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ABSTRACT

A regional-scale Observing System Simulation Experiment is used to examine how changes in the horizontal

covariance localization radius employed during the assimilation of infrared brightness temperature observations

in an ensemble Kalman filter assimilation system impacts the accuracy of atmospheric analyses and short-range

model forecasts. The case study tracks the evolution of several extratropical weather systems that occurred across

the contiguous United States during 7–8 January 2008. Overall, the results indicate that assimilating 8.5-mm

brightness temperatures improves the cloud analysis and forecast accuracy, but has the tendency to degrade the

water vapor mixing ratio and thermodynamic fields unless a small localization radius is used. Vertical cross

sections showed that varying the localization radius had a minimal impact on the shape of the analysis increments;

however, their magnitude consistently increased with increasing localization radius. By the end of the assimi-

lation period, the moisture, temperature, cloud, and wind errors generally decreased with decreasing localization

radius and became similar to the Control case in which only conventional observations were assimilated if the

shortest localization radius was used. Short-range ensemble forecasts showed that the large positive impact of the

infrared observations on the final cloud analysis diminished rapidly during the forecast period, which indicates

that it is difficult to maintain beneficial changes to the cloud analysis if the moisture and thermodynamic forcing

controlling the cloud evolution are not simultaneously improved. These results show that although assimilation of

infrared observations consistently improves the cloud field regardless of the length of the localization radius, it

may be necessary to use a smaller radius to also improve the accuracy of the moisture and thermodynamic fields.

1. Introduction

Ensemble Kalman filter (EnKF) data assimilation

systems (Evensen 1994) use a Monte Carlo approach to

estimate the prior or background error covariance ma-

trix that in combination with the assumed observation

error is used to spread information from an observation

spatially and between observed and unobserved vari-

ables. The ensemble size is typically several orders of

magnitude smaller than the dimension of the model state

vector; therefore, the covariance matrix tends to be se-

verely rank deficient. This limits the ability of the as-

similation system to modify the analysis in areas not

sampled by the ensemble subspace and can lead to de-

graded analyses because of the presence of spurious cor-

relations (Hacker et al. 2007). A common method used

to mitigate the negative impact of spurious correlations

and also increase the rank of the ensemble is to localize

the covariance matrix around each observation. The

primary goal of localization is to disregard potentially

spurious correlations that occur far from an observa-

tion, while preserving the larger and more meaningful

correlations closer to the observation (Houtekamer

and Mitchell 1998). Spatial covariance localization is

based on the assumption that correlations generally de-

crease with increasing separation distance away from

an observation (e.g., Hollingsworth and Lönnberg

1986) and that the analysis can be improved if the lo-

calization radius is large enough to encompass most of

the relevant correlations between an observation and the

model state, but small enough to eliminate spurious long-

distance correlations (Yoon et al. 2010).

Early work by Houtekamer and Mitchell (1998, 2001)

and Hamill et al. (2001) showed that a distance-based

reduction of the background error covariance estimates

improved assimilation performance. Covariances be-

tween an observation and the model state vector were

reduced by performing an element-wise multiplication
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of the background error covariance matrix calculated

from the ensemble and a correlation function containing

compact local support (e.g., Gaspari and Cohn 1999).

Anderson (2007b) describes a hierarchical filter that is

computationally expensive to use, but allows observa-

tions to effectively impact state variables even when the

distance between the observation and the state variables

is difficult to define (such as for satellite radiances).

Hacker et al. (2007) have shown that both hierarchical

filters and rational functions (such as Gaspari–Cohn)

are able to effectively improve covariance estimates for

small ensemble sizes when assimilating surface observa-

tions. Their results also indicate that the ability to specify

different localization functions for different observation

and state variable combinations is potentially useful.

Bishop and Hodyss (2009a,b) have shown that using an

adaptive methodology to generate localization func-

tions that move with the true error correlation functions

and adapt to the width of these functions leads to more

accurate analyses than can be obtained using a static,

nonvarying localization radius. Spectral localization

of background error covariances has also been shown

to systematically reduce model error (Buehner and

Charron 2007).

To optimize assimilation performance, it is often nec-

essary to conduct sensitivity tests to determine the opti-

mal localization radius for each observation type since

severe localization can cause substantial imbalances in

the analysis that can accumulate with time and negatively

impact model performance (Mitchell et al. 2002; Kepert

2009). Vertical covariance localization is difficult for

satellite radiances since they are an integrated measure

sensitive to a potentially broad layer of the atmosphere.

For infrared radiances, the vertical level at which an

observation has its greatest sensitivity (i.e., where the

weighting function peaks) is typically a function of highly

variable fields such as temperature, water vapor, clouds,

and aerosols, which makes it difficult to localize radiances

vertically in space using predefined functions. Localiza-

tion in radiance space is a possible alternative; however,

Campbell et al. (2010) have shown that it is generally

better to localize radiances in model space since nonzero

correlations between channels with broad, overlapping

weighting functions can be incorrectly eliminated with

radiance space localization.

Satellite radiances are the most numerous and widely

available observations of the atmosphere and are a crit-

ical component of most global and regional assimilation

systems. Advanced sensors on board existing (and fu-

ture) satellite platforms provide accurate radiance

measurements that provide important information about

atmospheric moisture, temperature, wind, and clouds.

Many prior studies have shown that assimilation of

infrared and microwave radiances and satellite-derived

temperature and water vapor profile retrievals for clear-

sky pixels has a large positive impact on forecast skill,

especially where conventional observations are scarce

(e.g., Tracton et al. 1980; Halem et al. 1982; Andersson

et al. 1991; Mo et al. 1995; Derber and Wu 1998; McNally

et al. 2000; Bouttier and Kelly 2001; Chevallier et al.

2004; McNally et al. 2006; Le Marshall et al. 2006; Xu

et al. 2009; McCarty et al. 2009; Collard and McNally

2009). Several recent studies have also shown that as-

similation of cloudy infrared observations in ensemble

and variational assimilation systems improves the 3D

cloud structure and forecast skill in cloud-resolving and

global circulation models (Vukicevic et al. 2004, 2006;

Reale et al. 2008; Otkin 2010; Stengel et al. 2010; Seaman

et al. 2010). Encouraging results have also been obtained

by extending the four-dimensional variational data as-

similation (4DVAR) analysis control vector to include

parameters such as cloud-top pressure and cloud frac-

tion (McNally 2009).

In this study, results from a regional-scale Observing

System Simulation Experiment (OSSE) will be used to

evaluate how changes in the horizontal covariance lo-

calization radius used during the assimilation of clear

and cloudy-sky infrared brightness temperatures (which

will be used interchangeably with ‘‘radiances’’) impacts

the accuracy of atmospheric analyses and short-term

model forecasts. Simulated observations from the Ad-

vanced Baseline Imager (ABI) to be launched on board

the Geostationary Operational Environmental Satellite

(GOES)-R in 2016 will be employed. The ABI is a 16-

band imager containing 2 visible, 4 near-infrared, and 10

infrared bands. Accurate radiance and reflectance mea-

surements will provide detailed information about at-

mospheric water vapor, surface and cloud-top properties,

sea surface temperature, and aerosol and trace gas com-

ponents with high spatial and temporal resolution (Schmit

et al. 2005). The paper is organized as follows. Section 2

contains a description of the data assimilation system and

simulated observations with an overview of the case study

provided in section 3. Results are shown in section 4 with

conclusions presented in section 5.

2. Experimental design

a. Forecast model

Version 3.0.1.1 of the Weather Research and Fore-

casting (WRF) model was used for this study. WRF is

a sophisticated numerical weather prediction model that

solves the compressible nonhydrostatic Euler equations

cast in flux form on a mass-based terrain-following

vertical coordinate system. Prognostic variables include
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the horizontal and vertical wind components, water va-

por mixing ratio, various cloud microphysical fields, and

the perturbation potential temperature, geopotential,

and surface pressure of dry air. The reader is referred to

Skamarock et al. (2005) for a complete description of

the WRF modeling system.

b. Data assimilation system

Assimilation experiments were conducted using the

EnKF algorithm implemented in the Data Assimilation

Research Testbed (DART) system developed at the

National Center for Atmospheric Research (Anderson

et al. 2009). The assimilation algorithm is based on the

ensemble adjustment Kalman filter described by Anderson

(2001), which processes a set of observations serially and

is mathematically equivalent to the ensemble square root

filter described by Whitaker and Hamill (2002). DART

includes tools that automatically compute temporally and

spatially varying covariance inflation values during the as-

similation step (Anderson 2007a, 2009). To reduce sam-

pling error resulting from a small ensemble size, horizontal

and vertical covariance localization (Mitchell et al. 2002;

Hamill et al. 2001; Houtekamer et al. 2005) is performed

using a compactly supported fifth-order correlation func-

tion following Gaspari and Cohn (1999).

c. Satellite brightness temperature forward model
operator

Otkin (2010) implemented a forward radiative trans-

fer model within DART to compute simulated infrared

brightness temperatures. CompactOPTRAN, which is

part of the National Oceanic and Atmospheric Admin-

istration (NOAA) Community Radiative Transfer Model

(CRTM), is used to compute gas optical depths for each

model layer using simulated temperature and water vapor

mixing ratio profiles and climatological ozone data. Ice

cloud absorption and scattering properties, such as ex-

tinction efficiency, single-scatter albedo, and full scat-

tering phase function, based on Baum et al. (2005) are

subsequently applied to each frozen hydrometeor spe-

cies (i.e., ice, snow, and graupel). A lookup table based

on Lorenz–Mie calculations is used to assign the prop-

erties for the cloud water and rainwater species. Visible

cloud optical depths are calculated separately for the

liquid and frozen hydrometeor species following the

work of Han et al. (1995) and Heymsfield et al. (2003),

respectively, and then converted into infrared cloud op-

tical depths by scaling the visible optical depths by the

ratio of the corresponding extinction efficiencies. The

surface emissivity over land is obtained from the Seeman

et al. (2008) global emissivity database, whereas the water

surface emissivity is computed using the CRTM infrared

sea surface emissivity model. Finally, the simulated skin

temperature and atmospheric temperature profiles along

with the layer gas optical depths and cloud scattering pr-

operties are input into the successive order of interaction

(SOI) forward radiative transfer model (Heidinger et al.

2006), which is used to compute the simulated brightness

temperatures. Previous studies have shown that the for-

ward model produces realistic infrared brightness tem-

peratures for both clear- and cloudy-sky conditions (Otkin

and Greenwald 2008; Otkin et al. 2009).

d. Simulated observations

Data from the high-resolution (6 km) ‘‘truth’’ simula-

tion described in section 3 was used to generate simulated

observations for the ABI sensor and three conventional

observing systems, including radiosondes, the Automa-

ted Surface Observing System (ASOS), and the Aircraft

Communications Addressing and Reporting System

(ACARS). Simulated ABI 8.5-mm infrared brightness

temperatures, which are sensitive to cloud-top proper-

ties when clouds are present or to the surface when clouds

are absent, were computed using the SOI forward ra-

diative transfer model and then averaged to 30-km grid

spacing prior to assimilation. Averaged observations

were discarded if they contained a mixture of clear and

cloudy grid points, thus only completely clear or com-

pletely cloudy observations were used during the as-

similation experiments. A grid point was considered

cloudy if the cloud optical thickness was greater than

zero. Simulated 10-m wind speed and direction, 2-m

temperature and relative humidity, and surface pressure

observations were computed at existing ASOS station

locations with vertical profiles of temperature, relative

humidity, and horizontal wind speed and direction pro-

duced for each radiosonde location. Standard reporting

conventions were followed so that each radiosonde pro-

file contains both mandatory level data and significant

level data corresponding to features such as temperature

inversions and rapid changes in wind speed and direction.

Simulated ACARS temperature and wind observations

were produced at the same locations as the real pilot re-

ports listed in the Meteorological Assimilation Data Ingest

Files for the OSSE case study period. Realistic measure-

ment errors drawn from an uncorrelated Gaussian error

distribution and based on a given sensor’s accuracy spec-

ification were added to each observation.

e. Observation errors

Observation errors used during the assimilation ex-

periments include instrument and representativeness

error components. The observation error for the ABI

8.5-mm brightness temperatures was set to 5 K for both

clear- and cloudy-sky observations, which is within the

error range employed by prior assimilation studies (e.g.,
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Seaman et al. 2010; Otkin 2010). For the conventional

observations, the errors were based on those found in the

operational dataset from the National Centers for Envi-

ronmental Prediction. For the ASOS observations, the

error was set to 2 K for temperature, 18% for relative

humidity, 1.5 hPa for surface pressure, and 2.5 m s21 for

the zonal and meridional wind components. Errors of

1.8 K and 3.8 m s21 were used for the ACARS tem-

perature and wind components. The radiosonde errors

varied with height and ranged from 0.8–1.2 K for tem-

perature, 1.4–3.2 m s21 for the wind components, and

10%–15% for relative humidity.

3. Truth simulation

A high-resolution truth simulation tracking the evolu-

tion of several extratropical weather systems across the

contiguous United States was performed using the

WRF model. The simulation was initialized at 1200 UTC

6 January 2008 using 20-km Rapid Update Cycle

(RUC) model analyses and then integrated for 42 h on

a single 798 3 516 gridpoint domain (refer to Fig. 1)

containing 6-km horizontal grid spacing and 52 vertical

levels. The vertical grid spacing decreased from ,100 m

in the lowest km to ;500 m at the model top, which was

set to 65 hPa. Subgrid-scale processes were parameter-

ized using the Thompson et al. (2008) mixed-phase cloud

microphysics scheme, the Yonsei University (Hong et al.

2006) planetary boundary layer scheme, and the Dudhia

(1989) shortwave and Rapid Radiative Transfer Model

longwave (Mlawer et al. 1997) radiation schemes. Sur-

face heat and moisture fluxes were calculated using the

Noah land surface model. No cumulus parameterization

scheme was used.

The evolution of the simulated cloud-top pressure

(CTOP), cloud water path (CWP), and 300-hPa height

and wind fields from 1200 UTC 7 January to 0000 UTC

8 January 2008 is shown in Fig. 1. Simulated observations

from this time period will be assimilated during the ex-

periments presented in section 4. The CTOP corresponds

to the atmospheric pressure on the highest model level

containing a nonzero hydrometeor mixing ratio whereas

the CWP was calculated using the sum of the cloud

water, rainwater, ice, snow, and graupel mixing ratios in-

tegrated over the entire model column. At 1200 UTC, a

broad upper-level trough was located across the western

United States (Fig. 1a) with a seasonably strong jet

streak (50 m s21) extending across the central United

States. Several large cloudy areas (Fig. 1b) were located

within the trough and also along and to the east of a

strong surface boundary extending roughly southwest to

northeast across the central United States (not shown).

By 0000 UTC, the 300-hPa trough had deepened slightly

as it slowly moved eastward and encountered a dominant

FIG. 1. (a) Simulated 300-hPa geopotential height (m) and winds (m s21) valid at 1200 UTC 7 Jan 2008. Each

wind barb equals 5 m s21. (b) Simulated cloud-top pressure (hPa; color filled) valid at 1200 UTC 7 Jan 2008. Areas

enclosed by the black contour contain a cloud water path greater than 0.4 mm. (c),(d) As in (a),(b), but valid at

0000 UTC 8 Jan 2008. The black rectangle encloses the region used for the forecast verification in section 4f.

546 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



ridge over the eastern United States (Fig. 1c). Extensive

upper-level cloud cover associated with a strong short-

wave disturbance was present over the central High Plains

while other cloudy areas were located along the Pacific

Northwest coast, the northern Rockies, and along the

frontal boundary draped across the central United States

(Fig. 1d). Predominately clear areas were present over the

southeastern United States, northern Mexico, and scat-

tered across the western and central United States.

4. Assimilation results

a. Initial ensemble and model configuration

The assimilation experiments described later in this

section begin at 1200 UTC 7 January 2008. Initial con-

ditions valid at this time were created for an 80-member

WRF model ensemble using the following procedure,

which is identical to that employed by Otkin (2010). First,

a preliminary ensemble valid at 0000 UTC 6 January was

created using the approach outlined by Torn et al. (2006).

With this approach, balanced initial and lateral boundary

perturbations were added to 40-km North American

Mesoscale (NAM) model analyses for each ensemble

member using covariance information provided by the

WRF-Var data assimilation system. This ensemble was

then integrated for 24 h to increase the ensemble spread.

Last, simulated ASOS, ACARS, and radiosonde obser-

vations from the truth simulation were assimilated during

the next 12 h to produce an initial ensemble for the as-

similation experiments described later in this section that

contain flow-dependent covariance structures that are

more representative of the atmospheric conditions in the

truth simulation.

Assimilation experiments were performed for the same

geographic domain as the truth simulation, but contained

18-km horizontal grid spacing and 37 vertical levels in

order to better represent an operational setting. Unlike

the truth simulation, the Kain and Fritsch (1990, 1993)

subgrid-scale cumulus parameterization scheme was em-

ployed during the assimilation experiments. Different

initialization datasets, grid resolutions, and parameteri-

zation schemes were chosen for the assimilation ex-

periments to limit the risk of performing ‘‘identical

twin’’ experiments.

In the remainder of this section, results from four as-

similation experiments will be compared to data from the

truth simulation. The experiments are designed to eval-

uate the impact of the horizontal localization radius on

the analysis accuracy and short-range model forecasts when

assimilating 8.5-mm brightness temperatures. Simulated

conventional observations were the only observations as-

similated during the Control case, while both conventional

observations and clear- and cloudy-sky 8.5-mm bright-

ness temperatures were assimilated during the other

cases. When assimilating 8.5-mm observations, the hor-

izontal localization radius was set to 100, 200, and

300 km during the HLOC-100KM, HLOC-200KM, and

HLOC-300KM cases, respectively. For the conventional

observations, sensitivity tests showed that the best results

were obtained with a 6-km vertical localization radius,

and horizontal localization radii of 400 km for surface

pressure and relative humidity and 600 km for tempera-

ture and wind. Vertical covariance localization was not

used for the brightness temperature observations since

they are sensitive to broad layers of the atmosphere.

Simulated radiosonde observations were assimilated

at 0000 and 1200 UTC, whereas all other observation

types were assimilated once per hour from 1200 UTC

7 January to 0000 UTC 8 January. Prognostic fields con-

tained in the model state vector that are updated during

each assimilation cycle include the temperature, water

vapor mixing ratio, horizontal and vertical wind compo-

nents, surface pressure, number concentration of ice, and

the mixing ratios for cloud water, rainwater, pristine ice,

snow, and graupel. The time and spatially varying co-

variance inflation scheme developed by Anderson et al.

(2009) was also used during each experiment.

b. Time series error analysis

As a first step in evaluating the impact of the observa-

tions on the analysis accuracy, Fig. 2 shows the temporal

evolution of the prior and posterior root-mean-square

error (RMSE) and bias for the ABI 8.5-mm band for

each assimilation cycle during the 12-h assimilation

period. Output from the truth simulation was coarsened

to 18-km grid spacing and then statistics were computed

with respect to the clear and cloudy grid points in the

truth simulation. Data from the outermost 20 grid points

were not used. Overall, the RMSE and bias were much

smaller during the brightness temperature assimilation

cases. For the clear-sky grid points (Fig. 2b), the RMSE

was reduced by 4–5 K after the first assimilation cycle,

due in part to a large reduction in the negative bias

present in the initial ensemble (Fig. 2d). Nearly constant

errors occurred during the remainder of the assimilation

period. Assimilation of the brightness temperature ob-

servations also lowered the RMSE and bias for the

cloudy grid points (Figs. 2a,c), though the improvement

relative to the Control case decreased slightly by the end

of the assimilation period. Comparison of the brightness

temperature assimilation cases shows that the larger

horizontal localization radius used during the HLOC-

300KM case initially exerted a stronger positive influence

on the cloudy-sky grid points, but that this impact de-

creased with time and was similar to the other cases by
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0000 UTC. Larger and more consistent error reductions

occurred for the clear-sky grid points when a larger lo-

calization radius was used. The ratio between the en-

semble spread and the RMSE for the 8.5-mm brightness

temperature observations decreased slightly with in-

creasing localization radius (not shown), which indicates

that the ensemble spread was reduced when a larger

localization radius was used. This could have an ad-

verse affect on filter performance over longer assimi-

lation periods.

Figure 3 shows the evolution of the prior and posterior

bias and RMSE for the CWP computed with respect to

the cloudy and clear grid points in the truth simulation.

Similar to Fig. 2, applying a larger localization radius to

the 8.5-mm brightness temperature observations leads to

slightly smaller RMSE after the first assimilation cycle

for both clear- and cloudy-sky grid points (Figs. 3a,b).

The superior performance continues during most of

the assimilation period for the clear-sky grid points with

the HLOC-300KM case containing the smallest bias

and RMSE by 0000 UTC. For the cloudy grid points,

however, the RMSE grows more rapidly during the

HLOC-300KM case so that the errors become larger

after 1600 UTC and are nearly 15% larger than the

HLOC-100KM case by the end of the assimilation period.

All three brightness temperature assimilation cases

contain consistently smaller errors for the clear-sky

grid points; however, larger biases occurred for the

cloudy grid points during most of the assimilation period

(Fig. 3c), which indicates that cloudy infrared observa-

tions have the tendency to add too much cloud con-

densate to the column. The different performance for

the clear and cloudy grid points suggests that the

smaller-scale structure apparent in many cloud fields

may require a smaller localization radius to achieve

optimal results. For instance, cloud properties can vary

quickly over short distances so a smaller localization ra-

dius limits the spread of information from individual

cloudy observations that may not be totally represen-

tative of the larger cloud structure (such as a thunder-

storm within a cirrus cloud shield) and also helps to

preserve smaller cloud features when surrounded by

clear observations (e.g., Polkinghorne et al. 2010). Er-

rors in the model parameterized cloud microphysics may

also contribute to the different performance.

Figure 4 shows the evolution of the prior and posterior

bias and RMSE for the column-integrated precipitable

water content computed with respect to the clear and

cloudy grid points in the truth simulation. Overall, the

assimilation of 8.5-mm brightness temperatures had

a minimal impact on the RMSE during the first several

assimilation cycles relative to the Control case (Figs. 4a,b);

FIG. 2. Time evolution of the ensemble mean forecast and analysis (sawtooth pattern) ABI 8.5-mm brightness

temperature RMSE (K) from 1200 UTC 7 Jan to 0000 UTC 8 Jan 2008 computed with respect to the (a) cloudy- and

(b) clear-sky grid points in the truth simulation. (c),(d) As in (a),(b), but for the time evolution of the ABI 8.5-mm

brightness temperature bias (K). Results are shown for the HLOC-100KM (green), HLOC-200KM (blue), HLOC-

300KM (red), and Control (black) experiments.
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however, the performance of each case started to diverge

by 1800 UTC with the largest errors occurring during the

HLOC-300KM case. The RMSE consistently decreased

as the localization radius was reduced to 100 km, with

the improvements increasing with time. The HLOC-

100KM case was the only one that contained smaller

errors than the Control case, which suggests that the

covariances between the infrared observations and the

water vapor field may be noisy at larger separation dis-

tances and therefore necessitates using a smaller locali-

zation radius for this combination of observations and

state variables. Last, the initial ensemble was charac-

terized by a large dry bias (Figs. 4c,d) that the obser-

vations were unable to correct. For the cloudy-sky grid

points, the bias was slightly improved by 0000 UTC

during the HLOC-100KM and HLOC-200KM cases;

however, the bias steadily worsened with time for the

clear-sky grid points and consistently increased with

increasing localization radius. The notable drying in-

ferred by the increasing negative bias shows that the clear-

sky 8.5-mm observations exert a strong influence on the

moisture field. Future work will be necessary to determine

if the anomalous drying is due to errors in the background

error covariance field when both the observation and en-

semble members are clear or whether it is due to errone-

ous drying of the atmosphere instead of the removal of

cloud condensate when clouds are present in the ensemble.

c. Regional cloud water path analysis

To further investigate the impact of brightness tem-

perature assimilation on the cloud analysis, Fig. 5 shows

the 8.5-mm brightness temperature and CWP mean

analysis increments (MAI) and the differences between

the posterior ensemble mean CWP and the truth simu-

lation after the first assimilation cycle at 1200 UTC. The

CWP and 8.5-mm brightness temperatures from the truth

simulation and the prior ensemble mean are also shown.

In the truth simulation (Figs. 5a,b), thick cloud cover and

cold 8.5-mm brightness temperatures are present over

southern Minnesota and Wisconsin and downstream of

the Big Horn Mountains in northern Wyoming and the

Front Range of Colorado with several areas of low and

midlevel clouds containing less cloud condensate scat-

tered across the rest of the region. Colder brightness

temperatures and more extensive cloud cover were pres-

ent in the prior ensemble mean (Figs. 5c,d), which is pri-

marily due to differences in the strength and location of

the cloud features in each ensemble member. Comparison

of the Control (Figs. 5e–g) and brightness temperature

assimilation (Figs. 5h–p) cases reveals substantial dif-

ferences in the magnitude and structure of the CWP and

8.5-mm brightness temperature increments when infrared

observations are assimilated. For instance, much larger

positive brightness temperature increments consistent

FIG. 3. Time evolution of the ensemble mean forecast and analysis (sawtooth pattern) CWP RMSE (g m22)

from 1200 UTC 7 Jan to 0000 UTC 8 Jan 2008 computed with respect to the (a) cloudy- and (b) clear-sky grid

points in the truth simulation. (c),(d) As in (a),(b), but for the time evolution of the CWP bias (g m22). Results

are shown for the HLOC-100KM (green), HLOC-200KM (blue), HLOC-300KM (red), and Control (black)

experiments.
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with the removal of cloud condensate from some or all

of the ensemble members occurred across the central

Plains and Great Lakes regions when 8.5-mm brightness

temperatures were assimilated. The influence of the

localization radius is apparent over extreme western

Iowa, where the spatial extent of the positive CWP

MAI is progressively smaller as the localization radius

increases. This effect occurs because a larger localiza-

tion radius allows the clear-sky observations that pre-

dominate across this area (Fig. 5a) to more easily

overcome the positive CWP increments induced by the

conventional observations (Fig. 5f). Large differences

also occurred within the elongated cloud feature ex-

tending downstream of the Bighorn Mountains where

the prior ensemble mean had greatly underestimated

the CWP. The relative lack of conventional observa-

tions across this region and their insensitivity to the

cloud field limited their ability to improve the CWP.

The greater sensitivity of the 8.5-mm brightness tem-

peratures, however, allowed them to exert a much

larger positive influence on the cloud field even though

the 8.5-mm brightness temperature MAI were not

particularly large.

d. Vertical cross sections

In this section, the impact of the observations on the

vertical distribution of cloud condensate and other

thermodynamic fields will be more closely examined for

the cloud feature extending downstream of the Bighorn

Mountains (refer to Fig. 5a for the cross-section location).

Figure 6 shows vertical cross sections of total cloud hy-

drometeor (QALL; sum of cloud water, rainwater, ice,

snow, and graupel) and water vapor (QV) mixing ratios

from the truth simulation and prior ensemble mean at

1200 UTC along with the MAI and posterior ensemble

mean error for each assimilation case. Comparison with

the truth simulation (Fig. 6a) reveals that the prior en-

semble mean (Fig. 6b) contains several large errors, in-

cluding a severe underestimation of the amount of cloud

condensate immediately northeast of the mountains, the

presence of erroneously dry low-level air in the same

region, and a lack of dry midlevel air above the shallow

moist layer farther to the northeast (between 550 and

750 km). The large errors were primarily due to dif-

ferences in the initialization datasets and model reso-

lutions used for the truth simulation and assimilation

experiments. During the Control case (Figs. 6c,d), the

conventional observations had little appreciable im-

pact on the QALL and QV errors close to the moun-

tains; however, large-scale drying (moistening) in the

lower (middle) troposphere slightly reduced the QV

errors (up to 15%) between 600 and 750 km. For the

brightness temperature assimilation cases (Figs. 6e–j),

two narrow plumes of cloud condensate were added near

FIG. 4. Time evolution of the forecast and analysis (sawtooth pattern) precipitable water (PWAT) RMSE

(mm) from 1200 UTC 7 Jan to 0000 UTC 8 Jan 2008 computed with respect to the (a) cloudy- and (b) clear-sky

grid points in the truth simulation. (c),(d) As in (a),(b), but for the time evolution of the PWAT bias (mm).

Results are shown for the HLOC-100KM (green), HLOC-200KM (blue), HLOC-300KM (red), and Control

(black) experiments.
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FIG. 5. (a) Simulated ABI 8.5-mm brightness temperatures (K) and (b) CWP (g m22) from the truth simulation. The location of the cross

sections in Figs. 6 and 7 is indicated by the black line. (c),(d) As in (a),(b), but for the prior ensemble mean. (e) 8.5-mm brightness

temperature mean analysis increment (K), (f) CWP mean analysis increment (g m22), and (g) CWP mean error (g m22) for the Control

simulation. (h)–(j) As in (e)–(g), but for the HLOC-100KM case. (k)–(m) As in (e)–(g), but for the HLOC-200KM case. (n)–(p) As in

(e)–(g), but for the HLOC-300KM case. All images valid at 1200 UTC 8 Jan 2008.
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FIG. 6. Vertical cross section of total cloud mixing ratio (sum of cloud water, rainwater, ice, snow and

graupel) (g kg21; color fill) and water vapor mixing ratio (g kg21; contours) from the (a) truth simulation

and (b) prior ensemble mean valid at 1200 UTC 7 Jan 2008. (c) Vertical cross section of total cloud mixing

ratio (g kg21) and water vapor mixing ratio (g kg21) mean analysis increment from the Control case. Water

vapor mixing ratio is contoured every 0.06 g kg21 with negative values dashed and zero contour omitted.

(d) Vertical cross section of total cloud mixing ratio (g kg21) and water vapor mixing ratio (g kg21) errors
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the mountains with a larger region of positive QALL

increments located between 200 and 450 km. The mag-

nitude of the increments tends to increase with increasing

localization radius, which was beneficial downstream of

the mountains, but lead to larger QALL errors within

the narrow cloud plumes. Although the brightness

temperatures had minimal impact on the QV errors

away from the mountains, the large positive QV in-

crements near the mountains introduced a wet bias

in the lower troposphere that was largest for the HLOC-

300KM case.

Vertical cross sections of potential temperature and

along-cross-section wind speed from the truth simula-

tion and prior ensemble mean at 1200 UTC, and the

corresponding MAI and posterior ensemble mean error

for each assimilation case are shown in Fig. 7. Com-

parison with the truth simulation (Fig. 7a) reveals that

the prior ensemble mean (Fig. 7b) contains a lower

tropopause and stronger upper-level winds extending

northeast from the mountains, cooler (warmer) tem-

peratures below (above) 7 km MSL associated with the

lower tropopause, and much weaker upslope north-

easterly winds below 5 km MSL. The weaker upslope

flow in the prior ensemble likely contributed to the

lower QALL and QV mixing ratios seen in Fig. 6b. When

conventional observations were assimilated during the

Control case (Figs. 7c,d), the upper-level temperature

errors southwest of the mountains were reduced by up to

1 K with smaller improvements in the temperature and

wind analyses farther to the northeast. Much larger

analysis increments occurred when 8.5-mm brightness

temperatures were assimilated (Figs. 7e–j), which gen-

erally resulted in a more accurate analysis, especially for

wind as a result of the presence of stronger northeast-

erly flow at most levels. Varying the localization radius

for the infrared observations had a minimal impact on

the shape of the analysis increments; however, their

magnitude greatly increased as the localization radius

increased from 100 to 300 km. For instance, the maxi-

mum wind speed increment near 7 km MSL increased

from 23 m s21 in the HLOC-100KM case to 27 m s21

in the HLOC-300KM case, while the maximum tem-

perature increment above this level increased from

21.6 to 22.4 K. Warming in the middle troposphere

also increased from 0.4 to 1.1 K for these cases. The

larger MAI during the HLOC-300KM case generally

resulted in the most accurate analysis after the first

assimilation cycle, which is consistent with the results

presented in section 4b.

e. Final analysis accuracy

The accuracy of the final analysis obtained after 12 h

of assimilation is assessed in this section. Figure 8 shows

vertical profiles of bias and RMSE for QALL computed

with respect to the clear and cloudy grid points in the

truth simulation. The statistics were calculated for each

case using data from the posterior ensemble mean at

0000 UTC 8 January, excluding the outermost 20 grid

points of the model domain. Overall, the cloud analysis

was greatly improved when 8.5-mm brightness tem-

peratures were assimilated simultaneously with the

conventional observations. For instance, the RMSE for

the brightness temperature assimilation cases is much

lower than the Control case for both clear and cloudy

grid points (Figs. 8b,d), with the largest error reductions

occurring in the middle and upper troposphere similar to

what was shown in Otkin (2010). The smaller impact of

the infrared observations on the low-level clouds is

likely due to two reasons. First, for optically deep clouds

or for multilayer cloud situations, infrared observations

are not sensitive to the lower portion of the cloud field,

thereby limiting their direct impact on the cloud anal-

ysis. Second, in the absence of upper-level clouds, the

thermal contrast between a low-level cloud and the

surface will be much smaller than between an upper-

level cloud and the surface, which will result in smaller

analysis increments unless the observation errors can be

reduced for clear-sky observations and for those con-

taining low-level clouds. Comparison of the brightness

temperature assimilation cases reveals that similar er-

rors occurred for the clear-sky grid points; however, the

QALL errors consistently decreased with decreasing

localization radius for the cloudy-sky grid points. These

results are consistent with those shown in Fig. 3 and

again suggest that different localization radii may be

necessary to account for differences in the representa-

tive scale of clear and cloudy observations.

Vertical profiles of bias and RMSE for temperature,

water vapor mixing ratio, and vector wind speed com-

puted with respect to the clear and cloudy grid points in

 
from the Control case computed by subtracting the posterior ensemble mean from truth. Water vapor

mixing ratio is contoured every 0.25 g kg21 with negative values dashed and the zero contour omitted.

(e),(f) As in (c),(d), but for HLOC-100KM case. (g),(h) As in (c),(d), but for HLOC-200KM case. (i),(j) As

in (c),(d), but for HLOC-300KM case.
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FIG. 7. Vertical cross section of along-cross-section wind speed (m s21; color fill) and potential

temperature (K; contours) from the (a) truth simulation and (b) prior ensemble mean valid at

1200 UTC 7 Jan 2008. (c) Vertical cross section of potential temperature (K) and wind (m s21) mean

analysis increment from the Control case. Temperature is contoured every 0.3 K with negative

values dashed and zero contour omitted. (d) Vertical cross section of potential temperature (K) and

wind (m s21) errors from the Control case computed by subtracting the posterior ensemble mean

from truth. Temperature is contoured every 1 K with negative values dashed and zero contour

omitted. (e),(f) As in (c),(d), but for HLOC-100KM case. (g),(h) As in (c),(d), but for HLOC-200KM

case. (i),(j) As in (c),(d), but for HLOC-300KM case.

554 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



the truth simulation are shown in Fig. 9. Close inspection

shows that the assimilation of 8.5-mm brightness tem-

peratures improved the temperature analysis in the middle

troposphere for the cloudy grid points; however, larger

errors occurred elsewhere (Figs. 9a,b). For the clear-sky

grid points (Figs. 9c,d), the temperature errors were higher

for most levels, though some improvements did occur in

the lower troposphere during the HLOC-100KM case.

Much larger errors were introduced to the water vapor

analysis when brightness temperatures were assimilated

(Figs. 9e–h), primarily due to the presence of a wet (dry)

bias for the cloudy (clear) grid points. Last, although the

wind analysis (Figs. 9i,j) was characterized by slightly

smaller errors in the middle troposphere for the cloudy

FIG. 8. Vertical profiles of (a) bias and (b) RMSE for the total hydrometeor mixing ratio (g kg21; sum of cloud

water, rainwater, cloud ice, snow, and graupel) for cloudy grid points. The profiles were computed using data from the

posterior ensemble mean at 0000 UTC 8 Jan 2008. (c),(d) As in (a),(b), but for clear grid points. Results are shown for

the HLOC-100KM (green), HLOC-200KM (blue), HLOC-300KM (red), and Control (black) experiments, with the

statistics calculated with respect to the cloudy and clear grid points in the truth simulation.
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grid points and in the upper troposphere for the clear

grid points, some degradation occurred at other levels.

In general, the RMSE for these variables was similar to

or slightly better than the Control case only when the

localization radius was reduced to 100 km, while the

greatest degradation tended to occur for both clear and

cloudy grid points when a larger localization radius was

used. Combining these results with Fig. 8 indicates

FIG. 9. Vertical profiles of (a) bias and (b) RMSE for temperature (K) for cloudy grid points. The profiles were computed using data

from the posterior ensemble mean at 0000 UTC 8 Jan 2008. (c),(d) As in (a),(b), but for clear grid points. (e)–(h) As in (a)–(d), but for

water vapor mixing ratio (g kg21). (i) As in (b), but for vector wind (m s21). (j) As in (d), but for vector wind (m s21). Results are shown for

the HLOC-100KM (green), HLOC-200KM (blue), HLOC-300KM (red), and Control (black) experiments, with the statistics calculated

with respect to the cloudy and clear grid points in the truth simulation.
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that although the infrared observations were able to

consistently improve the cloud analysis regardless of the

length of the localization radius, it was necessary to use

a smaller localization radius to maintain or improve the

accuracy of the thermodynamic and moisture analyses

relative to the Control case. Future work will be neces-

sary to more fully explore the sensitivity of the analysis

accuracy to changes in the ensemble size and the spatial

density of the assimilated infrared observations.

f. Forecast impact

To assess the impact of the observations on the short-

range model forecast skill, 6-h ensemble forecasts were

performed for each case using the final ensemble anal-

yses from 0000 UTC 8 January. Vertical profiles of bias

and RMSE for temperature, water vapor mixing ratio,

and vector wind speed at the 1-, 3-, and 6-h forecast

times are shown in Fig. 10. Data from the ensemble

mean for the subdomain shown in Fig. 2 were used to

compute the statistics. In general, the thermodynamic

errors are larger for the brightness temperature assimi-

lation cases, but tend to decrease with decreasing locali-

zation radius and are much closer to the more accurate

Control case during the HLOC-100KM case. The poorer

forecast performance during these cases is consistent

with the generally less accurate moisture and thermo-

dynamic analyses at the end of the assimilation period

(Fig. 9).

Figure 11 shows the temporal evolution of the bias

and RMSE for the 8.5-mm brightness temperatures,

cloud-top pressure, ice water path (IWP), and liquid wa-

ter path (LWP). Overall, the positive impact of the in-

frared observations decreases rapidly during the forecast

period and converges with the Control case by 0600 UTC

for the cloud-top pressure and 8.5-mm brightness tem-

peratures and by 0200 UTC for the IWP and LWP. The

corresponding mean absolute error statistics (not shown)

are consistently smaller for the brightness temperature

assimilation cases during the entire 6-h forecast period,

which illustrates that assimilation of infrared observations

helps constrain the evolution of cloud-sensitive fields

more than conventional observations alone, but that

much larger errors for some grid points result in a higher

RMSE during later forecast periods. The rapid increase

in the IWP and LWP errors indicates that improvements

in the final cloud analysis (Fig. 8) quickly disappear, pos-

sibly due to the less accurate moisture, temperature, and

wind analyses at end of the assimilation period (Fig. 9) and

the subsequently larger errors during the forecast period

(Fig. 10). If the moisture and thermodynamic forcing

controlling the cloud evolution are not improved, then it

is difficult to maintain the beneficial changes made to the

final cloud analysis. Last, comparison of the brightness

temperature assimilation cases shows that the RMSE

tended to decrease for these cloud-sensitive variables as

the localization radius was increased.

5. Discussion and conclusions

In this study, a regional-scale OSSE was used to exam-

ine how changes in the horizontal covariance localization

radius employed during the assimilation of clear- and

cloudy-sky infrared brightness temperature obser-

vations impacts the accuracy of atmospheric analyses

and short-range model forecasts. The OSSE case study

tracked the evolution of several extratropical weather

systems and the associated cloud features that occurred

across the contiguous United States during 7–8 January

2008. A high-resolution ‘‘truth’’ simulation containing

realistic cloud, moisture, and thermodynamic properties

was performed using the WRF model. Data from this

simulation were used to generate synthetic ABI 8.5-mm

brightness temperatures and conventional radiosonde,

surface, and aircraft pilot observations. Realistic errors

based on a given sensor’s accuracy specifications drawn

from a Gaussian error distribution were added to each

observation. Four assimilation experiments were con-

ducted using the EnKF algorithm in the DART assimila-

tion system. Conventional observations were assimilated

during the Control experiment, whereas both conven-

tional and clear- and cloudy-sky 8.5-mm brightness tem-

perature observations were assimilated during the other

cases. For the cases with brightness temperature as-

similation, the horizontal localization radius was set to

100, 200, and 300 km, respectively, for the 8.5-mm ob-

servations. All observations were assimilated once per

hour during a 12-h period, with 6-h ensemble forecasts

performed using the final ensemble analyses at the end

of the assimilation period.

Overall, the results indicate that assimilating 8.5-mm

brightness temperatures improves the analysis and fore-

cast accuracy for variables sensitive to the cloud field, but

has the tendency to degrade other fields. Comparison of

the brightness temperature assimilation cases reveals that

the horizontal localization radius strongly influences the

assimilation performance for both clear- and cloudy-sky

grid points. After the first assimilation cycle, large dif-

ferences were evident in the magnitude and structure of

the CWP increments across the central United States

and downwind of the Rocky Mountains. The influence of

the localization radius was most apparent over western

Iowa, where a larger radius allowed the clear-sky infrared

observations that predominated across the region to

overcome the erroneous positive CWP increments in-

duced by the conventional observations. Vertical cross

sections through the elongated cloud feature extending
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FIG. 10. Temperature forecast RMSE (K) profiles valid at (a) 0100, (b) 0300, and (c) 0600 UTC 8 Jan 2008. (d)–(f) As in (a)–(c), but for

water vapor mixing ratio (g kg21). (g)–(i) As in (a)–(c), but for vector wind (m s21). Statistics were computed using data from the

ensemble mean. Results are shown for the HLOC-100KM (green), HLOC-200KM (blue), HLOC-300KM (red), and Control (black)

experiments.
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downstream of the Big Horn Mountains showed that

much larger analysis increments occurred for the cloud

and thermodynamic fields when 8.5-mm observations

were assimilated. Varying the localization radius had

little impact on the shape of the analysis increments;

however, their magnitude consistently increased with

increasing localization radius. Although the larger anal-

ysis increments during the HLOC-300KM case lead to

the most accurate analysis after the first assimilation

cycle, the superior performance disappeared for most

variables by the end of the assimilation period. For

instance, errors in the water vapor, temperature, and

wind fields generally decreased with decreasing local-

ization radius and were similar to or even slightly better

than the Control case only when the localization radius

was reduced to 100 km. Much larger improvements

occurred in the cloud analysis during the brightness

temperature assimilation experiments, with the smallest

errors obtained for the clear (cloudy) grid points when

a larger (smaller) localization radius was used. These

results suggest that to account for differences in their

representative scales, it may be necessary to use differ-

ent localization radii when assimilating clear and cloudy

infrared observations. Future work will be necessary to

determine if this behavior is caused by different corre-

lation lengths between the unobserved fields and the

clear and cloudy infrared observations.

Short-range ensemble forecasts were subsequently

performed for each case using the final analyses at the

end of the 12-h assimilation period. Overall, the tem-

perature, moisture, and wind errors were larger during

the brightness temperature assimilation cases, which

is consistent with the less accurate moisture and ther-

modynamic analyses at 0000 UTC. These errors tended

to decrease with decreasing localization radius and

were much closer to the more accurate Control case

during the HLOC-100KM case. The large positive impact

of the infrared observations on the cloud analysis di-

minished rapidly during the forecast period and was

similar to the Control case after several hours, which in-

dicates that it is difficult to maintain beneficial changes

to the cloud analysis if the corresponding moisture and

thermodynamic fields controlling the cloud evolution are

not simultaneously improved. In summary, the analysis

and forecast results show that although the assimilation

of infrared observations consistently improves the cloud

FIG. 11. Time evolution of the forecast RMSE from 0000 UTC 8 Jan 2008 (forecast hour 0) to 0600 UTC 8 Jan 2008

for (a) ABI 8.5-mm brightness temperatures (K), (b) cloud-top pressure (hPa), (c) IWP (g m22), and (d) LWP (g m22),

computed using data from the ensemble mean. Results are shown for the HLOC-100KM (green), HLOC-200KM

(blue), HLOC-300KM (red), and Control (black) experiments.
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field regardless of the length of the localization radius, it

may be necessary to use a smaller radius to improve the

accuracy of the moisture and thermodynamic fields. The

inability of the infrared observations to exert a strong

influence on the forecast skill beyond 3–6 h indicates

that their primary benefit may be improving short-range

forecasts, though more extensive studies over longer time

periods and different seasons are necessary to fully ex-

plore the impact of these observations on model forecast

skill. These results are similar to those obtained during

other assimilation studies employing cloud-sensitive ob-

servations, such as those from the Weather Surveillance

Radar-1988 Doppler (WSR-88D) network, which have

their greatest influence on short-range forecasts (e.g.,

Tong and Xue 2005; Zhang et al. 2009).

Future work includes exploring the potential synergy

between high-resolution infrared brightness tempera-

tures and WSR-88D radar reflectivity and radial velocity

observations for improving the cloud structure in re-

gional models. Regional-scale OSSEs will also be used

to examine the ability of the three water vapor bands

on the ABI sensor to exert a positive influence on high-

impact precipitation and severe weather forecasts through

a more accurate depiction of the 3D water vapor field.

Last, a comprehensive effort to examine correlations be-

tween clear- and cloudy-sky infrared observations and the

model state vector variables is also needed.
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