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ABSTRACT

Ensemble data assimilation experiments were performed to assess the ability of satellite all-sky infrared

brightness temperatures and different bias correction (BC) predictors to improve the accuracy of short-range

forecasts used as the model background during each assimilation cycle. Satellite observations sensitive to

clouds and water vapor in the upper troposphere were assimilated at hourly intervals during a 3-day period.

Linear and nonlinear conditional biases were removed from the infrared observations using a Taylor series

polynomial expansion of the observation-minus-background departures and BC predictors sensitive to clouds

and water vapor or to variations in the satellite zenith angle. Assimilating the all-sky infrared brightness

temperatures without BC degraded the forecast accuracy based on comparisons to radiosonde observations.

Removal of the linear and nonlinear conditional biases from the satellite observations substantially improved

the results, with predictors sensitive to the location of the cloud top having the largest impact, especially when

higher-order nonlinear BC terms were used. Overall, experiments employing the observed cloud-top height

or observed brightness temperature as the bias predictor had the smallest water vapor, cloud, and wind speed

errors, while also having less degradation to temperatures than occurred when using other predictors. The

forecast errors were smaller during these experiments because the cloud-height-sensitive BC predictors were

able to more effectively remove the large conditional biases for lower brightness temperatures associated

with a deficiency in upper-level clouds in the model background.

1. Introduction

Indirect observations of the atmosphere, ocean, and

land surface conditions obtained using sophisticated

satellite remote sensing instruments are an indispens-

able component of the global observing system. For

numerical weather prediction (NWP) applications, sat-

ellite radiances from visible, infrared, and microwave

bands provide important information about atmo-

spheric variables, such as temperature, winds, water

vapor, and clouds, as well as lower boundary variables

such as soil moisture, vegetation biomass, and sea sur-

face temperatures. Satellite observations can also be

used to detect the presence of aerosols and trace gases

that are important for health and air quality models.

Recent enhancements to the global satellite observing

system through deployment of more accurate sensors

on board geostationary and polar-orbiting satellite

platforms has made it possible to routinely monitor

environmental conditions with high spatial and tempo-

ral resolution across the entire globe (Klaes et al. 2007;

Strow et al. 2013; Bessho et al. 2016; Schmit et al. 2017).

As satellite remote sensing capabilities have ex-

panded and improved during the past several decades,

substantial progress has also been made in our ability

to extract more information from these important ob-

servations through development of advanced data

assimilation (DA) methods and more accurate NWP

models. Despite using only a small percentage of all

available observations, satellite brightness temperatures

and derived products such as atmospheric motion vec-

tors still constitute more than 90% of the observationsCorresponding author: Jason A. Otkin, jasono@ssec.wisc.edu
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that are actively assimilated in most operational global

NWP models (Bauer et al. 2010). Satellite observations

are especially important in data-sparse regions or for

model state variables such as clouds and water vapor for

which conventional in situ observations with high spatial

and temporal resolution are not available.

Until the past decade, however, almost all efforts

within the operational and research DA communities

were directed toward optimizing the use of clear-sky

brightness temperatures. This point of emphasis was

not made because cloud-impacted observations were

deemed unimportant, but rather, was due to the diffi-

culty of using them in existingDA systems (Errico et al.

2007). Indeed, until the recent development of all-sky

DA methods, the need to exclude observations im-

pacted by clouds and precipitation meant that only a

small percentage of available satellite observations

were actively assimilated at global NWP centers (Yang

et al. 2016; Mallick et al. 2017). This limitation is even

more severe for regional-scale NWP models where the

entire domain may be covered by clouds (Lin et al.

2017). Though more effective assimilation of clear-sky

satellite brightness temperatures has contributed to a

steady increase in forecast skill, neglecting observa-

tions impacted by clouds is problematic because they

tend to be located in dynamically active regions where

the generation of more accurate initialization datasets

through better use of these observations could help

constrain potentially rapid error growth in NWPmodels

(McNally 2002).

Observations sensitive to clouds and precipitation

are challenging to use for a variety of reasons, as dis-

cussed by Errico et al. (2007). For example, though

observation-minus-background (OMB) departure sta-

tistics are generally close to Gaussian for clear-sky

observations, they can have substantial non-Gaussian

error characteristics in the presence of clouds and pre-

cipitation (Bocquet et al. 2010; Okamoto et al. 2014;

Okamoto 2017; Harnisch et al. 2016; Otkin et al. 2018).

Short-range model forecasts used as the first guess often

exhibit large errors in the placement and characteris-

tics of clouds and precipitation. Limited predictability of

small-scale features and the difficulty of accurately

modeling moist processes means that it is common for

the model first guess to have much larger errors for

clouds and precipitation than it does for dynamical

variables such as temperature and geopotential height

(Fabry and Sun 2010). Though representativeness errors

can usually be ignored when assimilating clear-sky ob-

servations primarily sensitive to temperature, they be-

come important for cloud-affected observations because

they can lead to very large OMB departures that hinder

their assimilation (Geer and Bauer 2011; Geer et al.

2012; Okamoto 2013). It is also more difficult to quantify

the observation and model background errors because

it can be challenging to separate signals associated with

the individual atmospheric and land surface variables

that contribute to the sensitivity of a given satellite

observation (Bauer et al. 2011). Another prominent

problem is the difficulty of modeling complex cloud

properties in the radiative transfer models used to

compute the model-equivalent brightness tempera-

tures. Nonlinear error statistics due to deficiencies in

the radiative transfer and NWP models could lead to

erroneous analysis increments in the model state vari-

ables that in turn could impact balance and stabil-

ity during the first few hours of the forecast (Errico

et al. 2007). Last, it is also important to account for

correlated observation errors because they can become

very large in the presence of clouds and precipitation

(Bormann et al. 2011, 2016; Campbell et al. 2017).

Despite these and other issues that make it more

challenging to assimilate cloud-sensitive observations,

substantial progress has still been made during the past

decade (Geer et al. 2017, 2018). Successful efforts to

assimilate all-sky satellite observations have occurred in

tandem with improvements in the representation of

water vapor and cloud features in NWP models and

advances in the ability of radiative transfer models to

accurately model radiative fluxes in clouds. These ef-

forts have also been aided through the widespread

adoption of four-dimensional variational data assimila-

tion (4DVAR) and ensemble DA methods that can

more easily extract information about dynamical vari-

ables from cloud- and moisture-sensitive observations

(Geer et al. 2014; Lien et al. 2016; Zhu et al. 2016). For

example, Peubey and McNally (2009) demonstrated

that four-dimensional variational methods could extract

useful information about the wind field from moisture-

sensitive satellite observations through the ‘‘tracer-

advection’’ mechanism. Likewise, ensemble DA systems

can infer the temperature, water vapor, and wind fields

through ensemble covariances that link the model state

variables to the simulated observations (Zhang et al.

2011; Houtekamer and Zhang 2016). Compared to DA

methods that only assimilate clear-sky satellite observa-

tions, an important benefit of an all-sky DA approach is

that it provides a unified treatment of cloud-free and

cloud-impacted observations that negates the need to

perform potentially unreliable and expensive cloud de-

tection procedures (Bauer et al. 2010). An all-sky DA

approach also promotes a more balanced use of satellite

observations in clear and cloudy areas that helps over-

come the tendency for operational DA systems to assim-

ilate substantially more observations in regions that are

not affected by clouds or precipitation (Geer et al. 2017).
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Early efforts to assimilate all-sky satellite observa-

tions focused on microwave sounding channels that are

sensitive to water vapor and nonprecipitating cloud

particles (Bauer et al. 2010). These channels were ini-

tially chosen because they have more Gaussian error

characteristics than cloud-sensitive infrared and visi-

ble channels, thereby making them a logical starting

point to explore the assimilation of all-sky observa-

tions. Whereas it was once thought that it may prove too

difficult to assimilate water vapor and cloud-sensitive

satellite observations (e.g., Bengtsson and Hodges

2005), their impact has increased greatly in recent

years (Geer et al. 2018). The direct assimilation of

all-sky microwave observations was first accom-

plished in an operational DA system in 2009 at the

European Centre for Medium-Range Weather Forecasts

(ECMWF) (Bauer et al. 2010). Since then, the impact of

these observations has risen to nearly 20% (Geer et al.

2017), as measured using the forecast sensitivity obser-

vation impact metric (Langland and Baker 2004). This

rapid increase in their impact means that all-sky mi-

crowave observations have become one of the most

important sources of data in the ECMWF model, with

an impact comparable to clear-sky satellite radiances

and conventional observations. More recently, the

National Centers for Environmental Prediction has also

started to assimilate all-sky microwave observations in

their operational global forecasting system (Zhu et al.

2016). Numerous studies have documented the benefits

of assimilating all-sky microwave observations in

global and regional modeling systems (e.g., Aonashi

and Eito 2011; Geer et al. 2014; Yang et al. 2016;

Kazumori et al. 2016; Baordo and Geer 2016; Zhang

and Guan 2017; Lawrence et al. 2018; Wu et al. 2019).

In contrast to the extensive resources that have been

directed by the operational DA community toward the

assimilation of all-sky microwave observations, much

less attention has been given to increasing the use of

cloud-sensitive infrared brightness temperatures. In-

deed, until the past few years, most studies that explored

the assimilation of all-sky infrared observations have

done so using research models or within the context of

observing system simulation experiments (OSSEs).

Early studies byVukicevic et al. (2004, 2006) assimilated

cloudy-sky infrared brightness temperatures from the

10.7- and 12.0-mm bands on the Geostationary Opera-

tional Environmental Satellite (GOES) Imager using a

4DVAR assimilation system. Observations from these

atmospheric window bands were shown to improve the

depiction of upper-level ice clouds; however, they had

less impact on liquid clouds occurring lower in the tro-

posphere. Subsequent studies by Stengel et al. (2009,

2013) found that assimilation of cloud-impacted infrared

observations from the 6.2- and 7.3-mm water vapor

channels on the Spinning EnhancedVisible and Infrared

Imager (SEVIRI) sensor led to more accurate analyses

and forecasts in a high-resolution regional-scale model.

Other investigators proposed several methods that

could be used to assimilate information from cloud-

impacted observations from hyperspectral sounders

on board polar-orbiting satellite platforms (Heilliette

and Garand 2007; Pavelin et al. 2008; McNally 2009;

Pangaud et al. 2009; Guidard et al. 2011; Lupu and

McNally 2012). All of these methods were designed

to estimate the cloud-top pressure or effective cloud

amount, with these parameters then fed to the DA sys-

tem. This process enabled the assimilation of some cloud

information from these observations.

The direct assimilation of cloud and water vapor

sensitive infrared brightness temperatures has also been

investigated using regional-scale OSSEs. Most of these

studies employed ensemble DA systems and were used

to examine the potential impact of assimilating obser-

vations from the Advanced Baseline Imager (ABI)

on board the GOES-R satellite (currently GOES-16

and GOES-17). In studies assimilating both clear-

and cloudy-sky brightness temperatures from the ABI

8.5-mm band, Otkin (2010, 2012a) showed that their

assimilation improved the cloud field and that it was

necessary to use a short horizontal localization radius to

account for small-scale cloud features in the infrared

observations. A subsequent study by Otkin (2012b) re-

vealed that assimilation of all-sky observations from the

three water vapor sensitive bands on the ABI sensor

had a large positive impact on 6-h precipitation forecasts

during a high-impact winter storm. Jones et al. (2013a,

2014) examined the impact of simultaneously assimi-

lating all-sky ABI brightness temperatures and Doppler

radar reflectivity observations for an extratropical

cyclone, where it was found that the most accurate

analyses and forecasts were obtained when both obser-

vation types were assimilated because they are sensitive

to different portions of the cloud field. The radar ob-

servations had a large positive impact on the cloud and

wind fields in the lower troposphere, whereas the sat-

ellite observations provided additional improvements in

the cloud and moisture fields in the upper troposphere.

Other OSSE studies have shown similar positive results

for various weather features, such as mesoscale con-

vective systems and tropical cyclones (Zupanski et al.

2011; Cintineo et al. 2016; Zhang et al. 2016; Minamide

and Zhang 2017, 2018; Pan et al. 2018).

Results from the various OSSE studies have been

used to inform ongoing efforts by various groups to as-

similate real all-sky infrared brightness temperatures

and satellite-derived products. Most of these studies
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have focused on optimizing methods to assimilate data

from geostationary satellite sensors in regional-scale

ensemble DA systems. Geostationary satellite ob-

servations are very useful for these models because they

are the only source of cloud and water vapor in-

formation with high spatial resolution.Moreover, unlike

polar-orbiting satellites, geostationary sensors are also

able to provide frequent observation updates that cover

most, if not all, of the model domain. Some recent

studies have shown positive results when assimilating

satellite-derived products such as cloud water path or

layer precipitable water (Jones et al. 2013b, 2015, 2016,

2018; Schomburg et al. 2015; Jones and Stensrud 2015;

Kerr et al. 2015;Wang et al. 2018), whereas other studies

have explored the direct assimilation of all-sky infra-

red brightness temperatures. Regardless, there is great

potential in assimilating all-sky geostationary satellite

observations in regional-scale models because clouds

are the first observable aspect of convective systems

(Gustafsson et al. 2018; Kurzrock et al. 2018).

Okamoto (2013) showed a slightly positive impact on

temperature and wind analyses and 6-h forecasts when

a subset of infrared brightness temperatures depicting

spatially homogeneous clouds in the middle and up-

per troposphere were assimilated. Subsequent studies

by Okamoto et al. (2014) and Harnisch et al. (2016)

developed cloud-dependent all-sky observation error

models where the error is allowed to vary as a function

of a diagnosed cloud impact parameter. Similar in con-

struct to the ‘‘symmetric’’ observation error model de-

veloped byGeer andBauer (2011) for all-skymicrowave

observations, both models assign the largest errors to

the most strongly cloud-impacted observations given

greater uncertainties in both the NWP and radiative

transfer models in cloudy scenes. Minamide and Zhang

(2017) have proposed an alternative method, known as

adaptive observation error inflation, that scales the ob-

servation errors as a function of the first guess departure,

with the largest errors given to observations with the

largest departures. Application of these dynamical

observation error models to all-sky infrared bright-

ness temperatures generally leads to more Gaussian

departure statistics.

Other studies have shown that assimilation of all-sky

infrared observations from geostationary satellite sen-

sors can improve forecasts for tropical cyclones, floods,

and severe thunderstorms (Zhang et al. 2016, 2018;

Honda et al. 2018a,b; Minamide and Zhang 2018). In

particular, these case studies revealed that assimilation

of all-sky observations improved the prediction of the

midlevel mesocyclone during a tornadic thunderstorm

and the structure of the inner core and outer rainband

regions for several tropical cyclones. More accurate

precipitation forecasts were also shown to lead to more

skillful flood forecasts from a river discharge model

(Honda et al. 2018b). Though the direct assimilation of

all-sky infrared brightness temperatures is currently not

included in any operational DA system, Geer et al.

(2019) present promising early results from a semi-

operational implementation of the ECMWF model.

Their study assimilated all-sky observations from seven

water vapor sensitive bands on the Infrared Atmo-

spheric Sounding Interferometer sensor on board the

polar-orbiting MetOp-A and MetOp-B satellites. It was

shown that the newly developed all-sky DA approach

gave results that were as good or better than the existing

clear-sky-only approach, with the largest benefits found

in the tropics where short-range forecasts were im-

proved throughout the troposphere and stratosphere.

In this study, we advance efforts to assimilate all-sky

infrared brightness temperatures from the cloud and

water vapor sensitive 6.2-mm band on the SEVIRI sen-

sor using a preoperational version of the Kilometer-

scale Ensemble Data Assimilation (KENDA) system

run at the German Deutscher Wetterdienst (DWD).

Experiments are run in which the nonlinear bias cor-

rection (NBC) method developed by Otkin et al. (2018)

is used to remove systematic biases from the all-sky

observations prior to their assimilation. Given the

proven utility of clear-sky satellite BC methods (Eyre

2016), it is necessary to develop cloud-dependent BC

methods for all-sky infrared brightness temperatures to

make full use of these observations within modern DA

systems. Cloud-dependent biases can occur for a variety

of reasons. For example, deficiencies in the forward ra-

diative transfer model used to compute the model-

equivalent brightness temperatures, or the inability of

the parameterization schemes in the NWP model to

accurately represent the spatial extent, thickness, and

optical properties of clouds, can introduce systematic

errors that vary as a nonlinear function of some cloud

property, such as cloud-top height (Dee 2005; Dee and

Uppala 2009;Mahfouf 2010; Otkin andGreenwald 2008;

Cintineo et al. 2014; Eikenberg et al. 2015). Though the

accuracy of radiative transfer models has improved

greatly in recent years, there are still large uncertainties

regarding the specification of cloud properties, espe-

cially for ice clouds (Yang et al. 2013; Baum et al. 2014;

Yi et al. 2016).

Most BC methods use a set of predictors describing

aspects of the atmospheric state or characteristics of

the satellite data to remove biases from the OMB de-

partures (Eyre 2016). So-called ‘‘static’’ BC methods

use a set of departures accumulated over long periods of

time outside of the DA system to estimate and remove

biases from the observations (Eyre 1992; Harris and
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Kelly 2001; Hilton et al. 2009). In contrast to the non-

time-varying BC coefficients derived using static

methods, variational BC (VarBC) methods update the

BC coefficients during each DA cycle using an aug-

mented control vector (Derber et al. 1991; Parrish and

Derber 1992; Derber and Wu 1998; Dee 2005; Auligne

et al. 2007; Dee and Uppala 2009; Zhu et al. 2014, 2016).

Recently, Zhu et al. (2016) expanded an existing oper-

ational VarBC method so that it could be used to re-

move biases from all-sky microwave observations. To

reduce errors associated with mismatched cloud fields,

the BC coefficients with this method were computed us-

ing only situations where both the observed and model-

equivalent brightness temperatures were diagnosed as

clear or cloudy. Though most studies have focused on

variational, hybrid, and ensemble-variational DA sys-

tems, several studies have also explored their use in

ensembleDA systems (Szunyogh et al. 2008; Fertig et al.

2009; Stengel et al. 2009, 2013; Miyoshi et al. 2010;

Aravequia et al. 2011; Cintineo et al. 2016).

BC methods typically assume that a linear relation-

ship exists between the OMB departure bias and a given

set of predictors. Though previous studies have shown

that linear BC methods are able to effectively remove

biases from clear-sky satellite observations, these

methods are suboptimal if the observation bias varies

as a nonlinear function of some predictor. Indeed,

Okamoto et al. (2019) found that linear BC predictors

obtained from a clear-sky assimilation system and

then used during the assimilation of all-sky infrared

brightness temperatures did not lead to more accurate

analyses or forecasts. They speculated that the lack

of improvement may have occurred because the all-

sky biases were too complex to remove using linear

BC predictors. Otkin et al. (2018) showed that non-

linear conditional biases are more likely to occur

in cloud-affected observations, which necessitates

the development of BC methods that can capture

complex error patterns in all-sky observations. Their

study also showed that cloud-sensitive predictors, such

as the cloud-top height (CTH) or the brightness tem-

peratures themselves, are most effective at remov-

ing biases from all-sky infrared observations. In this

study, we build upon the work of Otkin et al. (2018)

by assessing the ability of linear and nonlinear BC

predictors in the context of all-sky infrared bright-

ness temperature assimilation to improve short-range

(1-h) forecasts in an ensemble DA system. The paper

is organized as follows. The DA framework is de-

scribed in section 2, with assimilation results using

different linear and nonlinear BC predictors pre-

sented in section 3. Conclusions and a discussion are

presented in section 4.

2. Experimental design

a. SEVIRI satellite datasets

The DA experiments performed during this study

employed all-sky infrared brightness temperatures

from the SEVIRI sensor on board the Meteosat Sec-

ond Generation satellite, along with CTH retrievals

provided by the EUMETSAT Nowcasting Satellite

Applications Facility. The SEVIRI sensor observes

the top-of-atmosphere radiances across 12 visible and

infrared spectral bands, with a nadir resolution of

3 km for all infrared bands (Schmetz et al. 2002). This

study focuses on the assimilation of clear and cloudy-sky

brightness temperatures from the 6.2-mm band sensitive

to clouds and water vapor in the upper troposphere.

Under clear-sky conditions, the weighting function for

this band peaks near 350 hPa for a standard midlatitude

atmosphere; however, it will shift upward and become

truncated near the cloud top when clouds are present

due to increased scattering. It will also peak at a higher

(lower) atmospheric level if more (less) water vapor

is present in themiddle and upper troposphere. The dual

sensitivity of this band to clouds and water vapor is ad-

vantageous for DA applications because increasing

moisture and increasing cloud optical thickness influ-

ence the infrared brightness temperatures in a similar

way. The resultant smoother dependence betweenwater

in its vapor and condensed (cloud) states will generally

lead to more Gaussian statistics than would occur with

an infrared atmospheric window band that has little or

no sensitivity to water vapor.

As will be discussed in section 3, CTH retrievals de-

rived from SEVIRI observations were used as one of the

BC predictors during the DA experiments. With this

dataset, the CTH is estimated for each satellite pixel by

first computing a simulated clear-sky 10.8-mmbrightness

temperature using the Radiative Transfer for TOVS

(RTTOV) radiative transfer model (Saunders et al.

1999) and temperature and water vapor profiles from

the global NWPmodel run at the DWD (Majewski et al.

2002). An opaque cloud is then inserted into the atmo-

spheric profile at successively higher levels until the

difference between the observed and simulated bright-

ness temperatures is minimized (Derrien and Le Gleau

2005). The CTH retrievals have a nominal vertical res-

olution of 200m; however, their uncertainty is larger for

semitransparent clouds (Le Gleau 2016). The retrieved

CTH for a given satellite pixel is assumed to be spatially

homogeneous across the entire pixel. To minimize the

impact associated with spatially correlated errors in the

full-resolution datasets (3-km at nadir), the CTH re-

trievals and SEVIRI brightness temperatures were

horizontally thinned by a factor of five in the meridional
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and zonal directions. This reduces their horizontal res-

olution to ;20–25 km across the model domain, which

is ;8 times coarser than the resolution of the NWP

model employed during this study.

b. KENDA data assimilation system

Ensemble DA experiments were performed using a

research version of the regional-scale KENDA system

(Schraff et al. 2016) used at the DWD. A major devel-

opment focus of KENDA in recent years has been

the inclusion of cloud- and precipitation-sensitive ob-

servations that can be used to constrain the cloud and

thermodynamic fields in convection-resolving models.

KENDA employs a local ensemble transform Kalman

filter (Hunt et al. 2007) during the analysis step and the

Consortium for Small-Scale Modeling (COSMO) NWP

model (Baldauf et al. 2011) during the forecast step. All

of the DA experiments were run on the COSMO-DE

domain covering Germany and parts of surrounding

countries with 2.8-km horizontal resolution. With this

version of KENDA, the lateral boundary conditions

were obtained at hourly intervals from the COSMO-EU

domain run at the DWD, which in turn was driven by

lateral boundary conditions from the global Icosahedral

nonhydrostatic (ICON) model (Zangl et al. 2015). The

COSMO-DE domain contains 50 terrain-following

vertical layers, with the model top located near 22 km

(about 40 hPa).

The COSMO model includes prognostic variables

for atmospheric temperature, pressure, horizontal and

meridional wind components, and the mixing ratios

for water vapor, cloud water, rainwater, ice, snow, and

graupel. Cloud microphysical processes are handled

using a simplified version of the double-moment Seifert

and Beheng (2001) microphysics scheme that was re-

duced to a single-moment scheme for computational

purposes, whereas the parameterization of cloud for-

mation and decay processes is based on Lin et al.

(1983). Though deep convection is explicitly resolved

on the COSMO-DE domain, a simplified version of the

Tiedtke (1989) mass-flux scheme is used to parame-

terize shallow convection. Atmospheric turbulence is

predicted using the 2.5-order turbulent kinetic energy

scheme developed by Raschendorfer (2001). A d-two-

stream radiative transfer method is used to update

atmospheric heating rates due to radiative effects at

15-min intervals (Ritter and Geleyn 1992).

The DA experiments employed a 40-member en-

semble, along with a deterministic run that is initial-

ized by applying the Kalman gain matrix from the

assimilation update to the deterministic model back-

ground. The ensemble and deterministic runs were

initialized at 0000 UTC 28May 2014 and then updated

at hourly intervals during a 3-day period. Model-

equivalent brightness temperatures for the SEVIRI

6.2-mm band were computed using version 10.2 of

the RTTOV radiative transfer model that includes

an enhanced cloud-scattering module that enables the

use of cloud hydrometeor profiles located on the NWP

model vertical grid (Matricardi 2005; Hocking et al.

2011). Vertical profiles of fractional cloud cover and

ice and liquid water contents used to compute the

cloudy-sky brightness temperatures were obtained using

COSMO model output and empirical relationships de-

veloped by Kostka et al. (2014). The maximum-random

cloud overlap scheme (Raisanen 1998) was used, with

the ice crystals assumed to have a hexagonal shape

and the effective particle diameters computed using

the McFarquhar et al. (2003) method.

SEVIRI 6.2-mm brightness temperatures, along with

radiosonde, surface, wind profiler, and aircraft obser-

vations, were actively assimilated at hourly intervals

during each DA experiment. The corresponding model

equivalents were computed at the exact observation

times through inclusion of the various observation op-

erators within the COSMOmodel. Covariance inflation

values were computed at each grid point using a combi-

nation of the relaxation to prior perturbations approach

described by Zhang et al. (2004) and multiplicative in-

flation based on Anderson and Anderson (1999). Co-

variance localization was performed by using only those

observations located within a specified horizontal radius

of a given analysis point. An adaptive horizontal local-

ization radius was used for the conventional observa-

tions (Perianez et al. 2014); however, it was set to 35 km

for the all-sky SEVIRI brightness temperatures given

their uniform data coverage. The vertical localization

scale was set to 0.7 in logarithm of pressure for the

brightness temperatures, with the localization height

determined using the peak of the satellite weighting

function for the simulated brightness temperature from

the deterministic run. The observation error was set to

4K for the all-sky brightness temperatures, similar to

that used in Otkin (2012b) and Cintineo et al. (2016).

Though it may have been advantageous to use a cloud-

dependent observation error model, that is beyond the

scope of the current study.

c. Nonlinear bias correction method

Systematic biases were removed from the satellite

observations using the NBC method developed by

Otkin et al. (2018). This method uses a Taylor series

polynomial expansion of the OMB departures for a

given satellite band to remove linear and nonlinear

conditional biases from the observations prior to their

assimilation. A brief overview of the NBC method is
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provided here, with the reader referred to Otkin et al.

(2018) for a more detailed description. To begin, the

OMB departure vector is defined as:

dy5 y2H(x) , (1)

where y and H(x) are vectors containing the observed

and model-equivalent brightness temperatures, respec-

tively; and H is the observation operator that is used

to convert the NWP model first guess fields into simu-

lated brightness temperatures. If we assume that any

biases present in the OMB departures can be described

by a real function f(z) that is infinitely differentiable

around a real number c, Eq. (1) can be decomposed into

an N-order Taylor series polynomial expansion. A rep-

resentative example in which a single predictor is used to

identify biases in a given set of observations using a

third-order expansion is shown in Eq. (2):

dy5 fb
0
1 b

1
[z(i)2 c]1 b

2
[z(i)2 c]2 1 b

3
[z(i)2 c]3g

i51,...,m
,

(2)

where m is the number of observations, z(i) is the pre-

dictor value for the ith observation, bn are the 0. . .nth

BC coefficients, and c is a constant that can be set to any

value. The (i 5 1, . . . , m) notation outside the paren-

theses indicates that the Taylor series terms are com-

puted separately for each element of the observation

departure vector. In this example, the first two terms on

the right-hand side represent the constant and linear

bias components, whereas the last two terms represent

the nonlinear second-order (quadratic) and third-order

(cubic) components.

Equation (2) can be rewritten in matrix notation as

dy 5 Ab, where A is an m 3 n matrix containing the

n Taylor series terms for each observation and b is an

n 3 1 vector containing the BC coefficients. This is an

overdetermined system of m linear equations in n un-

known coefficients because m . n. The BC coeffi-

cients that best fit the set of equations can be identified

by solving the quadratic minimization problem, which,

after adding a Tikhonov regularization term (aI) to

improve its conditioning, leads to:

b5 (aI1ATA)21ATdy , (3)

where (aI1 ATA) is a symmetric, n3 n square matrix,

thereby making it easy to compute its inverse. The

Tikhonov regularization term is defined to be a mul-

tiple of the identity matrix, which is a standard ap-

proach when solving inverse problems (Nakamura

and Potthast 2015). The constant a was set to a very

small value (1029) following the results of Otkin et al.

(2018).

For this study, the BC coefficients for the SEVIRI

6.2-mm band were updated during each assimilation

cycle using only the observation departure statistics ac-

cumulated during the previous hour. This approach was

used rather than accumulating statistics over a longer

time period because it allows the BC coefficients to

quickly adapt to changes in the cloud field, such as those

associated with the diurnal cycle of convection and its

impact on cloud properties in the upper troposphere. All

of the observation departures for a given assimilation

cycle were used to compute the BC coefficients, thereby

providing a larger sample size and negating the need to

identify cloud-matched observations when determining

the coefficients. After calculating the BC coefficients,

they were then applied separately to each observation

and ensemble member.

3. Results

In this section, we assess the ability of all-sky infrared

brightness temperatures from the SEVIRI 6.2-mm band

to improve short-range forecasts when assimilated in an

ensemble DA system after using various BC predictors

to remove biases from the observations. Figure 1 shows

the evolution of the upper-level cloud and water vapor

fields during the 3-day assimilation period, as depicted

by the observed SEVIRI 6.2-mm brightness tempera-

tures. At the start of the period, an extensive area of

cold, upper-level clouds associated with widespread

precipitation extended from northwest-to-southeast

across the domain (Fig. 1a). As this weather feature

slowly moved southward and weakened during the next

two and a half days, the lower brightness temperatures

indicative of optically thick clouds were steadily re-

placed by higher brightness temperatures as the clouds

became optically thinner and their spatial extent less-

ened. A small area of clear skies across the southwestern

part of the domain was shunted southward during this

time period, with a much larger area of clear skies de-

veloping behind the departing weather feature (Fig. 1e).

Within these clear-sky areas, the highest brightness

temperatures are associated with the driest conditions

in the upper troposphere. Overall, the synopsis pre-

sented in this section shows that there were a wide range

of cloud and water vapor conditions in the upper tro-

posphere that together support a realistic assessment of

the impacts of the infrared brightness temperatures and

bias predictors in the assimilation system.

a. Assessing the impact of nonlinear bias corrections

Prior work by Otkin et al. (2018) found that it was

necessary to use nonlinear BC predictors to remove

cloud-dependent biases from passively monitored

DECEMBER 2019 OTK IN AND POTTHAST 4487



all-sky infrared brightness temperatures. Here, we ex-

tend their results by examining the impact of nonlinear

BC predictors in cycled DA experiments where all-sky

6.2-mm brightness temperatures are actively assimi-

lated. In particular, experiments are performed where

the observation bias is removed using a 0th (constant),

first- (linear), second- (quadratic), or third- (cubic) or-

der Taylor series polynomial expansion of the OMB

departures when the observed cloud-top height is

used as the bias predictor. To provide complete do-

main coverage, satellite pixels identified as clear in

the EUMETSATCTH product were assigned a height

equal to the model terrain elevation. These four ex-

periments are hereafter referred to as OBSCTH-0TH,

OBSCTH-1ST, OBSCTH-2ND, and OBSCTH-3RD,

respectively. Results from these experiments are then

compared to two baseline experiments in which the all-

sky infrared observations are either not assimilated

(No-Assim), or are actively assimilated, but without

using BC (No-BC). The impact of the BC predictors is

assessed using OMB departure statistics from the prior

ensemble mean analyses accumulated at hourly in-

tervals during the 72-h assimilation period. The prior

analyses are used here to provide a measure of the ob-

servation impact on short-range (1-h) forecasts.

1) BRIGHTNESS TEMPERATURE BIAS CORRECTION

STATISTICS

To assess how the BC changes in relation to use of

linear and nonlinear predictors, Fig. 2 shows the 2D

probability distribution of OMB departures for the

6.2-mm brightness temperatures from the No-Assim

experiment (Fig. 2a), along with the corresponding BC

distributions for each DA experiment. All of the distri-

butions are plotted as a function of the observed 6.2-mm

brightness temperatures. Themagenta line in each panel

denotes the mean of the entire distribution, whereas the

shorter black lines depict the conditional mean in each

column. Inspection of Fig. 2a reveals that, though the

mean bias during the No-Assim experiment is rela-

tively small (20.76K), the conditional biases exhibit an

asymmetrical arch-shaped pattern that is a nonlinear

function of the observed brightness temperatures. The

conditional biases are close to zero for brightness tem-

peratures near 235K, and remain small for brightness

temperatures .230K; however, they become progres-

sively more negative for lower brightness tempera-

tures. The large negative biases for the lowest brightness

temperatures indicate that the COSMOmodel forecasts

are deficient in upper-level clouds or that there are

biases in theRTTOVmodel used to compute themodel-

equivalent brightness temperatures. Regardless, assim-

ilation of observations with such large biases could

degrade the performance of the DA system. The sim-

plest option is to exclude these observations, however,

that is not ideal because they still contain valuable in-

formation about random errors in the cloud field if the

biases can be removed.

Inspection of the corrections applied to the infra-

red observations during the active DA experiments

(Figs. 2b–e) reveals that the mean BC is similar for all

experiments despite the 2D distributions having very

FIG. 1. Observed SEVIRI 6.2-mmbrightness temperatures (K) valid at (a) 0600UTC 28May, (b) 1800UTC 28May, (c) 0600UTC29May,

(d) 1800 UTC 29 May, (e) 0600 UTC 30 May, and (f) 1800 UTC 30 May 2014.
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different shapes. This occurs because the mean BC is

most strongly influenced by the mean bias in the full set

of OMB departures (Fig. 2a) and by the tendency for

larger corrections for the lower brightness tempera-

tures to be offset by smaller corrections for the higher

brightness temperatures. Because the single bias pre-

dictor in the OBSCTH-0TH experiment (Fig. 2b) is only

able to remove themean bias during a given assimilation

cycle, it has a narrower BC distribution than the other

experiments. There is still some spread in the correc-

tions during this experiment because the BC varies

for each assimilation cycle due to changes in the pre-

vailing atmospheric conditions. The constant correc-

tions, however, are not optimal because they are unable

to account for the large variations in the conditional

biases across theOMBdistribution (Fig. 2a). In contrast,

more accurate corrections are obtained through appli-

cation of the linear bias predictor during the OBSCTH-

1ST experiment (Fig. 2c), as evidenced by the smaller

(larger) BC for brightness temperatures greater (less)

than 230K. The corrections for the lower brightness

temperatures become even larger during the OBSCTH-

2ND and OBSCTH-3RD experiments (Figs. 2d,e) be-

cause the additional nonlinear predictors are able to

remove more of the conditional biases at those tem-

peratures (Fig. 2a). Overall, these results indicate that

the OBSCTH-2ND and OBSCTH-3RD experiments

provide more accurate BC in the presence of complex

nonlinear bias patterns.

2) BRIGHTNESS TEMPERATURE ERROR TIME

SERIES

The evolution of the 6.2-mm brightness temperature

root-mean-square error (RMSE) and bias during the

3-day assimilation period is shown in Fig. 3. The error

statistics were computed using the ensemble mean

brightness temperatures from the prior analyses for

each assimilation cycle. Note that the bias is nonzero

for all of the experiments because the statistics were

computed using output from 1-h forecasts and prior

to bias-correcting the satellite observations. Overall,

there is a large diurnal cycle in the error statistics, with

the largest RMSE and negative biases occurring dur-

ing the daytime (0900–1800 UTC), followed by smaller

errors at night. This error pattern is consistent with

a lack of lower brightness temperatures during the

afternoon when the deficiency in upper-level clouds

associated with deep convection is most prominent

(not shown). The large diurnal differences in the bias

also illustrate why it is advantageous to compute the

BC coefficients using observations from a single as-

similation cycle because accumulation of OMB de-

partures over longer time periods would obscure these

important differences and therefore make the BC

method less effective.

Inspection of the error time series reveals that the bias

and RMSE are smallest during the No-BC experiment,

which indicates that larger improvements are realized

in the forecast cloud field when BC is not applied to the

all-sky brightness temperatures. As will be shown in

the next section, however, the improved fits to the sat-

ellite observations during the No-BC experiment do not

translate into smaller errors for conventional observa-

tions that are not sensitive to clouds. Compared to the

No-Assim experiment, the four experiments in which

bias-corrected satellite observations were assimilated

had similar biases, but much smaller RMSE, with values

approaching those obtained during the No-BC experi-

ment. The simultaneous large reductions in RMSE and

small changes in bias demonstrate that even though

the bias-corrected observations are unable to sub-

stantially reduce the bias, it is still possible to use them

to fix random errors in the cloud and water vapor

fields. Moreover, though there is a trend toward lower

RMSE in all of the experiments during the 3-day as-

similation period due to a decrease in upper-level clouds

(Fig. 1), this decrease in RMSE is larger for the exper-

iments where infrared observations are assimilated. This

result provides further evidence that the all-sky infrared

brightness temperatures are able to improve the cloud

field in the 1-h forecasts regardless of whether or not BC

is applied to them prior to their assimilation.

3) CONVENTIONAL OBSERVATION ERROR

ANALYSIS

To assess the impact of the nonlinear bias predictors

on the thermodynamic and kinematic fields, Fig. 4 shows

vertical profiles of RMSE for air temperature, relative

humidity, and the zonal and meridional wind compo-

nents computed using radiosonde observations accu-

mulated over the 3-day assimilation period and binned

into 100-hPa layers. For each variable, RMSE profiles

are shown for the two baseline experiments (No-Assim

and No-BC), followed by vertical profiles showing the

percentage changes in RMSE for the remaining exper-

iments computed with respect to each of the baseline

experiments. This approach was used to make it easier

to assess the impact of the bias predictors, while still

being able to show the baseline error profiles. Negative

(positive) changes mean that assimilation of the all-sky

infrared observations decreased (increased) the errors

relative to a given baseline experiment and therefore

improved (degraded) the prior analysis fits to the ra-

diosonde observations. Figure 5 shows the correspond-

ing profiles of observation bias for each experiment.

Only raw error profiles are shown for thismetric because
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FIG. 2. (a) Probability distribution of SEVIRI 6.2-mm observation-minus-background (O-B) brightness tem-

perature departures (K) for the No-Assim experiment plotted as a function of the observed 6.2-mm brightness

temperatures (K). (b)–(e) Probability distributions of SEVIRI 6.2mm ensemble mean brightness temperature

bias corrections (K) for the OBSCTH-0TH, OBSCTH-1ST, OBSCTH-2ND, and OBSCTH-3RD experiments
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small biases in the baseline experiments make the per-

centage changes difficult to evaluate.

Comparison of the temperature RMSE profiles for

the baseline experiments reveals that the errors are up to

2% smaller (larger) in the upper (lower) troposphere

when the all-sky observations are assimilated during

the No-BC experiment (Fig. 4b). The RMSE and bias

for the radiosonde temperatures were smaller below

400hPa when the brightness temperature biases were

removed during the OBSCTH experiments; however,

the errors increased by several percent above this level

(Figs. 4c, 5a). Because the largest BC is generally ap-

plied to lower brightness temperatures associated with

clouds in the upper troposphere (e.g., Fig. 2), the larger

errors near and above the tropopause indicate that re-

moval of the brightness temperature bias may actually

lead to some degradation in the fits to the radiosonde

temperatures. The larger temperature errors occur

during all of the OBSCTH experiments, however, which

suggests that theymay be related to removal of themean

brightness temperature bias rather than to removal of

the conditional biases. It is also possible that some of the

cloud and water vapor information from the all-sky

satellite observations is being incorrectly aliased onto

the temperature field. Further work is necessary to

identify the cause of the larger temperature errors be-

tween 300 and 100hPa.

For the relative humidity observations, the RMSE

from the baseline experiments is relatively small near

the surface, but increases rapidly to over 20% by

800 hPa. It then remains large in the middle troposphere

before slowly decreasing with height in the upper tro-

posphere (Fig. 4d). The bias profiles from the baseline

experiments likewise indicate that the model back-

ground is too dry below 800hPa, but too moist above

this level (Fig. 5b). When all-sky brightness tempera-

tures are assimilated during the No-BC experiment, the

RMSE increases throughout most of the vertical profile

(Fig. 4e), and the negative biases become even larger in

the upper troposphere (Fig. 5b). Indeed, the relative

humidity errors are larger in the No-BC experiment

than they are in the No-Assim experiment despite the

fact that the infrared observations are strongly sensi-

tive to water vapor in the upper troposphere. As dis-

cussed previously, the negative conditional biases for

brightness temperatures,230K indicate that the model

background is deficient in upper-level clouds (Fig. 2a).

Thus, it appears that trying to add cloudsmore forcefully

through assimilation of the non-bias-corrected obser-

vations leads to an incorrect aliasing of cloud informa-

tion onto the water vapor field. Instead of increasing the

cloud condensate in response to the negative OMB de-

partures, the assimilation instead addsmore water vapor

to the model analyses. In contrast, both the RMSE and

bias are greatly reduced when BC is applied to the in-

frared observations during the OBSCTH experiments

(Figs. 4f, 5b). When combined with the brightness tem-

perature statistics shown in Fig. 3, this demonstrates that

FIG. 3. Time series showing the evolution of the SEVIRI 6.2-mmbrightness temperature (a) bias (K) and (b) root-

mean-square error (RMSE; K) computed using the ensemble mean prior analysis at hourly intervals from

0000UTC 28May to 0000UTC 31May 2014. Results are shown for theNo-BC (dashed black line), OBSCTH-3RD

(red line), OBSCTH-2ND (blue line), OBSCTH-1ST (green line), OBSCTH-0TH (magenta line), and No-Assim

(solid black line) experiments.

 
plotted as a function of the observed 6.2-mm brightness temperatures (K). Data were accumulated at hourly

intervals during a 72-h period from 0000UTC 28May to 0000UTC 31May 2014. The horizontal purple lines show

the (a) mean O-B departure or the (b)–(e) mean bias correction, whereas the black line segments depict the

(a) conditional O-B bias or the (b)–(e) mean bias correction in each column.
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bias-correcting the all-sky infrared observations retains

some cloud information during the assimilation while

also improving the water vapor field.

For the zonal and meridional wind observations, the

RMSE profiles from the baseline experiments have a

sinusoidal appearance characterized by the largest er-

rors in the lower and upper troposphere and smaller

errors in the midtroposphere (Figs. 4g,k). The biases in

the baseline experiments are generally ,0.2m s21, with

the largest biases occurring near 600 and 700hPa for the

zonal and meridional wind components, respectively

(Figs. 5c,d). The RMSE generally increases, especially

for the meridional wind component, when the satellite

observations are assimilated during the No-BC experi-

ment (Figs. 4h,k). The wind errors are slightly reduced,

however, when BC is applied to the infrared bright-

ness temperatures during the OBSCTH experiments

(Figs. 4i,l). Even so, it is evident that assimilation of the

all-sky observations leads to a slightly negative impact

on the midtropospheric winds and only a neutral to

slightly positive impact in the lower troposphere and

near the tropopause.

To more clearly assess the impact of the nonlinear

BC predictors on each variable, summary statistics

were computed using all of the radiosonde observa-

tions during the 72-h assimilation period. Table 1 shows

the percentage changes in RMSE and bias for each

OBSCTH experiment relative to the No-BC experi-

ment. Overall, it is evident that bias-correcting the in-

frared brightness temperatures improves the quality of

the model background fields. The largest improvements

(negative values) occur for the relative humidity field,

with the bias reduced by at least 25% during each ex-

periment. Smaller improvements occurred for the other

variables. Comparison of the OBSCTH experiments

reveals that there is a distinct advantage to using higher-

order BC terms to remove the bias from the all-sky

brightness temperatures. For example, the RMSE for

FIG. 4. (a) Vertical profiles of temperature root-mean-square error (RMSE; K) from the No-Assim (black) and No-BC experiments

(dashed black), with percentage changes in RMSE for the OBSCTH-3RD (red), OBSCTH-2ND (blue), OBSCTH-1ST (green), and

OBSCTH-0TH (magenta) experiments relative to the (b) No-Assim and (c) No-BC experiments. (d)–(f) As in (a)–(c), but for showing

vertical profiles of relative humidity RMSE (%). (g)–(i) As in (a)–(c), but for showing vertical profiles of zonal wind speedRMSE (m s21).

(j)–(l) As in (a)–(c), but for showing vertical profiles of meridional wind speed RMSE (m s21). The error profiles were computed using

data from the prior analyses over a 3-day period from 0000 UTC 28 May to 0000 UTC 31 May 2014.
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the relative humidity and wind observations steadily

decrease as the BC predictor increases from the ze-

roth (OBSCTH-0TH) to third (OBSCTH-3RD) order.

The impact of the higher-order BC terms is less con-

sistent for temperature and for the relative humidity

bias; however, the errors are still smaller than occurred

during the No-BC experiment. Together, the results

presented in this section have shown that it is necessary

to bias correct the infrared observations prior to their

assimilation and that it is generally beneficial to include

nonlinear BC predictors. This was demonstrated by the

tendency for the higher-order predictors to have a

neutral-to-positive impact on the temperature and

wind fields, while also improving the cloud and water

vapor fields.

b. Assessing the impact of different bias predictor
variables

In this section, we assess the ability of individual bias

predictor variables sensitive to clouds and water vapor,

or that depict variations in the satellite zenith angle, to

improve the assimilation of all-sky infrared brightness

FIG. 5. Vertical profiles of (a) temperature bias (K), (b) relative humidity bias (%), (c) zonal wind speed bias

(m s21), and (d) meridional wind speed bias (m s21) for the No-Assim (solid black), No-BC (dashed black),

OBSCTH-3RD (red), OBSCTH-2ND (blue), OBSCTH-1ST (green), and OBSCTH-0TH (magenta) experiments.

The error profiles were computed using data from the prior analyses over a 3-day period from 0100 UTC 28May to

0000 UTC 31 May 2014.
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temperatures during cycled DA experiments. Based

on results from the previous section, all of the experi-

ments employed a third-order polynomial expan-

sion of the OMB departures to remove biases from

the satellite brightness temperatures prior to their as-

similation. In addition to the OBSCTH-3RD experi-

ment presented in section 3a (hereafter referred to as

BC-OBSCTH), experiments were performed in which

the observed SEVIRI 6.2-mm brightness temperatures

(BC-OBSBT), satellite zenith angle (BC-SATZEN),

or 100–700-hPa integrated water content (BC-IWC)

were used as the bias predictors. The integrated water

content predictor was calculated by converting the

water vapor and all cloud hydrometeor mixing ratios in

each model layer into millimeters and then integrating

over the 100–700-hPa layer. Together, these four pre-

dictors were chosen because they were also used

during the passive monitoring experiments presented

in Otkin et al. (2018). Here, we extend the results of

that study by assessing the performance of these bias

predictor variables when they are used during active

DA experiments.

1) OBSERVATION SPACE DIAGNOSTICS

Figure 6 shows the evolution of the SEVIRI 6.2-mm

brightness temperature bias, RMSE, ensemble spread,

and consistency ratio (CR) for each experiment during

the 3-day assimilation period. The statistics were

computed for each assimilation cycle using brightness

temperatures from the prior ensemble analyses. The

ensemble spread is defined as

Spread5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

N2 1
�
N

n51

[H(x
n
)2H(x

n
)]2

�s
, (4)

where N is the ensemble size, n is the index of a given

ensemble member, and H is the observation operator

(e.g., RTTOV) used to compute the model-equivalent

brightness temperatures. The total ensemble spread is the

combination of the observation error (sobs, set to 4K)

and ensemble spread, such that

Total Spread5
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(5)

Finally, the RMSE and total spread are used to

calculate the CR, which provides another diagnos-

tic measure of the performance of the assimilation

system:

CR5 (Total Spread)2/(RMSE)2 . (6)

With the CR, a value of 1 is desired because, in an ideal

situation, the total spread should equal the RMSE for

each observation type being assimilated. Values greater

(less) than 1 indicate that there is too little (too much)

ensemble spread and/or that the observation error is

larger (smaller) than necessary (Dowell et al. 2004;

Aksoy et al. 2009).

Inspection of the time series shows that the smallest

RMSE and bias (Figs. 6a,b) occurred during the No-BC

experiment, which is not surprising because assimilat-

ing non-bias-corrected observations should lead to

the largest impact when assessed against themselves.

Comparison of the BC experiments reveals that the

BC-SATZEN and BC-IWC experiments have larger

biases andRMSEs than theBC-OBSBTandBC-OBSCTH

experiments. The larger positive impact of the OBSBT

and OBSCTH predictors on these two metrics is con-

sistent with Otkin et al. (2018), who showed that vari-

ables sensitive to the CTH are more effective at

identifying biases in all-sky infrared brightness temper-

atures. The results shown here indicate that using these

predictors in active DA experiments also leads to

smaller errors in the cloud and water vapor fields in the

prior ensemble analyses when assessed using satellite

observations.

The ensemble spread (Fig. 6c) generally decreases

during the assimilation period due to a transition

toward clearer skies and the cumulative impact of the

all-sky brightness temperatures on the cloud and

water vapor fields. The decrease in ensemble spread

TABLE 1. Percentage changes in root-mean-square error (RMSE) and bias for the zonal and meridional wind speed, temperature,

and relative humidity for the OBSCTH-0TH, OBSCTH-1ST, OBSCTH-2ND, and OBSCTH-3RD experiments relative to the No-BC

experiment. The statistics were computed using all of the radiosonde observations and output from the prior ensemble mean analyses

during the 72-h assimilation period.

U V T RH

Experiment RMSE RMSE RMSE BIAS RMSE BIAS

OBSCTH-0TH–No-BC 20.2% 20.2% 20.1% 24.7% 20.6% 236.2%

OBSCTH-1ST–No-BC 20.7% 20.1% 20.3% 23.1% 20.9% 229.1%

OBSCTH-2ND–No-BC 20.9% 20.5% 20.3% 25.0% 21.5% 225.6%

OBSCTH-3RD–No-BC 21.0% 20.8% 20.2% 21.3% 21.8% 230.2%
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is accompanied by a corresponding increase in

the CR (Fig. 6d), which peaks each morning when

the RMSE reaches its diurnal minimum. Because the

RMSE is smallest during the No-BC, BC-OBSCTH,

and BC-OBSBT experiments (Fig. 6b), they also have

the largest CRs. The large CR values during all of

the active DA experiments reveal that it was subop-

timal to employ the same observation error vari-

ance for both clear and cloudy-sky observations

during the entire assimilation period. Thus, combin-

ing an adaptive all-sky observation error model with

the BC method would be beneficial; however, that is

left for future work. In addition, inspection of rank

histograms for each experiment (not shown) revealed

that the ensemble spread is too small. This result

points toward the need to also develop methods

that increase the ensemble spread in cloud hydro-

meteors because they have the largest impact on

the spread in the all-sky infrared brightness temper-

atures. One potential option would be to use the

stochastic parameter perturbations method (Berner

et al. 2017) to add perturbations to cloud source/sink

terms to account for some of the uncertainty in

cloud microphysics schemes. This has been shown to

increase the spread in cloudy regions (Griffin et al. 2019,

manuscript submitted to Mon. Wea. Rev.).

2) BRIGHTNESS TEMPERATURE BIAS CORRECTION

STATISTICS

To further assess the behavior of each bias pre-

dictor, 2D probability distributions of the ensemble

mean BCs accumulated at hourly intervals during

the 72-h assimilation period are shown for each ex-

periment in Fig. 7. Overall, the BC-OBSBT and

BC-OBSCTH experiments have similar distribu-

tions characterized by relatively small mean BCs for

brightness temperatures .230K and then a strong

upward trend in the mean BC for lower brightness

temperatures (Figs. 7a,b). Even so, there are notable

differences between these experiments, such as the

larger BC for the lowest brightness temperatures in

the BC-OBSBT experiment and the wider vertical

distribution for most brightness temperatures in the

BC-OBSCTH experiment. The BC patterns for both

experiments are flipped compared to the OMB de-

parture distribution from the No-Assim experiment

FIG. 6. Time series showing the evolution of the SEVIRI 6.2-mm brightness temperature (a) bias (K), (b) root-

mean-square error (RMSE; K), (c) spread (K), and (d) consistency ratio computed using the ensemble mean prior

analysis at hourly intervals from 0000 UTC 28 May to 0000 UTC 31 May 2014. Results are shown for the No-BC

(dashed black line), BC-OBSCTH (red line), BC-OBSBT (blue line), BC-IWC (green line), BC-SATZEN

(magenta line), and No-Assim (solid black line) experiments.
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(Fig. 2a), which is good because that means that the

OBSBT and OBSCTH predictors are able to account

for the nonlinear, cloud-dependent conditional biases

in that distribution. In contrast, the BC-IWC and

BC-SATZEN experiments have much smaller BCs for

the lowest brightness temperatures that then become

larger for higher brightness temperatures. The mean

BC is also larger during these experiments, which in-

dicates that the IWC and SATZEN predictors did not

have the same positive impact on the cloud field as the

OBSBT and OBSCTH predictors. This behavior is

consistent with the brightness temperature bias time

series shown in Fig. 6a, and provides further evidence

that it is necessary to use BC predictors sensitive to

the CTH when assimilating all-sky infrared brightness

temperatures.

3) BRIGHTNESS TEMPERATURE INNOVATIONS

Next, we examine the 6.2-mm brightness tempera-

ture innovations during each experiment using the 2D

probability distributions shown in Fig. 8. These distri-

butions were constructed using the ensemble mean in-

novations accumulated at hourly intervals during the

72-h assimilation period. Inspection of Fig. 8a shows that

the conditional mean innovations are close to zero

across the entire distribution during the No-Assim ex-

periment. This indicates that the conventional in situ

observations by themselves do not have a systematic

FIG. 7. Probability distribution of SEVIRI 6.2-mm ensemble mean brightness temperature corrections (K) from

the (a) BC-OBSBT, (b) BC-OBSCTH, (c) BC-IWC, and (d) BC-SATZEN experiments plotted as a function of the

observed 6.2-mm brightness temperatures. Data were accumulated at hourly intervals during a 72-h period from

0100 UTC 28 May to 0000 UTC 31 May 2014. The horizontal black line segments represent the conditional bias in

each column.
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impact on the cloud and water vapor fields in the upper

troposphere. During the No-BC experiment (Fig. 8b),

the innovation pattern is very similar to the OMB

departure distribution in the No-Assim experiment

(Fig. 2a), with large (small) innovations occurring for

lower (higher) brightness temperatures. This shows

that the large conditional biases for the lower brightness

temperatures are strongly corrected during this experi-

ment, which is not surprising because BC was not ap-

plied to the brightness temperatures prior to their

assimilation. A similar pattern emerges during the

BC-IWC and BC-SATZEN experiments (Figs. 8e,f)

because their smaller BCs for lower brightness tem-

peratures (Figs. 7c,d) meant that large innovations

were still possible during each assimilation cycle. In

contrast, the mean innovations are very small across

most of the distribution during the BC-OBSBT experi-

ment (Fig. 8c) because the larger BCs for lower bright-

ness temperatures (Fig. 7a) reduces the size of the resultant

innovations. The distribution for the BC-OBSCTH ex-

periment (Fig. 8d) has some larger negative innovations

for the lower brightness temperatures, but is otherwise

similar to the BC-OBSBT experiment. The smaller

innovations during the BC-OBSBT and BC-OBSCTH

experiments were likely beneficial because they limited

potential imbalances in the model due to large analysis

increments, while still leading to large reductions in the

RMSE and bias (Figs. 6a,b).

4) CONVENTIONAL OBSERVATION ERROR

ANALYSIS

Finally, we examine the impact of the infrared bright-

ness temperatures and BC predictors on the accuracy of

the prior ensemblemean analyses usingOMB departure

statistics accumulated during the 72-h assimilation pe-

riod for the radiosonde temperature, relative humidity,

and zonal and meridional wind observations. Figure 9

shows vertical profiles of RMSE for the No-Assim and

No-BC experiments, along with percentage changes

in RMSE for each BC experiment, whereas Fig. 10

shows the corresponding bias profiles. Summary statis-

tics showing the percentage changes in RMSE and bias

during each BC experiment relative to the No-Assim

and No-BC experiments are shown in Tables 2 and 3,

respectively.

Compared to theNo-Assim experiment, the zonal and

meridional wind speed errors in aggregate were slightly

smaller during the BC-OBSBT and BC-OBSCTH ex-

periments, but increased by 0.5%–0.8% during the

BC-SATZEN and BC-IWC experiments (Table 2). In-

spection of the zonal wind profiles (Figs. 9h,i) shows

that the smaller RMSE during the BC-OBSBT and

BC-OBSCTH experiments were primarily due to larger

improvements in the upper and lower troposphere,

with some degradation evident in the midtroposphere.

Both of these experiments also had the smallest me-

ridional wind speed errors for most of the vertical

layers (Figs. 9k,l). Indeed, the RMSE for the meridi-

onal wind speed observations was 1.4% and 0.8%

smaller during the BC-OBSBT and BC-OBSCTH

experiments, respectively, compared to a neutral im-

pact when the IWC and SATZEN predictors were

used (Table 3).

Assimilation of the infrared brightness temperatures

led to very different impacts on the RMSE and bias for

the radiosonde temperature observations. For example,

though the RMSE in each experiment increased by

0.8%–1.0% relative to the No-Assim experiment, the

bias was substantially reduced, with decreases ranging

from 21.7% during the No-BC experiment to 26.1%

for the BC-SATZEN experiment (Table 2). Overall, the

smallest biases were obtained during the various BC

experiments, with all but BC-SATZEN also having

slightly smaller RMSEs than the No-BC experiment

(Table 3). Comparison of the vertical profiles shows that

the temperatureRMSEswere smaller withinmost of the

troposphere during the BC experiments (Fig. 9c); how-

ever, the presence of much larger errors near the tro-

popause led to only a neutral to slightly positive impact

when all of the temperature observations are considered

(Table 3).

For relative humidity, assimilating the infrared bright-

ness temperatures without BC led to sharply higher

bias (30.1%) and RMSE (0.8%) during the No-BC

experiment (Table 2). In contrast, the overall RMSE

and bias were much smaller during the various BC

experiments regardless of which BC predictor was used

(Table 3). Compared to the No-BC experiment,

the largest RMSE reductions occurred during the

BC-OBSCTH (21.8%) and BC-SATZEN (21.4%)

experiments, with the largest bias reductions occur-

ring during the BC-IWC (245.2%), BC-SATZEN

(238.2%), and BC-OBSCTH (230.2%) experiments.

The error profiles in Fig. 9f show that, though there are

some differences between the BC experiments, that

the RMSEs are smaller in most of the troposphere

relative to the No-BC experiment. The biases are also

greatly reduced in the middle and upper troposphere

(Fig. 10b).

In summary, the results presented in this section show

that assimilation of infrared brightness temperatures

that are not bias-corrected leads to larger errors for all

metrics, except for the temperature bias, relative to the

No-Assim experiment. Removal of the brightness tem-

perature biases prior to their assimilation, however,

greatly improves the impact of the satellite observations,
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FIG. 8. Probability distributions of SEVIRI 6.2-mmbrightness temperature innovations (K) for the (a) No-Assim,

(b) No-BC, (c) BC-OBSBT, (d) BC-OBSCTH, (e) BC-IWC, and (f) BC-SATZEN experiments plotted as a

function of the observed 6.2-mm brightness temperatures (K). Data were accumulated at hourly intervals from

0000 UTC 28May to 0000 UTC 31May 2014. The black line segments depict the mean innovation in each column.
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with the largest percentage decreases in the errors re-

alized for the relative humidity observations. Overall, the

OBSCTH and OBSBT predictors were the most useful

because not only did their use lead to more accurate

cloud and water vapor fields, but they also produced

the smallest RMSEs for the wind and temperature

fields.

c. Symmetric bias correction predictors

In this section, we assess the impact of using

‘‘symmetric’’ predictors to remove the bias from all-

sky infrared brightness temperatures. As discussed

in the introduction, symmetric predictors that represent

the average of an observed quantity and its corre-

sponding model equivalent have been extensively used

when developing all-sky observation error models. First

introduced by Geer and Bauer (2011), symmetric pre-

dictors have been shown in various studies to lead

to more Gaussian OMB departure statistics when a

suitable cloud impact parameter is used to dynami-

cally assign the error variance to each observation.

This symmetric observation error approach is now

widely used in operational DA systems that assimi-

late all-sky microwave radiances because it leads to

more accurate forecasts through better utilization of the

satellite observations.

Despite their widespread use in all-sky observation

error models, it is not clear if symmetric variables can

also serve as effective bias predictors, especially in the

presence of complex nonlinear bias patterns. To explore

their potential utility, two additional sets of experi-

ments were run where the CTH or the 6.2-mmbrightness

temperatures were used as the bias predictor. These

variables were chosen because they are either a direct

measure of, or are sensitive to, the cloud height, which is

an excellent measure of cloud impact in all-sky infrared

brightness temperatures. Experiments were performed

where observed (BC-OBSBT, BC-OBSCTH), simulated

FIG. 9. (a) Vertical profiles of temperature root-mean-square error (RMSE; K) from the No-Assim (solid black) and No-BC experi-

ments (dashed black), with percentage changes in RMSE for the BC-OBSBT (blue), BC-OBSCTH (red), BC-IWC (green), and

BC-SATZEN (magenta) experiments relative to the (b) No-Assim and (c) No-BC experiments. (d)–(f) As in (a)–(c), but for showing

vertical profiles of relative humidity RMSE (%). (g)–(i) As in (a)–(c), but for showing vertical profiles of zonal wind speedRMSE (m s21).

(j)–(l) As in (a)–(c), but for showing vertical profiles of meridional wind speed RMSE (m s21). The error profiles were computed using

data from the ensemble mean prior analyses at hourly intervals over a 3-day period from 0000 UTC 28 May to 0000 UTC 31 May 2014.
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(BC-SIMBT,BC-SIMCTH), or symmetric (BC-SYMBT,

BC-SYMCTH) quantities for each BC predictor vari-

able were used to remove the bias from the infrared

brightness temperatures prior to their assimilation.

For the simulated CTH predictor, the cloud top was

identified as the first model level looking downward

from the model top in which the vertically integrated

cloud hydrometeor mixing ratio was .1024 kg kg21.

All of the cloud hydrometeor species predicted by

the microphysics parameterization scheme were used

when computing this quantity. The modeled land/ocean

surface elevation was used as the predictor value when

the accumulated cloud mixing ratio threshold was not

surpassed. The same approach was used for the ob-

served CTH retrievals where grid points identified as

clear were also set to the model surface elevation.

Summary statistics showing the percentage changes

relative to the No-BC experiment for the radiosonde

temperature, relative humidity, and zonal and meridio-

nal wind speed observations are shown in Tables 4 and 5,

respectively, for experiments using the various 6.2-mm

brightness temperature or CTH quantities as the bias

FIG. 10. Vertical profiles of (a) temperature bias (K), (b) relative humidity bias (%), (c) zonal wind speed bias

(m s21), and (d) meridional wind speed bias (m s21) for the No-Assim (solid black), No-BC (dashed black),

BC-OBSBT (blue), BC-OBSCTH (red), BC-IWC (green), and BC-SATZEN (magenta) experiments. The error

profiles were computed using data from the prior analyses over a 3-day period from 0100UTC 28May to 0000UTC

31 May 2014.

4500 MONTHLY WEATHER REV IEW VOLUME 147



predictor. These statistics were computed using out-

put from the prior ensemble mean analyses. Overall,

the results show that using symmetric bias predictors

does not lead to a more accurate model background.

For experiments using the 6.2-mm brightness tempera-

ture predictors (Table 4), the error reduction for each

radiosonde observation type is smaller during the

BC-SYMBTexperiment than it is during the BC-OBSBT

experiment. Likewise, when the CTH quantities are used

as the bias predictors (Table 5), the most accurate ana-

lyses are obtained when the observed quantity is

used during the BC-OBSCTH experiment. The error

reductions during the BC-SYMCTH experiment

are either in between those obtained during the

BC-OBSCTH and BC-SIMCTH experiments, or are

smaller than both of them. A possible reason for the

relatively poor performance during both of the sym-

metric bias predictor experiments is that, with the ex-

ception of relative humidity, the error reductions are

consistently smaller when the simulated predictors are

used to remove the bias from the all-sky infrared ob-

servations. Thus, inclusion of the model-simulated pre-

dictor value when computing the symmetric bias

predictor is not beneficial. Instead, it is more effective to

simply use the observed quantity as the bias predictor.

To examine this behavior more closely, Fig. 11 shows

2D probability distributions for the ensemble mean

6.2-mm brightness temperature BCs and innovations

when the simulated, observed, and symmetric CTH bias

predictors are used. Similar results are obtained for ex-

periments employing the 6.2-mm brightness tempera-

ture predictors (not shown). Comparison of the BC

distributions reveals a relatively flat pattern during the

BC-SIMCTH experiment (Fig. 11a), which shows that

the model-derived CTH predictor is unable to account

for the large negative conditional biases for brightness

temperatures,230K (Fig. 2a). The smaller BCs for the

lower brightness temperatures during this experiment

stand in sharp contrast to the much larger BCs during

the BC-OBSCTH experiment (Fig. 11e). Because the

symmetric predictor is simply the mean of the observed

and simulated quantities, the BC distribution during

the BC-SYMCTH experiment (Fig. 11c) is a hybrid of

the BC-OBSCTH and BC-SIMCTH distributions. As

such, the smaller BCs for the lower brightness temper-

atures due to the impact of the model-simulated quan-

tity leads to larger innovations than occurred during the

BC-OBSCTH experiment (Figs. 11d,f). As was shown

in the previous section, experiments containing larger

innovations for the lower brightness temperatures as-

sociated with optically thick upper-level clouds were

generally less accurate when assessed using radiosonde

observations. This result suggests that, though symmet-

ric predictors have been shown to improve the perfor-

mance of all-sky observation error models, they may not

work as well for all-sky BC. Further studies using other

TABLE 2. Percentage changes in root-mean-square error (RMSE) and bias for the zonal and meridional wind speed, temperature, and

relative humidity for the BC-OBSBT, BC-OBSCTH, BC-IWC, and BC-SATZEN experiments relative to the No-Assim experiment. The

statistics were computed using all of the radiosonde observations and output from the prior ensemble mean analyses during the 72-h

assimilation period.

U V T RH

Experiment RMSE RMSE RMSE BIAS RMSE BIAS

No-BC–No-Assim 0.9% 0.6% 1.0% 21.7% 0.8% 30.1%

BC-OBSBT–No-Assim 0.0% 20.8% 0.8% 24.7% 20.4% 9.8%

BC-OBSCTH–No-Assim 20.1% 20.2% 0.8% 23.0% 21.0% 29.2%

BC-IWC–No-Assim 0.7% 0.6% 0.9% 24.8% 20.1% 228.8%

BC-SATZEN–No-Assim 0.8% 0.5% 1.0% 26.1% 20.6% 219.6%

TABLE 3. Percentage changes in root-mean-square error (RMSE) and bias for the zonal and meridional wind speed, temperature, and

relative humidity for the BC-OBSBT, BC-OBSCTH, BC-IWC, and BC-SATZEN experiments relative to the No-BC experiment. The

statistics were computed using all of the radiosonde observations and output from the prior ensemble mean analyses during the 72-h

assimilation period.

U V T RH

Experiment RMSE RMSE RMSE BIAS RMSE BIAS

BC-OBSBT–No-BC 20.9% 21.4% 20.2% 23.1% 21.2% 215.6%

BC-OBSCTH–No-BC 21.0% 20.8% 20.2% 21.3% 21.8% 230.2%

BC-IWC–No-BC 20.2% 0.0% 20.1% 23.2% 20.9% 245.2%

BC-SATZEN–No-BC 20.1% 20.1% 0.1% 24.5% 21.4% 238.2%
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satellite bands and models are necessary to explore this

in more detail.

4. Discussion and conclusions

In this study, ensemble DA experiments were per-

formed using the regional-scale KENDA system to

evaluate the ability of all-sky infrared brightness tem-

peratures to improve the accuracy of the ensemble prior

analyses used during each assimilation cycle. Observa-

tions from the 6.2-mm band on the SEVIRI sensor were

assimilated at hourly intervals over a 3-day period in

May 2014. This infrared band is primarily sensitive

to clouds and water vapor in the upper troposphere.

Various experiments were performed in which different

BC predictors were used to remove biases from the

all-sky brightness temperatures prior to their assimila-

tion. Results from these BC experiments were compared

to baseline experiments in which the brightness tem-

peratures were either not assimilated (No-Assim) or

were assimilated without first removing their biases

(No-BC). This study builds upon the passive monitoring

experiments described in Otkin et al. (2018) by explor-

ing the impact of linear and nonlinear BC predictors

during experiments in which all-sky infrared brightness

temperatures are actively assimilated.

Overall, inspection of the 6.2-mm brightness temper-

ature OMB departure distribution from the No-Assim

experiment revealed that the conditional biases ex-

hibited a nonlinear pattern characterized by small

biases for higher brightness temperatures and increasingly

large negative biases for lower brightness temperatures.

Though the negative conditional biases are likely at

least partially due to inaccuracies in the forward ob-

servation operator, they also indicate that the model

analyses do not contain enough cloud condensate in

the upper troposphere. This deficiency, whether due

to insufficient spatial coverage or cloud optical depth,

represents a systematic bias in the NWP model de-

piction of the cloud field. Thus, trying to add these

upper-level clouds during an assimilation cycle could

be problematic because of aliasing of the cloud infor-

mation onto other model variables and the tendency for

the model to revert back to its preferred state during the

subsequent forecast period.

Evaluation of the No-BC experiment showed that

assimilation of the infrared brightness temperatures

without first removing their biases almost always de-

graded the accuracy of the ensemble prior analyses

based on larger OMB departures for the radiosonde

observations. In particular, the summary statistics

showed that the relative humidity bias and RMSE were

much larger during this experiment than they were

during the No-Assim experiment. Despite having strong

sensitivity to water vapor in the upper troposphere, as-

similating infrared brightness temperatures without

BC actually increased the relative humidity RMSE,

primarily because of a large increase in the moist

bias already present in the No-Assim experiment. The

No-BC experiment was also characterized by smaller

6.2-mm brightness temperature OMB departures, which

suggests that instead of adding clouds to the analysis,

the DA system instead added more water vapor. An

alternative explanation is that a portion of the cloud

TABLE 4. Percentage changes in root-mean-square error (RMSE) and bias for the zonal and meridional wind speed, temperature, and

relative humidity for the BC-OBSBT, BC-SYMBT, and BC-SIMBT experiments relative to the No-BC experiment. The statistics were

computed using all of the radiosonde observations and output from the prior ensemblemean analyses during the 72-h assimilation period.

U V T RH

Experiment RMSE RMSE RMSE BIAS RMSE BIAS

BC-OBSBT–No-BC 20.9% 21.4% 20.2% 23.1% 21.2% 215.6%

BC-SYMBT–No-BC 20.1% 0.0% 20.1% 22.0% 21.0% 229.6%

BC-SIMBT–No-BC 1.0% 1.3% 0.6% 21.1% 20.8% 255.8%

TABLE 5. Percentage changes in root-mean-square error (RMSE) and bias for the zonal and meridional wind speed, temperature, and

relative humidity for the BC-OBSCTH, BC-SYMCTH, and BC-SIMCTH experiments relative to the No-BC experiment. The statistics

were computed using all of the radiosonde observations and output from the prior ensemble mean analyses during the 72-h

assimilation period.

U V T RH

Experiment RMSE RMSE RMSE BIAS RMSE BIAS

BC-OBSCTH–No-BC 21.0% 20.8% 20.2% 21.3% 21.8% 230.2%

BC-SYMCTH–No-BC 20.4% 20.5% 0.0% 23.1% 21.2% 227.1%

BC-SIMCTH–No-BC 20.2% 0.5% 0.0% 21.2% 21.5% 243.2%
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FIG. 11. Probability distributions for the SEVIRI 6.2-mm brightness temperature (a) bias corrections and

(b) innovations from the BC-SIMCTH experiment plotted as a function of the observed 6.2-mm brightness tem-

peratures (K). (c),(d) As in (a),(b), but for the BC-SYMCTH experiment. (e),(f) As in (a),(b), but for the

BC-OBSCTH experiment. Data were accumulated at hourly intervals from 0000 UTC 28 May to 0000 UTC

31 May 2014. The black line segments depict the mean bias correction or innovation in each column.
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condensate added to the ensemble posterior analyses

during a given assimilation cycle evaporated during the

subsequent model integration period, thereby increas-

ing the moist bias. Regardless, this result suggests that

the analyses were being too strongly constrained

by the all-sky infrared brightness temperatures during

the No-BC experiment in situations where the model

was unable to properly handle the additional cloud

information.

The subsequent removal of linear and nonlinear

conditional biases from the all-sky brightness tempera-

tures through use of a third-order polynomial expansion

of theOMB departures and various BC predictors led to

smaller errors for all of the radiosonde observation types

when compared to the No-BC experiment. The largest

improvements occurred for the relative humidity ob-

servations where themoist bias in the upper troposphere

was greatly reduced. Notable improvements also oc-

curred in the temperature bias and in the RMSE for the

zonal andmeridional wind speed components during the

BC-OBSBT and BC-OBSCTH experiments. The tem-

perature RMSE was also smaller in most of the tropo-

sphere; however, a spike of larger errors near and above

the tropopause led to a neutral impact when all tem-

perature observations were considered.

Comparison of the various predictors showed that

those sensitive to the location of the cloud top had the

largest positive impact on the model background based

on improved fits to the radiosonde observations. The

observed CTH and observed 6.2-mm brightness tem-

perature predictors were the best overall because their

use not only led to the smallest relative humidity errors,

but also led to the largest error reductions for the zonal

and meridional wind speed observations and the

smallest degradation for the temperature RMSE.

Both of these predictors also improved the cloud field

much more than the other predictors, as signified by

the smaller brightness temperature RMSE and bias.

The larger improvements during the BC-OBSBT and

BC-OBSCTH experiments were primarily due to the

ability of the cloud-sensitive predictors to more effec-

tively remove the large negative biases from brightness

temperatures ,230K. The larger BCs for these clouds

then led to smaller brightness temperature innovations

and presumably fewer model spinup problems during

the subsequent 1-h forecasts. Additional experiments

using the OBSCTH predictor revealed that it was ben-

eficial to use higher-order nonlinear BC terms to remove

the bias from the all-sky infrared brightness tempera-

tures. For example, the radiosonde OMB departure

errors generally decreased as the order of the poly-

nomial expansion increased from the zeroth order to the

third order. Finally, an additional set of experiments

showed that symmetric bias predictors do not improve

the model analyses as effectively as the observed pre-

dictors do by themselves. This suggests that, though

symmetric predictors have proven utility for all-sky

observation error models, they may not be as useful

when developing all-sky BC methods.

This study has shown that assimilation of all-sky in-

frared brightness temperatures substantially improves

the accuracy of the cloud and water vapor fields in the

prior ensemble analyses when cloud-sensitive predictors

and higher-order BC terms are used to remove linear

and nonlinear conditional biases from the observations

prior to their assimilation. Though encouraging, addi-

tional studies are necessary to evaluate the ability of the

NBC method and the all-sky infrared brightness tem-

peratures to improve the accuracy of the model analyses

during other seasons containing different cloud regimes

potentially characterized by different conditional bias

patterns. It will also be necessary to perform ensemble

forecasts to evaluate how long the improved cloud and

water vapor fields persist during the forecast period.

Data assimilation experiments should also be performed

for the SEVIRI 7.3-mm band that is sensitive to clouds

and water vapor in themiddle and upper troposphere, as

well as for atmospheric window bands that are sensitive

to clouds and surface properties. Such experiments

performed over longer time periods (e.g., a month or

longer) would promote a more thorough assessment of

the performance of the NBC method.

It is important to note that the experiments performed

during this study are only an initial step toward inclusion

of the all-sky infrared observations in the KENDA

system and that additional developments have the po-

tential to substantially increase their impact. For ex-

ample, there is great promise in pairing theNBCmethod

to a dynamic all-sky observation error model because

that could lead to more effective use of the clear- and

cloudy-sky brightness temperatures. It would also be

helpful to explore the benefits of more frequent assim-

ilation updates and in assimilating brightness tempera-

tures from more than one infrared band, though that

would require development of a correlated observation

errormodel. The results also suggest that some attention

should be given to developing methods that can increase

the ensemble spread in the cloud hydrometeor variables.

These topics are all left to future work.
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