s21 were

used for the ACARS temperature and wind observations.

The radiosonde errors varied with height and ranged from

0.8–1.2 K for temperature, 1.4–3.2 m s21 for the hori-

zontal wind, and 10%–15% for relative humidity. For the

profiler observations, the observation error was set to

0.45 m s21 for the DWL winds and to twice the 1s error

value at a given level for the other observation types (refer

to Fig. 2 for the error profiles).

3. Truth simulation

A high-resolution truth simulation tracking the evolu-

tion of several extratropical weather systems across the

contiguous United States was performed using the WRF

model. The simulation was initialized at 1200 UTC

6 January 2008 using 20-km Rapid Update Cycle (RUC)

model analyses and then integrated for 48 h on a single

798 3 516 grid point domain (Fig. 1) containing 6-km hor-

izontal resolution and 52 vertical levels. The vertical reso-

lution decreased from ,100 m in the lowest km to ;500 m

FIG. 2. The 1s measurement error profiles applied to the simulated (a) temperature (K) and (b) water vapor mixing

ratio (g kg21) observations for the AERI (red), MWR (blue), and RAM (brown and green) sensors.
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at the model top, which was set to 65 hPa. Subgrid-scale

processes were parameterized using the Thompson

et al. (2008) mixed-phase cloud microphysics scheme,

the Yonsei University (Hong et al. 2006) planetary bound-

ary layer scheme, and the Dudhia (1989) shortwave and

Rapid Radiative Transfer Model longwave (Mlawer et al.

1997) radiation schemes. Surface heat and moisture fluxes

were calculated using the Noah land surface model. No

cumulus parameterization scheme was used; therefore,

all clouds were explicitly predicted by the microphysics

scheme.

The evolution of the simulated surface and 500-hPa

atmospheric conditions during the truth simulation is

shown in Fig. 3. At 0000 UTC 7 January, a broad upper-

level trough was located across the western United States

(Fig. 3a) with a seasonably strong jet streak (50 m s21)

extending across the central United States. A sharp

southwest–northeast-oriented temperature gradient as-

sociated with a quasi-stationary surface boundary was

also draped across this region. Strong southerly winds

ahead of the surface front were transporting a plume of

very moist air northward from the Gulf Coast into the

Great Lakes region (Fig. 3b). By 1200 UTC, the 500-hPa

trough had deepened slightly as it slowly propagated

eastward and encountered a dominant ridge over the

eastern United States (Fig. 3c). Strong southwesterly

winds were still present across the central United States

with a secondary jet maximum located along the western

edge of the trough. The surface temperature gradient

had weakened slightly across Kansas and Oklahoma

while simultaneously extending farther to the northeast

as the front strengthened over Michigan. The northward

flow of warm moist air continued during this time period

with the northern extent of the moist air confined to a

slightly narrower corridor (Fig. 3d). Finally, by 0000 UTC

8 January, the trough had moved over the central Rocky

Mountains while the downstream ridge remained station-

ary across the eastern United States (Fig. 3e). Two weak

shortwave troughs were embedded within the southwest-

erly flow over the central United States. Very warm and

moist air continued to stream northward in advance of

the trough with mixing ratios in excess of 8 g kg21 present

over a large portion of the eastern United States with

localized maxima .12 g kg21 extending south and east-

ward from the Ozarks into the central Gulf of Mexico and

Florida (Fig. 3f).

4. Assimilation results

a. Initial ensemble and model configuration

The assimilation experiments described later in this

section begin at 0000 UTC 7 January 2008. Initial con-

ditions valid at this time were created for a 40-member

WRF model ensemble using the following procedure,

which is identical to that employed by Otkin (2010).

Figure 4 shows the procedure in graphical form. First, an

initial ensemble valid at 1200 UTC 5 January was cre-

ated using the approach outlined by Torn et al. (2006).

With this approach, balanced initial and lateral bound-

ary perturbations were added to 40-km North American

Mesoscale (NAM) model analyses for each ensemble

member using covariance information provided by the

WRF variational data assimilation system (WRF-Var).

This ensemble was then integrated for 24 h to increase

the ensemble spread. At that point, simulated ASOS and

ACARS observations from the truth simulation were

assimilated hourly until 0000 UTC 7 January, with sim-

ulated radiosonde observations also included at 0000 and

1200 UTC. This last step is used to produce an initial

ensemble for the assimilation experiments containing

flow-dependent covariance structures more representa-

tive of the atmospheric conditions in the truth simulation.

Assimilation experiments were performed for the same

geographic domain as the truth simulation, but contained

18-km horizontal resolution and 37 vertical levels in order

to better represent an operational setting. Unlike the truth

simulation, the Kain and Fritsch (1990, 1993) subgrid-scale

cumulus parameterization scheme was employed during

the assimilation experiments. Different initialization da-

tasets, grid resolutions, and parameterization schemes

were chosen for the assimilation experiments to limit the

risk of performing ‘‘identical twin’’ experiments.

In the remainder of this section, results from seven as-

similation experiments and a control case without assim-

ilation will be compared to data from the truth simulation.

The experiments are designed to evaluate the relative

impact of different ground-based profiler observations on

the analysis accuracy. Table 1 shows the observation types

assimilated during each experiment. Simulated conven-

tional observations were the sole observations assimilated

during the CONV case, but were also included in the

other cases. DWL wind observations were assimilated

during the CONV-DWL case, RAM temperature and

water vapor mixing ratio observations during the CONV-

RAM case, and then both DWL and RAM observations

during the CONV-RD case. The DWL wind observations

were then assimilated with temperature and moisture

retrievals from the MWR and AERI during the CONV-

MD and CONV-AD cases, respectively. Last, all of the

AERI, MWR, and DWL observations were assimilated

during the CONV-MAD case. Simulated radiosonde ob-

servations were assimilated at 0000 and 1200 UTC, whereas

all other observation types were assimilated once per hour

from 0000 UTC 7 January until 0000 UTC 8 January.

Prognostic fields contained in the model state vector in-

clude the temperature, water vapor mixing ratio, horizontal
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and vertical wind components, surface pressure, number

concentration of ice, and the mixing ratios for cloud

water, rainwater, ice, snow, and graupel. The vertical

and horizontal covariance localization half-radii were

set to 3 and 200 km, respectively. The time and spatially

varying inflation scheme developed by Anderson et al.

(2009) was also used with the initial inflation factor set

to 2%.

b. 850-hPa difference fields

As a first step in evaluating the impact of the various

observation types on the analysis accuracy, difference

fields between the truth simulation and the posterior

ensemble mean from each assimilation experiment were

investigated. Output from the truth simulation was coars-

ened to 18-km resolution before the comparison. Figure 5

shows the 850-hPa temperature differences valid at the

end of the assimilation period at 0000 UTC 8 January

2008. Inspection of the control case (Fig. 5a) shows that

without data assimilation, a substantial cold temperature

bias develops across most of the central United States due

to a combination of stronger cold-air advection across

the northern plains (not shown) and an eastward dis-

placement of the surface boundary over Texas. Several

FIG. 3. (a) Simulated 500-hPa geopotential height (shaded every 20 m) and winds (m s21) valid at 0000 UTC 7 Jan 2008. (b) Simulated

100-m AGL water vapor mixing ratio (g kg21; shaded), winds (m s21), and temperature (K; contoured in black every 28C) valid at

0000 UTC 7 Jan 2008. (c),(d) As in (a),(b), but for 1200 UTC 7 Jan 2008. (e),(f) As in (a),(b), but for 0000 UTC 8 Jan 2008.
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smaller regions characterized by a warm temperature

bias are also present across the eastern third of the

domain and along the Pacific Coast. Assimilation of

conventional observations reduces the cold temperature

bias from Kansas to Minnesota, with smaller improve-

ments occurring elsewhere (Fig. 5b). The temperature

errors were further reduced, particularly across the cen-

tral United States, when RAM observations were as-

similated (Fig. 5c). The inclusion of wind data from the

DWL had little or no impact on the temperature field

(Fig. 5d); however, assimilation of the wind observations

and the MWR or AERI profiles (Figs. 5e,f) reduced the

temperature errors more than the CONV case but less

than the CONV-RAM case. This behavior indicates that

in the absence of explicit temperature observations from

the RAM, MWR, or AERI, the covariance information

associated with the DWL wind observations is unable to

markedly improve the temperature analysis. When ob-

servations from multiple sensors are assimilated simul-

taneously (e.g., CONV-RD and CONV-MAD), however,

the combination of high-quality wind and temperature

observations produces a more accurate temperature

analysis (Figs. 5g,h).

Figure 6 shows the 850-hPa vector wind errors for

each case valid at 0000 UTC 8 January. Overall, the

control case is characterized by much stronger winds

than the truth simulation across most of the eastern

half of the domain (Fig. 6a), with localized error max-

ima stretching from the upper Midwest into southern

Canada and to the east of the lower Mississippi River

Valley. The narrow band of weaker winds extending from

eastern Texas northward to Missouri along with the

band of stronger winds to the east indicate that the most

intense southerly winds are located too far to the east

due to an eastward displacement of the surface bound-

ary. The vector wind errors were reduced in both regions

during the CONV case (Fig. 6b); however, a band of

weaker winds had developed near the surface boundary

over Missouri. Minor improvements were made during

the CONV-RAM case (Fig. 6c) with much better results

achieved when DWL observations were assimilated

(Fig. 6d). For instance, the eastward displacement of the

strongest southerly winds over the south-central United

States is no longer evident in the CONV-DWL case or in

the other cases that included DWL assimilation. Com-

bining the wind data with temperature and moisture

FIG. 4. Conceptual model for the OSSE. The first step is to generate an initial ensemble and

then integrate it forward for 24 h. Conventional observations are assimilated during step 2 with

both conventional and ground-based profiler observations assimilated during step 3. Finally,

12-h forecasts are performed during step 4.

TABLE 1. Simulated observations assimilated during each experiment.

Expt name Assimilated observation types and variables

Control No assimilation

CONV Conventional observations (ASOS, radiosonde, ACARS)

CONV-DWL DWL (U, V) 1 conventional observations

CONV-RAM RAM (T, Q) 1 conventional observations

CONV-RD RAM (T, Q) 1 DWL (U, V) 1 conventional observations

CONV-MD MWR (T, Q) 1 DWL (U, V) 1 conventional observations

CONV-AD AERI (T, Q) 1 DWL (U, V) 1 conventional observations

CONV-MAD MWR (T, Q) 1 AERI (T, Q) 1 DWL (U, V) 1 conventional observations
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observations from the other sensors had only a minimal

impact on the wind analyses (Figs. 6e–h).

Differences in the 850-hPa water vapor mixing ratio

at 0000 UTC 8 January 2008 are shown in Fig. 7. In

the control case (Fig. 7a), the eastward displacement of

the surface boundary and strongest southerly winds over

the south-central United States resulted in an eastward

shift of the moisture advection from the Gulf of Mexico,

which lead to the development of an extensive band of

drier air from Texas to Iowa and too much moisture

farther east. The error maxima were smaller over these

regions during the CONV case (Fig. 7b), but the large

FIG. 5. 850-hPa temperature differences (K) computed by subtracting the truth from the (a) control, (b) CONV, (c) CONV-RAM,

(d) CONV-DWL, (e) CONV-MD, (f) CONV-AD, (g) CONV-RD, and (h) CONV-MAD posterior ensemble mean valid at 0000 UTC

8 Jan 2008.
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dry bias over Georgia and South Carolina also expanded

farther to the west relative to the control case. Moisture

profiles from the RAM exerted a substantial positive

impact on the analysis, with the overall extent of the er-

rors reduced across the southern United States (Fig. 7c).

Although assimilation of the DWL profiles greatly

improved the wind analysis, these observations when

used alone tended to degrade the moisture analysis in

many areas with small improvements limited primarily to

portions of the central United States (Fig. 7d). Noisy

correlations between the wind observations and moisture

field likely contributed to the larger errors; however,

FIG. 6. 850-hPa vector wind differences (m s21) computed by subtracting the truth from the (a) control, (b) CONV, (c) CONV-RAM,

(d), CONV-DWL, (e) CONV-MD, (f) CONV-AD, (g) CONV-RD, and (h) CONV-MAD posterior ensemble mean valid at 0000 UTC

8 Jan 2008.
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when both wind and moisture profiles were assimilated

during the CONV-RD and CONV-MAD cases (Figs.

7g,h), the errors were generally less than when these

observation types were assimilated separately. This pos-

itive synergy illustrates that a more accurate moisture

analysis is dependent not only on the availability of

accurate moisture observations but also on a better wind

analysis and associated improvements in moisture ad-

vection. The presence of small-scale errors with larger

amplitudes in the CONV-RD case may be due to the use

of smaller observation errors for the RAM than for the

MWR and AERI profiles (refer to Fig. 2), which will

FIG. 7. 850-hPa water vapor mixing ratio differences (g kg21) computed by subtracting the truth from the (a) control, (b) CONV, (c)

CONV-RAM, (d) CONV-DWL, (e) CONV-MD, (f) CONV-AD, (g) CONV-RD, and (h) CONV-MAD posterior ensemble mean valid

at 0000 UTC 8 Jan 2008.
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result in larger analysis increments that are generally

beneficial but can also lead to localized areas containing

larger errors. Using a different covariance localization

radius for each observation type may help remedy this

situation.

c. Probability distributions

To examine the cumulative impact of the observations

on the analysis by the middle and end of the assimilation

period, error distributions were computed using differ-

ences between the truth simulation and the posterior

ensemble mean for each assimilation experiment. The

truth data was coarsened to 18-km resolution prior to

computing the statistics with the outermost 10 grid points

excluded from the analysis. Figure 8 shows the error dis-

tributions for 850-hPa temperature, water vapor mix-

ing ratio and vector wind at 1200 UTC 7 January and

0000 UTC 8 January with standard statistical measures

shown in Table 2. At 1200 UTC, the temperature dis-

tributions for the assimilation experiments exhibit a

slightly higher peak shifted closer to the zero difference

line (Fig. 8a), which indicates that the observations were

able to remove some of the bias that had developed during

the control case. Modest improvements made during the

CONV case were enhanced through assimilation of MWR,

AERI, and RAM temperature profiles but diminished

somewhat when DWL observations were assimilated

alone. The root-mean-square error (RMSE) and mean

absolute error (MAE) were lowest during the CONV-

RAM case (Table 2). By 0000 UTC (Fig. 8b), the control

distribution had acquired a flatter shape with a higher

percentage of grid points containing larger errors while

the other cases maintained error distributions similar to

those 12 h earlier. Though the bias was still lowest during

the CONV-RAM case, the large separation between this

case and the other experiments had decreased so that the

overall statistics were similar between the CONV-RAM,

CONV-AD, and CONV-MAD experiments. The smaller

impact of the RAM observations by 0000 UTC may be

due to their larger observation errors during the daytime

(refer to Fig. 2), which diminishes their impact relative to

the nighttime RAM observations and the other observa-

tion types. Inspection of the water vapor mixing ratio error

distribution at 1200 UTC (Fig. 8c) shows that, with the

exception of the CONV-RAM case, which contains a much

higher percentage of small mixing ratio errors, relatively

small differences exist between the assimilation cases. By

0000 UTC (Fig. 8d), all of the assimilation cases contain

similar water vapor error distributions though the errors

are slightly less for the CONV-AD and CONV-MAD

cases (Table 2). Last, after 12 h of assimilation, small im-

provements were made to the vector wind error distribu-

tion during the CONV case, with further improvements

realized when the profiler observations were also as-

similated (Fig. 8e). The error statistics are slightly better

when wind observations from the DWL are assimilated

simultaneously with the MWR and AERI profiles; how-

ever, most of this improvement is due to the DWL ob-

servations (Table 2). By 0000 UTC, the vector wind errors

had increased substantially during the control case with

a peak near 7 m s21 (Fig. 8f). The CONV-RAM statistics

were slightly worse than the CONV case, but assimilation

of DWL observations during the other cases greatly im-

proved the wind analysis with an error peak closer to

3 m s21 and a lower percentage of grid points containing

large wind errors.

d. Mean error profiles

Vertical profiles of bias and RMSE difference for tem-

perature, relative humidity, and vector wind are shown in

Fig. 9. The profiles were computed for each assimilation

case using data from the posterior ensemble mean from

each hourly assimilation cycle from 0000 UTC 7 January

to 0000 UTC 8 January, and then subtracting the CONV

error profiles from the profiles for the other cases. The

truth data was coarsened to 18-km resolution prior to

computing the statistics, with the outermost 10 grid points

excluded from the analysis. Overall, the error statistics

are generally better for the PBL profile assimilation ex-

periments than for the CONV case, with the vertical ex-

tent and magnitude of the error reduction dependent

upon which observations were assimilated. For temper-

ature (Figs. 9a,b), the analysis accuracy was slightly de-

graded during the CONV-DWL case, most likely due to

noisy correlations between the DWL wind observations

and the unobserved temperature field. When AERI and

MWR observations were also assimilated, the RMSE

and bias were reduced in the lower troposphere, partic-

ularly during the CONV-AD and CONV-MAD cases,

with the relative improvement diminishing with height

and converging toward the CONV error profiles above

600 hPa. Comparison of the CONV-AD and CONV-MD

profiles shows that the AERI observations were able to

improve the temperature analysis more than the MWR

observations; this is likely due to a combination of the

higher information content in the AERI observations

relative to the MWR observations and the higher oc-

currence of clear-sky AERI profiles during the assimila-

tion period for this case. Last, assimilation of RAM

observations during the CONV-RAM and CONV-RD

cases resulted in the smallest errors overall, with espe-

cially large reductions in the upper troposphere relative to

the other cases; however, this was not unexpected since

the MWR and AERI observations were limited to heights

below 4 km because of their lack of information content

above that level.
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Inspection of the relative humidity error profiles (Figs.

9c,d) shows that large error reductions occurred below

500 hPa when AERI profiles were assimilated, with only

minimal changes occurring above this level. As was the

case with the temperature field, the MWR observations

alone had a smaller positive impact on the analysis than

the AERI observations. Although the AERI is able to

retrieve more independent pieces of information than the

MWR, it is probable that the large separation between

these two cases would decrease if more low-level clouds

were present, thereby reducing the number of clear-

sky AERI retrievals. RAM observations had by far the

greatest impact on the moisture analysis with the largest

error reductions occurring at almost all levels during

the CONV-RAM and CONV-RD cases. The substantial

impact of these observations in the upper troposphere is

particularly noteworthy and sharply contrasts with the

minimal ability of the other observation types to im-

prove the upper-level moisture analysis. DWL wind

observations tended to degrade the analysis during the

CONV-DWL case, which indicates that more accurate

covariances between the small-scale wind and moisture

fields are necessary to reduce errors in the moisture field.

The negative synergy between the wind observations and

the moisture field would likely be reduced for a larger

ensemble size that is better able to capture small-scale

correlations between these variables.

For the vector wind field (Fig. 9e), minor differences

exist between the CONV-DWL case and the other as-

similation cases below 400 hPa (with the exception of

FIG. 8. (a) Probability density distributions computed for the difference between the 850-hPa temperature (K) from the posterior

ensemble mean of each assimilation experiment and the truth simulation at 1200 UTC 7 Jan 2008. (b) As in (a), but valid at 0000 UTC

8 Jan 2008. (c) As in (a), but for 850-hPa mixing ratio differences (g kg21). (d) As in (c), but valid at 0000 UTC 8 Jan 2008. (e) As in (a), but

for 850-hPa vector wind differences (m s21). (f) As in (e), but valid at 0000 UTC 8 Jan 2008.
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CONV-RAM), which indicates that much of the im-

proved performance relative to the CONV case is due to

the DWL wind observations. Although the RAM tem-

perature and moisture observations did not improve the

wind analysis below 600 hPa during the CONV-RAM

case, the errors do start to diminish above this level and

become smaller than the other cases above 400 hPa. The

varying impact of the RAM observations with height is

likely due to the cumulative effect of the larger im-

provements made to the temperature analysis during this

case and their indirect affect on the wind field through

mass balance constraints.

5. Discussion and conclusions

In this study, a regional-scale OSSE was used to ex-

amine how the assimilation of temperature, water vapor,

and horizontal wind profiles from an array of surface-

based remote sensing boundary layer profiling sensors

impacts the accuracy of regional atmospheric analyses

at mesoscale resolution. Assimilation experiments were

conducted using the EnKF algorithm implemented in the

DART data assimilation system. The case study tracked

the evolution of several extratropical weather systems

that occurred across the contiguous United States during

7–8 January 2008. A high-resolution ‘‘truth’’ simulation

containing realistic cloud and thermodynamic properties

was performed using the WRF model. Data from this

simulation was used to generate simulated vertical pro-

files of temperature, water vapor, and winds emulating

observations from a potential array of DWL, RAM,

MWR, and AERI sensors located at existing WSR-88D

radar locations. Simulated conventional radiosonde, sur-

face, and aircraft pilot observations were also generated.

Realistic errors based on a given sensor’s accuracy spec-

ifications, including vertically correlated errors when

appropriate, were added to each observation. Seven

assimilation experiments were conducted with various

combinations of observations assimilated once per hour

during a 24-h period.

TABLE 2. RMSE, MAE, and bias computed for 850-hPa temperature (K), water vapor mixing ratio (g kg21), and vector wind (m s21) at

1200 UTC 7 Jan 2008 and 0000 UTC 8 Jan 2008. The statistics were computed using data from the posterior ensemble mean of each

assimilation experiment. Boldface numbers indicate cases with the smallest errors for each variable.

Expt

RMSE MAE Bias RMSE MAE Bias

1200 UTC 7 Jan 2008 0000 UTC 8 Jan 2008

850-hPa temperature (K)

Control 1.610 1.211 20.623 1.912 1.504 20.758

CONV 1.400 1.056 20.485 1.368 1.070 20.359

CONV-DWL 1.438 1.090 20.356 1.477 1.147 20.388

CONV-RAM 1.236 0.917 20.291 1.283 0.992 20.223
CONV-RD 1.281 0.970 20.268 1.306 1.023 20.249

CONV-MD 1.380 1.057 20.311 1.384 1.083 20.358

CONV-AD 1.314 1.005 20.241 1.279 0.989 20.283

CONV-MAD 1.308 1.000 20.233 1.283 0.994 20.279

850-hPa water vapor mixing ratio (g kg21)

Control 1.072 0.786 0.016 1.500 1.108 0.099

CONV 0.989 0.724 0.001 1.301 0.967 0.168

CONV-DWL 1.053 0.771 0.061 1.412 1.034 0.211

CONV-RAM 1.011 0.711 0.039 1.345 0.958 0.187

CONV-RD 1.020 0.740 0.037 1.324 0.943 0.186

CONV-MD 1.004 0.732 0.000 1.311 0.966 0.130

CONV-AD 0.995 0.731 20.007 1.275 0.929 0.134

CONV-MAD 0.996 0.731 20.019 1.275 0.930 0.116

850-hPa vector wind (m s21)

Vector RMSE Magnitude MAE Vector Bias Vector RMSE Magnitude MAE Vector Bias

Control 5.33 2.73 0.95 8.74 4.85 5.90

CONV 4.74 2.71 0.23 6.45 3.30 3.51

CONV-DWL 4.22 2.19 0.91 5.57 2.81 2.68
CONV-RAM 4.78 2.60 0.53 6.61 3.33 3.53

CONV-RD 4.43 2.35 1.01 5.75 2.96 2.89

CONV-MD 4.20 2.20 1.00 5.49 2.83 2.85

CONV-AD 4.24 2.17 1.04 5.57 2.89 2.97

CONV-MAD 4.25 2.17 1.08 5.54 2.89 3.00
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Overall, the results demonstrate that the assimilation

of high-quality observations from an array of surface-

based profiling systems within an advanced data assimi-

lation system has the potential to improve the accuracy of

atmospheric analyses used by numerical weather pre-

diction models and operational forecasters. The impact of

each profiling system was greatest on the variables either

observed or retrieved by that instrument in the lower and

FIG. 9. Vertical profiles of (a) root-mean-square

error difference and (b) bias difference for tem-

perature (K), computed by subtracting the error

profile for a given case from the CONV profile

shown on the left side. The profiles were computed

using data from the posterior ensemble mean from

0000 UTC 7 Jan 2008 to 0000 UTC 8 Jan 2008.

(c),(d) As in (a),(b), but for relative humidity (%).

(e) As in (a), but for vector wind speed (m s21).

Results are shown for the CONV-DWL (dashed

green), CONV-RAM (dashed blue), CONV-RD

(dashed red), CONV-MD (blue), CONV-AD (green),

and CONV-MAD (red) experiments.
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middle troposphere, though some minor improvements

also occurred in the unobserved variables and in the up-

per troposphere, particularly when RAM observations

were assimilated. Comparison of the 850-hPa difference

fields between the truth simulation and each assimila-

tion experiment showed that the research-quality RAM

temperature and moisture observations greatly improved

the final temperature and humidity analyses, but had little

or no impact on the wind field. AERI and MWR profiles

also improved the temperature and moisture analyses in

the lower troposphere, but had a slightly smaller impact

than the RAM assimilation cases. DWL wind observa-

tions, however, tended to slightly degrade the accuracy of

the temperature and moisture analyses, but had a large

positive impact on the wind field. For instance, the east-

ward displacement of the strongest southerly winds ahead

of the surface boundary was removed when DWL wind

profiles were assimilated. Further improvements were

made to the wind field when temperature and moisture

observations from the other sensors were assimilated si-

multaneously with the wind data, which illustrates that

the availability of accurate mass profiles in the lower

troposphere is also important for improving mesoscale

wind analyses. A similar beneficial synergy between sen-

sors occurred in the moisture field where the best analysis

was achieved during the CONV-RD and CONV-MAD

cases. The tendency for the errors to be smallest when

both moisture and wind observations are assimilated

demonstrates that a more accurate moisture analysis is

dependent not only on the availability of accurate mois-

ture observations, but also on a better wind analysis and

associated improvements in moisture advection between

analysis times. Factor separation techniques (Stein and

Alpert 1993; Rostkier-Edelstein and Hacker 2010) could

be used to further quantify the synergism between the

observed and unobserved variables in future studies.

Inspection of vertical profiles of bias and RMSE

computed using data from the entire 24-h assimilation

period showed that the vertical extent and magnitude of

the error reduction for a given field is dependent upon

which observations are assimilated. The smallest tem-

perature and moisture errors generally occurred during

the CONV-RAM and CONV-RD cases, particularly in

the upper troposphere where the errors were much less

than the other cases; however, this is not surprising given

that the information content in the AERI and MWR

observations is minimal above 600 hPa. Comparison of

the CONV-AD and CONV-MD results shows that the

AERI observations had a larger impact than the MWR

observations on the temperature and moisture fields.

Although the AERI provides more independent pieces

of information, the large difference between these two

sensors would possibly be reduced if more low-level

clouds were present, thereby reducing the number of

clear-sky AERI retrievals. DWL observations greatly

improved the wind analyses in the lower and middle

troposphere; however, the accuracy of the temperature

and moisture fields tended to decrease, which indicates

that more accurate covariances are necessary to reduce

errors in the unobserved fields when these observations

are assimilated. The assimilation of RAM observations

did not improve the wind analysis below 600 hPa; however,

the errors started to diminish above this level and actually

became smaller than the other cases above 400 hPa. The

greater impact of these observations in the upper tropo-

sphere is likely due to the cumulative effect of the larger

improvements made to the temperature analysis and

their indirect affect on the wind field through mass bal-

ance constraints.

In Part II of this study (Hartung et al. 2011), the im-

pact of the various observation types will be further eval-

uated through a comparison of their impact on short-range

(0–12 h) ensemble forecasts of accumulated precipita-

tion and temperature, moisture, and winds in the lower

troposphere (i.e., step 4 in Fig. 4). The forecast results

indicate that the simultaneous assimilation of wind

profiles from the DWL and moisture and temperature

profiles from the RAM, AERI, or MWR produces the

largest forecast improvements, which is consistent with

the atmospheric analysis results presented in this study.

Future work includes performing a similar study but

with higher model resolution for a summertime con-

vective case to evaluate the impact of the observations

on convective initiation and thunderstorm evolution.

Additional studies containing either half or double the

profiler density will also be performed to help determine

how many profiler locations are necessary from a cost–

benefit perspective to optimally improve the analysis

accuracy and forecast skill.
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