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Nonlinear Conditional Model Bias Estimation for Data Assimilation\ast 
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Abstract. In this study, we develop model bias estimators based on an asymptotic expansion of the model
dynamics for small time scales and small perturbations in a model parameter, and then use the esti-
mators to improve the performance of a data assimilation system. We employ the well-known Lorenz
(1963) model so that we can study all aspects of the dynamical system and model bias estimators in
a detailed way that would not be possible with a full physics numerical weather prediction model. In
particular, we first work out the asymptotics of the Lorenz model for small changes in one of its pa-
rameters and then use statistics from cycled data assimilation experiments to demonstrate that the
asymptotics accurately represent the behavior of the model and that the coefficients of the nonlinear
asymptotical expansion can be reasonably estimated by solving a least squares minimization prob-
lem. In data assimilation, the background error covariance matrix usually estimates the uncertainty
of the model background, which is then used along with the observation error covariance matrix to
produce an updated analysis. If the uncertainty of the model background is strongly influenced by
time-dependent model biases, then the development of nonlinear bias estimators that also vary with
time could improve the performance of the assimilation system and the accuracy of the updated
analysis. We demonstrate this improvement through the combination of a constant background er-
ror covariance matrix with a dynamically varying matrix computed using the model bias estimators.
Numerical tests using the Lorenz (1963) model illustrate the feasibility of the approach and show
that it leads to clear improvements in the analysis and forecast accuracy.

Key words. variational data assimilation, asymptotic expansion, model error, parameter estimation, bias cor-
rection, Lorenz
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1. Introduction. Partial differential equations are widely used in scientific and techno-
logical fields to simulate the evolution of natural phenomena. For initial boundary condition
problems such as those that are commonly encountered in atmospheric science, an accurate
prediction of the spatial and temporal characteristics of various weather and climate features
depends not only on the ability of a numerical model to realistically simulate the physical
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processes controlling their evolution, but also on the ability of a data assimilation system
to provide the forecast model an accurate estimate of the initial conditions. Atmospheric
data assimilation systems typically combine information from a short-range model forecast,
or ensemble of forecasts, with a set of observations gathered over a specified time period to
produce an analysis of the current state of the dynamical system that then serves as the
initial conditions for the next model forecast. Commonly used data assimilation methods
include variational assimilation that determines the analysis through minimization of a cost
function, ensemble methods that use an ensemble of forecasts to dynamically estimate the
sample covariances between different state components when determining how new obser-
vations impact the ensemble analysis, and so-called hybrid methods that combine aspects
of variational and ensemble data assimilation methods. A wide range of literature intro-
ducing and studying different data assimilation methods is known today; see for example
[46, 36, 20, 3, 75, 62, 38, 52, 33, 10].

Regardless of which assimilation methodology is employed, generation of the best possible
analysis state x(a) through a combination of the model first guess or background state x(b)

with the available observations requires knowledge of the observation error and the underly-
ing uncertainty in the model background x(b). The observation error uncertainty is usually
determined by the covariance matrix R \in \BbbR m\times m of the observation vector y \in \BbbR m in obser-
vation space \BbbR m, where m \in \BbbN denotes the number of observations. The uncertainty of the
model background state x(b) is measured by the covariance matrix B \in \BbbR n\times n, where n \in \BbbN is
the dimension of the model space \BbbR n and x(b) \in \BbbR n. Variational data assimilation methods
calculate the analysis state x(a) \in \BbbR n by minimizing the functional

(1.1) J(x) := | | x - x(b)| | 2B - 1 + | | y  - H(x)| | 2R - 1 , x \in \BbbR n, y \in \BbbR m,

where H : \BbbR n \rightarrow \BbbR m is the forward observation operator that maps the model state x into
the simulated observation H(x) \in \BbbR m. For linear observation operators, it is well-known (cf.
[52, Chapter 5]) that the minimization of (1.1) is given by

(1.2) x(a) = x(b) +BHT (R+HBHT ) - 1(y  - H(x(b))).

Because the model background and observations are not perfect, accurate knowledge of the
covariance matrices B and R is very important for data assimilation since they determine
the weights that are applied to the model background and observations, respectively, when
generating the updated analysis x(a). In addition, the matrix B spreads information spatially
within a region surrounding the observation location and can also be used to add balance
constraints between analysis variables based on physical principles [8, 9].

Despite its importance, an exact form for B cannot be determined for real-world applica-
tions because the true state of the dynamical system cannot be completely known due to a
limited number of observations and the presence of errors in the observations that are avail-
able. For variational assimilation systems, the model background error covariances are often
computed using the so-called National Meteorological Center (NMC) method that was first
described by [58]. This method estimates B using differences between forecasts of different
lengths valid at the same time. For example, forecast errors could be assessed by examining
differences between 24 and 48 hour forecasts from model integrations initialized one day apart.D
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NONLINEAR CONDITIONAL MODEL BIAS ESTIMATION 301

These difference fields are usually obtained from a large collection of model forecasts covering
time periods of a month or longer. As such, the NMC method generates a climatological
estimate of B that may not properly represent the true model errors on any given day due to
changes in the atmospheric conditions. Because of this, some operational weather forecasting
centers have developed new methods to generate B. One approach is to use an ensemble of
data assimilations (EDA) where an ensemble of reduced-resolution data assimilation cycles is
performed in which the observations and model are perturbed in some manner. A theoretical
analysis by [35] has shown that if the perturbations are drawn from the true distributions
of observation and model errors, then the spread in the resultant EDA analyses about the
unperturbed control analysis will be representative of the background error. This approach
has the advantage of introducing some flow dependency to the B matrix, thereby allowing it
to better capture the errors of the day ([13, 35, 61]).

EDA systems such as the ensemble Kalman filter (EnKF) (e.g., [20, 18, 28, 21, 29, 4, 80,
72, 30, 32]) on the other hand recompute B for each assimilation step using an estimator
based on output from an ensemble x(b,\ell ) of forecasts valid at the current analysis time, where
\ell = 1, . . . , L, and L is the size of the ensemble. For most applications, the standard stochastic
estimator

(1.3) B :=
1

L - 1

L\sum 
\ell =1

(x(b,\ell )  - \=x(b))(x(b,\ell )  - \=x(b))T , \=x(b) :=
1

L

L\sum 
\ell =1

x(b,\ell ),

is used to compute the first guess ensemble mean \=x(b) and the background error covariance
matrix B. The stochastic estimator includes the uncertainty of the previous model analysis
propagated to the current analysis time. Because the forecast model is an approximation of
the real dynamical system, the distribution of the first guess ensemble could be suboptimal
due to the impact of systematic errors on the ensemble mean and ensemble spread. Similar
problems can arise when using the NMC method because in situations where the model error
varies with time, the forecast differences used to compute the covariances in B will include
the dynamically varying model bias. This could result in incorrect statistical relationships be-
tween the model variables. Both of these outcomes are not desirable because the inclusion of
systematic model errors when generating B can degrade the accuracy of the posterior analysis
x(a) obtained during the data assimilation step.

Various studies have focused on improving methods to estimate the background error
covariances used by modern data assimilation systems; however, accounting for model error
is challenging because of the large size of geophysical models [16]. One approach is to add
perturbations to a subset of the model variables, such as temperature, at the initialization
time, whereas another technique adds random perturbations to specific parameters in the
parameterization schemes used to simulate subgrid scale processes during each model time
step. The goal with both approaches is to increase the range of possible forecast solutions to
realistically address the impact of systematic model errors and the underlying uncertainties in
the parameterization schemes. Substantial research has been directed toward development of
these methods, which have the potential to greatly improve the performance of assimilation
systems [14, 79, 63, 25, 71, 11]. As a corollary to the above approaches, other studies have
shown that the detrimental impact of systematic model errors in EDA systems can be reduced
by using different parameterization schemes in each ensemble member [49, 22].D
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Another approach widely used in EDA systems to increase the ensemble spread is to apply
additive or multiplicative covariance inflation during the assimilation step. Some amount of
covariance inflation is often necessary because the rank deficiency of the system can lead to an
underestimation of the ensemble variance and because systematic model errors can cause the
model background x(b) to deviate greatly from reality. This in turn can lead to so-called filter
divergence where the model analyses can no longer be pulled toward the observations during
the data assimilation step [33]. In the case of additive covariance inflation, the impact of
the unknown model error is treated by drawing random perturbations from some distribution
and then adding them to either the model background x(b) or to the model analysis x(a).
With multiplicative covariance inflation, the ensemble spread for selected model variables is
multiplied by a real number to achieve the desired ensemble spread. Both methods have some
adaptivity because observation-minus-background (OMB) statistics are used to estimate how
much inflation is necessary. There is a very active community working on these approaches;
see, for example, [26, 5, 6, 31, 44, 43, 51, 81].

Model error has often been ignored in variational data assimilation systems because it is
difficult to quantify and has been viewed as having a minor impact compared to random errors
in the initial conditions and systematic errors in the observations [15]. Unlike ensemble assim-
ilation systems where the background error covariance matrix B is dynamically estimated for
each assimilation cycle using the ensemble output, additional statistical or dynamical assump-
tions are generally necessary when creating these estimates for variational systems. Studies
by [17, 84, 77, 73, 74] have shown that treating the model error as part of the state estimation
problem substantially improves the accuracy of the state estimates. Theoretical model error
frameworks were developed by [24, 54, 55, 56] based on the behavior of model errors in deter-
ministic models. These frameworks were then used by [15] to derive evolution equations for the
model error covariances and correlations that address errors due to parameterization schemes.

The desire to properly account for model error also underpins recent efforts to move
from ``strong-constraint"" 4-dimensional variational systems that assume the forecast model
is perfect to ``weak-constraint"" systems that include some estimate of the model error. This
concept was introduced 50 years ago by [69], however, it was not implemented in a full physics
forecast model for several decades because of the lack of information with which to define and
solve the problem and the computational burden associated with inverting the model error
covariance matrix along with the other matrices already included in the strong-constraint
formulation [53]. The basic premise behind the weak-constraint approach is that it is sufficient
to only approximately satisfy the model equations because they are not exact anyway due to
incomplete knowledge of the physical processes being modeled or the need to simplify the
governing equations due to computational limitations. Despite the challenges associated with
implementing weak-constraint systems, their use has generally led to more accurate model
analyses and forecasts when compared to strong-constraint systems due to the higher number
of degrees of freedom. As such, they are becoming more widely used in variational data
assimilation systems [74, 45, 53]. A recent study by [34] has also shown that model errors can
be accounted for in strong-constraint systems by allowing errors in both the model and the
observations when considering the statistics of the innovation vector. They demonstrate that
a more accurate estimate of the model state can be obtained when the combined model and
observation error statistics are used instead of the standard observation-only error statistics.D
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In this paper, we seek to extend our understanding of how to identify and treat model
bias in modern data assimilation systems. Key tasks of this research include (1) studying the
behavior of model errors in a nonlinear dynamical system, (2) developing nonlinear conditional
model bias estimators using the observations and the model first guess and analysis states,
and (3) employing these estimators during variational data assimilation experiments to assess
their ability to improve the performance of the system. Numerical experiments are performed
using the Lorenz-63 (L63) model [47], which is a well-known and popular study object within
the data assimilation and dynamical systems communities.

We begin by carrying out an asymptotic analysis of the L63 model when one of its param-
eters, in this case, the normalized Rayleigh number \rho , varies with time. In the L63 model,
the \rho parameter is usually set to a constant value; however, we allow it to vary with time
in order to introduce a model bias. This is accomplished through use of a coupled version
of the L63 model where a background or ``hidden"" system S2 is used to control how the
\rho = \rho (t) parameter changes with time in the ``primary"" system S1 that is used to represent
the truth. Though we chose to focus on variations in the \rho parameter during this study, the
approach works in the same way for the other L63 model parameters. We then develop a
nonlinear model bias estimator method based on the initial ideas discussed in [57] where the
bias estimator is formulated as a polynomial expansion of the model variables and the coeffi-
cients of this expansion are determined by solving a least squares minimization problem. The
ability of this method to dynamically estimate the model error contribution to the matrix B
and to improve the resultant OMB statistics is demonstrated by carrying out an experiment
where B is represented as the sum of static and dynamically varying components. Finally, we
demonstrate the feasibility and potential utility of the asymptotic expansion and nonlinear
bias estimation method by running numerical experiments using a 3-dimensional variational
(3DVAR) data assimilation system and a coupled version of the L63 model.

A description of the coupled L63 modeling system and derivation of the model asymptotics
are provided in section 2. The utility of dynamically estimating the model background error
covariance matrix B is discussed in section 3, along with development of nonlinear conditional
model error estimators. We then perform various numerical experiments using the L63 model
in section 4, first demonstrating the validity of the asymptotic expansion of the nonlinear
model error estimators in section 4.1. This is followed by a study of the optimality of the
fixed and dynamic components of the B matrix used during data assimilation and then a
study of the estimation of the nonlinear model error dynamics based on the first guess minus
analysis statistics. Results from these sections will demonstrate the feasibility of using methods
developed during this study to estimate nonlinear model errors without any prior knowledge or
assumptions regarding the form of the model dynamics. Conclusions are presented in section 5.

2. Estimating system bias.

2.1. Coupled L63 model. We want to use a relatively simple atmospheric model to assess
the behavior of nonlinear model biases and to develop ways to take into account those biases
in a way that is complex enough to represent nonlinear atmospheric processes while being
simple enough to provide insight into the nonlinear behavior of the system. To accomplish
this goal, we have chosen to employ the L63 model [47], which is widely used within the
atmospheric data assimilation community (see, for example, [19, 76, 78, 59, 2, 15, 41, 27, 42,D
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67, 82, 83, 48, 23]) because it is less complex than a full physics numerical weather prediction
model while maintaining strong nonlinearity representative of many atmospheric processes.
The L63 model consists of a set of three coupled ordinary differential equations that provide
a simplified description of dry convection. The model equations can be written as

(2.1) \tau 
dx1
dt

= \sigma (x2  - x1),

(2.2) \tau 
dx2
dt

= \rho x1  - x2  - x1x3,

(2.3) \tau 
dx3
dt

= x1x2  - \beta x3,

where x1(t), x2(t), and x3(t) are the dependent variables, \tau is a temporal scaling factor, and
\sigma , \rho , and \beta are the parameters of the model. For some parameter values, the system shows
chaotic behavior because very small perturbations in the initial conditions can grow very
rapidly into completely different solutions. The model was designed to simulate atmospheric
dry cellular convection following the work of [68]. The model simulates the evolution of a forced
dissipative hydrodynamic system that possesses nonperiodic and unstable solutions. The x1
variable measures the intensity of convective motion, the x2 variable measures the temperature
difference between the ascending and descending currents, and the x3 variable measures the
distortion of the vertical temperature profile from linearity. The model parameters represent
the Prandtl number (\sigma ), a normalized Rayleigh number (\rho ), and a nondimensional wave
number (\beta ). The critical Rayleigh number for the system is 24.74; however, \rho is typically set
to the slightly supercritical value of 28 following the work of [47]. The \sigma and \beta parameters
are set to 10 and 8/3, respectively. Together, the values for these three parameters sustain
the chaotic nature of the model.

In this study, we investigate the sensitivity of the L63 model to perturbations in the \rho 
parameter and identify suitable predictors that can be used to estimate conditional biases
in the state variables (x1, x2, x3) due to these perturbations. We first generate a nature or
``truth"" simulation that tracks the evolution of the state variables over a certain period of
time. The truth simulation is generated using a particular model for the behavior of \rho over
time. Here, we choose to use a coupled version of the L63 model where each system (S1, S2)
is run at a different speed and one-way coupling occurs through the influence of S2 on the
\rho parameter in S1, as is illustrated in Figure 1. After some experimentation, we decided to
set \tau S1 = 1 and \tau S2 = 5, which means that the hidden system S2 is integrated forward at
one-fifth the speed of S1.

The state location xS2 obtained from the hidden system is then scaled by a factor of
c\rho = 0.2, with the scaled value subsequently used to perturb \rho 0, such that

(2.4) \rho S1 = \rho 0 + x1S2(t) \cdot c\rho , t \in \BbbR ,

where \rho 0 = \rho S2 = 28, x1S2(t) \cdot c\rho is the \delta \rho perturbation obtained from S2, and \rho S1 is the
resultant value used when integrating S1 during the next time step. The scaling of x1S2
by cp = 0.2 means that \delta \rho varies between approximately  - 4 and +4, which is reasonableD
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System S1: fast Lorenz 63 model
(x1S1, x2S1, x3S1) with (\tau S1, \rho S1, \sigma S1, \beta S1)

\rho true = \rho S1 = \rho 0 + x1S2(t) \ast c\rho 

System S2: slow Lorenz 63 model
(x1S2, x2S2, x3S2) with (\tau S2, \rho S2, \sigma S2, \beta S2)

Figure 1. Coupled version of the L63 model, with the fast system S1 dependent on the slow system S2. S1
is used to generate the nature simulation.

because this represents departures of up to 15\% from \rho 0. The slowly varying autocorrelated \delta \rho 
perturbations could be thought of as representing changes in the original L63 model equations
due to the influence of the seasonal cycle on daily forecasts or the diurnal cycle on hourly
forecasts. For example, parameters in cloud microphysics parameterization schemes are often
assigned constant values even though some of them are known to vary, sometimes by up to
several orders of magnitude, depending upon the stage of the cloud's life cycle. A similar
approach was used by [83], where they attached an ocean slab model to the L63 model
equations in order to represent the interaction between the slowly varying ocean and the
rapidly changing atmosphere. Note that the parameters \sigma S1 and \sigma S2 were set to 10, and \beta S1
and \beta S2 were set to 8/3, as is typically done in the L63 model.

After generating the truth simulation using S1 in which the \rho S1 parameter varied with
time, observations were generated for each state variable (x1S1, x2S1, x3S1) at each model
time step and then used in cycled data assimilation experiments employing a 3DVAR data
assimilation system. The truth simulation and data assimilation experiments were started
with the same initial conditions (x1S1, x2S1, x3S1) = (2, 3, 11); however, in the absence of
data assimilation, they will follow different trajectories thereafter due to differences in the \rho 
parameter. The L63 model is integrated to the next time step using a fourth order Runge--
Kutta time integration scheme. Various tests were performed using different observation
error magnitudes and time step lengths, as will be shown in section 4. Figure 2 shows the
trajectory of the model state variables and evolution of the \rho S1 parameter during the truth
simulation.

The data assimilation experiments employed the typical L63 model equations, including
\rho = 28; however, for these experiments, the equations represent an imperfect model because
we know that \rho is not constant during the truth simulation. Let us assume that we know that
\rho varies with time, but that we only know its mean value (\=\rho = 28) and not how it changes
with time. The instantaneous difference between \rho in the data assimilation experiment and
\rho in the truth simulation represents a model error; however, these differences correspond to
conditional model biases when assessed over long time periods because \delta \rho is a function of S2.
Because errors in \rho directly impact the evolution of all three of the state variables in nonlinear
ways, the instantaneous errors will potentially result in biases in the model state variables that
are a nonlinear function of one or more predictors when assessed over long time periods. ForD
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Figure 2. (a) Butterfly diagram showing the model trajectory during 600 time steps of the truth simulation
using the coupled L63 system described in section 2.1. (b) Time series showing the evolution of the \rho S1 parameter
during the truth simulation, where \rho S1 for each model time step is set using (2.4).

example, a numerical weather prediction model may have the tendency to produce convection
that is too strong during the day or too weak during the night, both of which will impact the
sign and magnitude of the model biases in nonlinear ways during different parts of the diurnal
cycle.

2.2. Asymptotics for model error of the L63 system. Here, we first evaluate how the
model variables (x1, x2, x3) change in dependence on the model parameter \rho . In particular,
we aim to develop an asymptotic estimator for the error in (x1, x2, x3) depending on \rho and
time t. The asymptotic analysis is performed using a Taylor series expansion with an explicit
integral form of the error term. This approach is necessary because some of the constants
will be zero in the higher order terms; therefore, we need to take sufficiently many terms into
account to get the correct higher order terms.

Theorem 2.1. The leading terms of the asymptotic analysis of the L63 system with respect
to variations of \rho = \rho 0 + \delta \rho , where we use t = t0 + \delta t and O(s) denotes a function bounded
by c| s| with some constant c in a neighborhood of s = 0, are given by

x1(\rho , t) - x1(\rho 0, t) =
1

2
\sigma x1(\rho 0, t0) \cdot \delta \rho \cdot (\delta t)2 +O(\delta \rho \cdot \delta t3),(2.5)

x2(\rho , t) - x2(\rho 0, t) = x1(\rho 0, t0) \cdot \delta \rho \cdot \delta t+O(\delta \rho \cdot \delta t2),(2.6)

x3(\rho , t) - x3(\rho 0, t) = x21(\rho 0, t0) \cdot \delta \rho \cdot (\delta t)2 +O(\delta \rho \cdot \delta t3).(2.7)

Proof. We work out the proof in four steps, starting with some general setup and then
considering the variables x1, x2, and x3 in three steps.

Step 1. We begin by differentiating (2.1)--(2.3) with respect to \rho using the product rule,
where

x\prime 1 =
dx1
d\rho 

, x\prime 2 =
dx2
d\rho 

, x\prime 3 =
dx3
d\rho 

are the derivatives of the state variables with respect to \rho . Because the differentiation withD
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respect to t and to \rho can be exchanged in the case of continuously differentiable functions, we
obtain

dx\prime 1
dt

= \sigma x\prime 2  - \sigma x\prime 1,(2.8)

dx\prime 2
dt

= x\prime 1\rho + x1  - x\prime 2  - x\prime 1x3  - x1x
\prime 
3,(2.9)

dx\prime 3
dt

= x\prime 1x2 + x1x
\prime 
2  - \beta x\prime 3.(2.10)

Note that all of the variables depend on time t and the parameter \rho = \rho (t), and that the
\tau terms in (2.1)--(2.3) have been set to 1 to represent the original L63 model equations as
described in [47].

To assess the sensitivity of the L63 model equations to variations in \rho at times t close to
some initial time, t0, we begin by looking at the scenario where the initial values for (x1, x2, x3)
are prescribed and identical for all \rho under consideration, such that at t = t0,

x1(\rho , t0) = x1,0,(2.11)

x2(\rho , t0) = x2,0,(2.12)

x3(\rho , t0) = x3,0.(2.13)

This is an initial value problem where the derivatives of each equation with respect to \rho ,
(x\prime 1, x

\prime 
2, x

\prime 
3), are equal to zero at t = t0, i.e.,

(2.14) x\prime 1(\rho , t0) = 0, x\prime 2(\rho , t0) = 0, x\prime 3(\rho , t0) = 0.

After inserting these initial values into (2.8)--(2.10), we obtain

dx\prime 1
dt

(\rho , t0) = 0,(2.15)

dx\prime 2
dt

(\rho , t0) = x1(\rho , t0),(2.16)

dx\prime 3
dt

(\rho , t0) = 0.(2.17)

Step 2. Equation (2.9) reveals that the time rate of change of the sensitivity of x2 with
respect to \rho (i.e., x\prime 2) is a function of its location along the x1-axis. We now carry out
an asymptotic analysis by an expansion of the functions with respect to variations in time
t = t0 + \delta t and the parameter \rho = \rho 0 + \delta \rho . To assess the sensitivity of x2 with respect toD
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small variations in \rho , we employ (2.14) and (2.16) as follows. We estimate

x2(\rho , t) - x2(\rho 0, t) =

\int \rho 

\rho 0

x\prime 2(\~\rho , t) d\~\rho 

=

\int \rho 

\rho 0

\Bigl( 
x\prime 2(\~\rho , t0)\underbrace{}  \underbrace{}  

=0

+

\int t

t0

dx\prime 2(\~\rho , \~t)

d\~t
d\~t
\Bigr) 
d\~\rho 

=

\int \rho 

\rho 0

\int t

t0

dx\prime 2(\~\rho , \~t)

d\~t
d\~t d\~\rho 

=

\int \rho 

\rho 0

\int t

t0

\Bigl( dx\prime 2(\~\rho , \~t)
d\~t

| t0\underbrace{}  \underbrace{}  
=x1(\~\rho ,t0)

+

\int \~t

t0

d2x\prime 2(\~\rho , s)

ds2
ds
\Bigr) 
d\~t d\~\rho .(2.18)

We estimate both terms in (2.18) separately. For the first term T1, by (2.11) we obtain

T1 =

\int \rho 

\rho 0

\int t

t0

x1(\~\rho , t0) d\~t d\~\rho 

=

\int \rho 

\rho 0

\int t

t0

x1(\rho 0, t0) d\~t d\~\rho 

= x1(\rho 0, t0) \cdot \delta \rho \cdot \delta t,(2.19)

where x1(\~\rho , t0) is replaced by x1(\rho 0, t0) because the derivative of x1 with respect to \rho is zero
at t0 following (2.14). The \delta \rho and \delta t terms are obtained by solving the definite integrals,
with \delta \rho denoting the interval [\rho 0, \rho ] and \delta t denoting the interval [t0, t]. The second term is
estimated in a similar way by

T2 =

\int \rho 

\rho 0

\int t

t0

\int \~t

t0

d2x\prime 2(\~\rho , s)

ds2
ds d\~t d\~\rho 

= O(\delta \rho \cdot \delta t2).(2.20)

Combining the estimates (2.19) and (2.20) then leads to

x2(\rho , t) - x2(\rho 0, t) = x1(\rho 0, t0) \cdot \delta \rho \cdot \delta t+O(\delta \rho \cdot \delta t2).(2.21)

This proves (2.6) in Theorem 2.1.
Step 3. To obtain an estimate for x1(\rho , t), we proceed as in (2.18) and, for a twice

continuously differentiable function x1(\rho , t), estimate

x1(\rho , t) = x1(\rho 0, t) +

\int \rho 

\rho 0

x\prime 1(\~\rho , t) d\~\rho (2.22)

= x1(\rho 0, t) +

\int \rho 

\rho 0

\Bigl( 
x\prime 1(\rho 0, t) +

\int \~\rho 

\rho 0

x\prime \prime 1(\~\~\rho , t) d\~\~\rho 
\Bigr) 
d\~\rho .(2.23)D

ow
nl

oa
de

d 
02

/2
2/

21
 to

 1
28

.1
04

.4
6.

19
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONLINEAR CONDITIONAL MODEL BIAS ESTIMATION 309

We note that by taking the derivative of (2.8) with respect to time and inserting (2.16) into
the resultant equation, we obtain

d2x\prime 1(\rho , t0)

dt2
= \sigma 

dx\prime 2(\rho , t0)

dt
 - \sigma 

dx\prime 1(\rho , t0)

dt
= \sigma x1(\rho , t0)(2.24)

and thus, the derivative of (2.24) with respect to time gives

d2x\prime \prime 1(\rho , t0)

dt2
= \sigma x\prime 1(\rho , t0) = 0.(2.25)

Performing a third order expansion around t0 then leads to an estimate for x\prime \prime 1(\rho , t):

x\prime \prime 1(\rho , t) = O(\delta t3).(2.26)

After inserting (2.26) into (2.23) and then solving the definite integrals, we obtain

x1(\rho , t) = x1(\rho 0, t) + x\prime 1(\rho 0, t) \cdot \delta \rho +O(\delta \rho 2 \cdot \delta t3).(2.27)

To estimate x\prime 1(\rho , t), with the help of (2.14) and (2.15), we derive

x\prime 1(\rho , t) = x\prime 1(\rho , t0)\underbrace{}  \underbrace{}  
=0

+

\int t

t0

dx\prime 1(\rho , \~t)

d\~t
d\~t

=

\int t

t0

\Bigl( dx\prime 1(\rho , \~t)
d\~t

\bigm| \bigm| \bigm| 
t0\underbrace{}  \underbrace{}  

=0

+

\int \~t

t0

d2x\prime 1(\rho , s)

ds2
ds
\Bigr) 
d\~t.(2.28)

The second derivative of x\prime 1(\rho , t) with respect to time t can be estimated by differentiating
(2.8) with respect to t, and using (2.9) and (2.16), which yields

d2x\prime 1(\rho , t)

dt2
=

d

dt

\Bigl( dx\prime 1(\rho , t)
dt

\Bigr) 
=

d

dt

\Bigl( 
\sigma x\prime 2(\rho , t) - \sigma x\prime 1(\rho , t)

\Bigr) 
= \sigma 

dx\prime 2
dt

(\rho , t) - \sigma 
dx\prime 1
dt

(\rho , t)

= \sigma 
dx\prime 2
dt

(\rho , t0) - \sigma 
dx\prime 1
dt

(\rho , t0)\underbrace{}  \underbrace{}  
=0

+ O(\delta t)

= \sigma x1(\rho , t0) + O(\delta t).(2.29)D
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We insert this into (2.28) to conclude with

x\prime 1(\rho , t) = \sigma x1(\rho , t0) \cdot 
\int t

t0

\int \~t

t0

1 ds d\~t + O(\delta t3)

= \sigma x1(\rho , t0) \cdot 
\int t

t0

(\~t - t0) d\~t + O(\delta t3)

= \sigma x1(\rho , t0) \cdot 
1

2
(\delta t)2 + O(\delta t3).

= \sigma x1(\rho 0, t0) \cdot 
1

2
(\delta t)2 + O(\delta t3).(2.30)

Finally, we insert (2.30) into (2.27) with the help of (2.14) to obtain (2.5) in Theorem 2.1.
Step 4. In our final step, we estimate the behavior of x3(\rho , t). We note that similarly to

x\prime 1(\rho , t) given by (2.30) as in (2.18) we obtain

x\prime 2(\rho , t) = x\prime 2(\rho , t0)\underbrace{}  \underbrace{}  
=0

+

\int t

t0

dx\prime 2(\rho , \~t)

d\~t
d\~t

= x1(\rho , t0) \cdot \delta t+O(\delta t2).(2.31)

Also, based on (2.17) we calculate

x\prime 3(\rho , t) = x\prime 3(\rho , t0)\underbrace{}  \underbrace{}  
=0

+

\int t

t0

dx\prime 3(\rho , \~t)

d\~t
d\~t

=

\int t

t0

\Bigl( dx\prime 3(\rho , \~t)
d\~t

| t0\underbrace{}  \underbrace{}  
=0

+

\int \~t

t0

d2x\prime 3(\rho , s)

ds2
ds
\Bigr) 
d\~t

= O(\delta t2).(2.32)

Now, we follow the above lines to estimate

x3(\rho , t) - x3(\rho 0, t) =

\int \rho 

\rho 0

x\prime 3(\~\rho , t) d\~\rho 

=

\int \rho 

\rho 0

\Bigl( 
x\prime 3(\~\rho , t0)\underbrace{}  \underbrace{}  

=0

+

\int t

t0

dx\prime 3(\~\rho , \~t)

d\~t
d\~t
\Bigr) 
d\~\rho .(2.33)

Here, to obtain a sharper estimate than (2.32) and to evaluate the constant explicitly, we
insert (2.10) into (2.33), which yields

x3(\rho , t) - x3(\rho 0, t) =

\int \rho 

\rho 0

\int t

t0

\Bigl( 
x\prime 1(\~\rho , \~t)x2(\~\rho , \~t) + x1(\~\rho , \~t)x

\prime 
2(\~\rho , \~t) - \beta x\prime 3(\~\rho , \~t)

\Bigr) 
d\~t d\~\rho .(2.34)

Because (x\prime 1, x
\prime 
2, x

\prime 
3) = 0 at t0, we need to estimate the leading order term by its temporal

change at t0 as given in (2.15)--(2.17). We insert the asymptotics for x\prime 1(\rho , t), x
\prime 
2(\rho , t), andD
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x\prime 3(\rho , t) given by (2.30), (2.31), and (2.32) into (2.34) to estimate

x3(\rho , t) - x3(\rho 0, t) =

\int \rho 

\rho 0

\int t

t0

\Bigl( 
x21(\rho , t0)\delta t+O(\delta t2)

\Bigr) 
d\~t d\~\rho 

= x21(\rho , t0) \cdot \delta t2 \cdot \delta \rho +O(\delta \rho \cdot \delta t3),(2.35)

where x21(\rho , t0)\delta t is the leading order term, and all other terms have been absorbed into the
order O(\delta t2) term. Thus, we have derived (2.7) in Theorem 2.1 and the proof is complete.

Remark. In Step 3 of the proof, we could have performed the estimate slightly differently.
Using an approach similar to Steps 2 and 4, we obtain

x1(\rho , t) - x1(\rho 0, t) =

\int \rho 

\rho 0

x\prime 1(\~\rho , t) d\~\rho 

=

\int \rho 

\rho 0

\Bigl( 
x\prime 1(\~\rho , t0)\underbrace{}  \underbrace{}  

=0

+

\int t

t0

dx\prime 1(\~\rho , \~t)

d\~t
d\~t
\Bigr) 
d\~\rho 

=

\int \rho 

\rho 0

\int t

t0

\Bigl( dx\prime 1(\~\rho , \~t)
d\~t

| t0\underbrace{}  \underbrace{}  
=0

+

\int \~t

t0

d2x\prime 1(\~\rho , s)

ds
ds
\Bigr) 
d\~t d\~\rho (2.36)

and then proceed as in (2.29) and (2.30) to obtain (2.5) as above.

3. Improving data assimilation using bias estimators. Being able to accurately estimate
errors in the model background x(b) is important for any practical implementation of a data
assimilation algorithm. In this section, we first discuss the model error and model bias ter-
minology and then study a simple Bayesian example to illustrate the importance of correctly
estimating the model background error covariance matrix B. We then develop a generalized
model error estimation method that is subsequently applied to the L63 model discussed in
section 2.2 to demonstrate the feasibility of dynamically estimating the model errors using
nonlinear estimators based on the model variables. In section 3.4, we show how the bias
correction coefficient vector obtained through solving a least squares minimization problem
can be used to estimate the unknown parameter using the analysis increments from the data
assimilation system.

3.1. Nonlinear model bias and error terminology. In this section, we sharpen the termi-
nology for model error, model bias, and conditional model bias, and compare the concepts.
For a particular location, the model error is the instantaneous difference between the back-
ground state x(b) and the true state x(true) of the system. Model bias is then defined as the
x(b)  - x(true) differences averaged over some period of time or region:

(3.1) bb := \BbbE \{ x(b)  - x(true)\} ,

where the bias is computed separately for different model quantities such as temperature,
humidity, or cloud water path. If we then assume that the analysis state x(a) obtained during
each assimilation cycle is the best estimate of the true system state, we can use the resultantD
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x(b) - x(a) differences as an approximation to the true model bias, with appropriate summation
over particular regions or periods of time:

(3.2) bb - a := \BbbE \{ x(b)  - x(a)\} .

The conditional model bias can then be defined as the mean deviation of the dependent
variable from the true system state when the bias is a function of some other parameter or
variable p referred to as the predictor. The conditional model bias can be estimated using

(3.3) bb - a(p) = \BbbE \{ x(b)(p) - x(a)(p)\} .

For this study, we are interested in the situation where the bias predictor is a component of
the model state.

If bb - a(p) varies in a nonlinear manner, then this behavior represents a nonlinear condi-
tional bias and we will need to use nonlinear bias correction methods to remove the bias from
the model variables. In this case, let us assume that the function bb - a(p) can be written as a
superposition

(3.4) bb - a(p) =
N\sum 
\xi =1

\psi \xi (p)\alpha \xi 

of nonlinear basis functions \psi \xi with N unknown coefficients \alpha \xi . The solution of (3.4) can be
understood as a generalized bias estimation equation because it structures the set of differences
according to the predictor p and searches for a functional estimation of its behavior. We can
then employ nonlinear bias correction methods such as that described in [57] to determine the
bias correction coefficients based on a set of bb - a(p) differences. To do this effectively, we will
need to obtain a large sample of differences covering a diverse range of system states.

It should also be noted that the estimation of the coefficients \alpha \xi in (3.4) using x(b)  - x(a)

differences accumulated over multiple assimilation cycles subsequently leads to the capability
to predict the instantaneous model error when those coefficients are applied to the current
state during an individual assimilation cycle. This demonstrates that conditional model bias
estimation and model error estimation are strongly related and show significant overlap. As
discussed in section 3.3, the forecast error in general can be represented as a combination of
state estimation error associated with the propagation of errors in the prior analysis to the
current time and a second component that represents the true model error arising from the use
of an imperfect model. The instantaneous model errors can therefore be viewed as conditional
model biases because their characteristics likely depend on the state of the system.

The conditional model error estimators can be used for various purposes, including (a)
model bias correction where the model background is corrected prior to its use in the data
assimilation system, (b) model uncertainty estimation where the model error estimates are
used to improve the background error covariance matrix B, and (c) model development efforts
where the error statistics are used to improve the accuracy of the numerical model. In this
paper, we focus on application (b) because we seek to employ knowledge regarding the behavior
of the model errors to improve estimates of the model background uncertainty.D
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3.2. Study of a simple Bayesian example. A Bayesian data assimilation step employs
the Bayes formula

(3.5) p(a)(x) = cp(b)(x)p(y| x), x \in \BbbR n,

for estimating the posterior probability distribution p(a)(x) based on the prior probability
distribution p(b)(x) and the observation error distribution p(y| x). The prior distribution is
usually assumed to be Gaussian in data assimilation systems, such that

(3.6) p(b)(x) := \~ce - 
1
2
(x - x(b))TB - 1(x - x(b)), x \in \BbbR n,

where \~c is a constant and the background error covariance matrix B is estimated climatolog-
ically in classical variational assimilation systems or based on an ensemble of model states in
an EnKF.

Here, we discuss and demonstrate the role of the correct estimate of B on the quality of
the analysis mean and analysis distribution. For an EnKF system, the ensemble spread is used
to estimate B; however, this estimate only contains part of the error when a numerical model
is used because it does not include the difference between the model and the true state of the
system. Variational data assimilation systems, such as 3DVAR, are also unable to consider
these differences because B is chosen as fixed for a particular time period due to the way in
which it is constructed. This means that the model bias and how it changes with time is not
taken into account by either assimilation methodology, which can substantially degrade their
performance. For the remainder of this work, we restrict our attention to 3DVAR because that
is what we used during the numerical experiments discussed in section 4. We note however
that similar arguments apply for ensemble and hybrid data assimilation systems.

As a starting point, we derive the error representation explicitly for a one-dimensional
Gaussian case with observation operator H = I. In one dimension, the best estimate of the
current state (or analysis) during an assimilation step is given by

(3.7) x(a) = x(b) +
q

r + q
(y  - x(b)),

where y is the observation, r is the observation error uncertainty, x(b) is the first guess or
background, and q represents the estimated variance of the error in the variable x. Now, let
us assume that q0 is the true background error variance that includes model error, such that

the correct analysis x
(a)
0 is represented as

(3.8) x
(a)
0 = x(b) +

q0
r + q0

(y  - x(b)).

The error between the analysis based on some uncertainty or variance q and the correct
uncertainty or variance q0 is then given by

| x(a)  - x
(a)
0 | =

\bigm| \bigm| \bigm| q

r + q
 - q0
r + q0

\bigm| \bigm| \bigm| \cdot | y  - x(b)| 

=
\bigm| \bigm| \bigm| r(q  - q0)

(r + q) \cdot (r + q0)

\bigm| \bigm| \bigm| \cdot | y  - x(b)| .(3.9)D
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This result shows that the analysis error for each assimilation cycle is proportional to the
observation departure | y - x(b)| and to the accuracy of the background error variance estimate
| q - q0| . Thus, development of new methods that can be used to generate a more accurate esti-
mate of q will directly improve the quality of the analysis and performance of the assimilation
system.

3.3. Dynamical error and bias estimators. I. In this section, we develop a generalized
method to diagnose model biases using the model variables. First, let us assume that the

forecast error x
(b)
k  - x

(true)
k at a given time k can be represented as the difference between the

dynamical states that are obtained when the prior analysis x
(a)
k - 1 is propagated by an imperfect

model M and the true prior state x
(true)
k - 1 is propagated by the perfect model M true:

(3.10) x
(b)
k  - x

(true)
k =M(x

(a)
k - 1) - M true(xtruek - 1).

The forecast error can then be decomposed into one part that is due to the propagation of

the uncertainty error associated with the prior analysis state, M(x
(a)
k - 1)  - M(xtruek - 1), and a

second part that represents the true model error, E = M(xtruek - 1)  - M true(xtruek - 1), during the
propagation from the prior time:

(3.11) x
(b)
k  - x

(true)
k =

\Bigl( 
M(x

(a)
k - 1) - M(xtruek - 1)

\Bigr) 
+
\Bigl( 
M(xtruek - 1) - M true(xtruek - 1)

\Bigr) 
.

Taking the variance on both sides of (3.11), and using

(3.12) qstate := Var(M(x
(a)
k - 1) - M(xtruek - 1))

and

(3.13) qmodel = Var(M(xtruek - 1) - M true(xtruek - 1)),

we obtain the total variance of the forecast error:

qtotal := Var
\Bigl( 
x
(b)
k  - x

(true)
k

\Bigr) 
(3.14)

= qstate + qmodel + 2 \cdot Cov
\Bigl( 
M(x

(a)
k - 1) - M(xtruek - 1), M(xtruek - 1) - M true(xtruek - 1)

\Bigr) 
.(3.15)

It is a standard approach in data assimilation to assume that the initial condition uncertainty
and true model error are uncorrelated [50], which means that the covariance term on the
right-hand side of (3.15) will equal zero and therefore the total variance of the forecast error
can be given by

(3.16) qtotal = qstate + qmodel,

where qstate reflects the influence of the variance of the estimate of the prior analysis prop-
agated to the current analysis time using the model equations, and qmodel is the variance in
the model error E due to the use of an imperfect numerical model.D
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If some error estimators such as those shown in Theorem 2.1 are available, we can employ
(3.16) to estimate qtotal and then use it to improve the estimate of the analysis during a given
data assimilation step. Though we typically will not know qstate in a complex real-world
system, the development of a method that can be used to estimate the time-varying model
error E, and thus the variance qmodel, allows us to employ a lower fixed qstate in our approach.
This outcome is better than having to use a larger fixed qstate, which would otherwise be the
case, because that would lead to an overestimate of the total error variance. In general, it will
not be possible to carry out a full assessment of the model error due to incomplete knowledge
of the governing equations; however, Theorem 2.1 shows that the model error asymptotically
depends on the model variables, here, in particular, x1(\rho 0, t0). We can therefore employ
nonlinear model error estimators to diagnose such dependencies as follows.

II. We begin with a general example where we study the estimation of a error that depends
on the model state x and time t. We model the dependence on the states using basis functions
\varphi \ell (x), x \in \BbbR n, with \ell = 1, . . . , N\ell . The dependence on time is modeled using basis functions
\psi k, k = 1, . . . , Nk. Let us assume an ansatz of the form

(3.17) Ej(x, t) =

N\ell \sum 
\ell =1

Nk\sum 
k=1

\beta 
(j)
\ell ,k \varphi \ell (x)\psi k(t), x \in \BbbR n, t \in \BbbR ,

for the model error Ej . For illustrative purposes, the functions \psi k(t) could be represented
by sin(t) and cos(t) or by higher order trigonometric functions, whereas the functions \varphi \ell (x)
could be represented by the polynomial terms in Theorem 2.1. In this situation, the terms
would correspond to \varphi \ell (x) = x\xi 11 x

\xi 2
2 x

\xi 3
3 with \xi 1, \xi 2, \xi 3 counted by \ell = 1, . . . , N\ell , \psi 1(t) \equiv 1,

and \psi k(t) = 0 for k > 1. The coefficients \beta 
(j)
\ell ,k are the unknown coefficients linking the true

dynamics with the numerical model.
If we then observe the model error Ej(x, t) for a selection of states (x[\eta ], t[\eta ]), \eta =

1, . . . , N\eta , such that the linear independence of \varphi \ell on x[\eta ] is satisfied and a set t[\eta ] \in [0, T ]
such that the linear independence of \psi k is satisfied on this set, we know that the linear system

(3.18) Ej(x[\eta ]) =

N\ell \sum 
\ell =1

Nk\sum 
k=1

\beta 
(j)
\ell ,k \varphi \ell (x[\eta ]) \psi k(t[\eta ]),

\eta = 1, . . . , N\eta , has at most one solution for each j = 1, . . . , n. It may be overdetermined if
N\eta > N\ell \cdot Nk, and if the data are inconsistent would have no exact solution. In that case, we
can use least squares methods to calculate approximate solutions.

Let us also discuss the case of nonuniqueness for the calculation of the bias correction
coefficients. This situation can arise if two or more variables in the dynamical system under
consideration are correlated. For example, the x1 and x2 variables in the L63 system display
strong correlations in parts of the trajectory. Though the nonunique solution will not affect
the quality of the bias estimate for the time interval used to calculate the coefficients, it could
potentially lead to large errors if these coefficients are used outside of the training period.
Thus, we note that (1) for time-local estimation of model biases, the consequences of non-
uniqueness should be small, and (2) when the bias estimation tool is employed for longer timeD
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periods or for forecasting, it is important to have training periods that include conditions
representative of the full climatology of the dynamical model.

III. Here, we illustrate the utility of the generalized framework developed in the previous
section by applying it to the L63 model. First, let us assume that the true evolution of a
hypothetical dynamical system, represented by M true, depends on a particular parameter
that varies with time, but that limitations in our understanding of the physical system means
that it is assigned a constant value in the imperfect numerical model M used to represent the
true dynamical system. An example is the dependence of the parameter \rho in the coupled L63
model described in section 2.1, for which we have worked out the behavior of the model error
for small time intervals \delta t and small changes \delta \rho of \rho in section 2.2. For this particular system,
we observe the dependence of the error

(3.19) E(\delta \rho ) := \| x[\rho ] - x[\rho 0]\| 2

on the model state x = (x1, x2, x3) in Theorem 2.1, where \rho 0 is the true value at a given time
t0 in M true and \rho is the constant value used by the imperfect model M . This dependence
leads to the error estimate for the coupled L63 system:

(3.20) E(\delta \rho ) = x21(\rho 0, t0) \cdot \delta \rho 2 \cdot \delta t2 +O(\delta \rho 2 \cdot \delta t4),

where we added the squares of (2.5), (2.6), and (2.7), and then absorbed the higher order terms
into the O(\delta \rho 2 \cdot \delta t4) term. It can be seen in (3.20) that the leading error term is proportional
to x21, which means that the expected model error is largest when the system state is located
near the tips of the butterfly wings.

For this work, we use the analysis x(a) from each assimilation step as an approximation of
the true state x(true) because the true state is unknown in a real-world system. Note that this
approximation means that we will be unable to recover the full model error; however, because
x(a) will be pulled toward the observations, we will still be able to estimate part of the model
error under the assumption that the observations have small errors. The current model error
Ej of the component xj of the state x \in \BbbR n is approximated by

(3.21) Ej := | x(a)j  - x
(b)
j | ,

where j = 1, 2, 3 corresponds to the three variables in the L63 system. Let us assume that
knowledge of those parts of the system leading to model error at a specific time is such that
after some manipulation the model error can be rewritten in the form of a triple sum:

(3.22) Ej =

Ncoef\sum 
\xi 1,\xi 2,\xi 3=0

\alpha 
(j)
\xi 1,\xi 2,\xi 3

x\xi 11 x
\xi 2
2 x

\xi 3
3

with coefficients \alpha 
(j)
\xi 1,\xi 2,\xi 3

, \xi 1, \xi 2, \xi 3 = 0, . . . , Ncoef , where Ncoef is the total number of coeffi-
cients determined by the maximum order of the polynomial and the number of model variables
under consideration. For the L63 system containing three variables, Ncoef = 10 for a second
order polynomial. The model error can be expressed as in (3.22) if we know that a hidden
model exists but that we do not know the dependence of the true system because we cannotD
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derive the asymptotics of the model equations. The ansatz (3.22) assumes some polynomial
dependence of this relationship on the model variables x \in \BbbR n, as we have shown to be the
case for the coupled L63 system. We also assume that the model errors do not have a temporal
dependence such that the basis functions \psi k(t) in (3.17) can be set to 1.

Next, given a sequence of states x[\eta ] and their corresponding model errors Ej [\eta ] for \eta =
1, . . . , Nstates over some period of time, the above estimate leads to a linear system of equations:

(3.23) A\alpha (j) = q

for the Ncoef\times 1 coefficient vector \alpha (j) = (\alpha 
(j)
0,0,0, \alpha 

(j)
1,0,0, \alpha 

(j)
0,1,0, \alpha 

(j)
0,0,1, \alpha 

(j)
1,1,0, . . .)

T , where the sub-
indices correspond to the polynomial order for the predictors (x1, x2, x3) and the superscript
denotes the model variable xj . For example, the zeroth order coefficient for the x1 variable is

denoted as \alpha 
(1)
0,0,0, whereas the second order coefficient for the x1 \cdot x2 mixed term is denoted as

\alpha 
(1)
1,1,0. Then, A is an Nstates \times Ncoef matrix containing the Ncoef polynomial terms for each

observation:

(3.24) A = A(j) :=
\Bigl( 
x\xi 11 [\eta ]x\xi 22 [\eta ]x\xi 33 [\eta ]

\Bigr) 
\eta =1,...,Nstates; \xi 1,\xi 2,\xi 3=0,...,Ncoef

,

where \eta counts the rows and \xi 1, \xi 2, \xi 3 are subsequently ordered as column indices consistent
with the ordering of the components of \alpha , and

(3.25) q = q(j) :=
\Bigl( 
Ej [\eta ]

\Bigr) 
\eta =1,...,Nstates

is the Nstates \times 1 vector containing the model errors with row index \eta . Finally, we can find
the coefficients \alpha that best fit the system of equations by solving the quadratic minimization
problem, which leads to

(3.26) \alpha = (ATA) - 1AT q.

3.4. Parameter estimation. We begin this section by noting that the asymptotics for the
coupled L63 model shown in Theorem 2.1 reveal that the error, Ej , for each model variable
j = 1, 2, 3 is proportional to the size of the hidden parameter \delta \rho , which means that the
diagnosed conditional model bias should also be proportional to this parameter. In practice,
however, this is not an easy relationship to capture because their proportionality depends in a
very dynamic way on the current state of a modeling system characterized by chaotic behavior.
Thus, without explicit knowledge of the model variables and the relationship between them
and \delta \rho , it is impossible to draw conclusions about the size of \delta \rho .

However, based on the nonlinear model error estimators given by (2.5)--(2.7), we expect
that the coefficient vector \alpha in (3.22) will also be proportional to the size of the model bias.
This vector depends on the average size of the analysis increment x(a) - x(b) during a sequence
of data assimilation steps rather than on the model state. The explicit dependence, unknown
in general, is part of the estimation of the coefficients. Thus, we obtain a tool that can be
used to dynamically diagnose the average size of the unknown parameter \delta \rho by computingD
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the mean of the coefficient vector \alpha for each model variable xj = 1, 2, 3. This leads to the
following estimates for \delta \rho :

(3.27) \delta \rho 
(1)
diag(t) \approx c1\alpha 

(1)
1,0,0(t) or \delta \rho 

(2)
diag(t) \approx c2\alpha 

(2)
1,0,0(t) or \delta \rho 

(3)
diag(t) \approx c3\alpha 

(3)
2,0,0(t),

where c1 = 2/\sigma (\delta t)2, c2 = 1/\delta t, and c3 = 1/(\delta t)2, and we now need to carry out the bias
estimation over time intervals [t - \Delta t, t+\Delta t] with some \Delta t > 0 for which \delta \rho can be considered
a constant.

Many prior studies have performed parameter estimation within data assimilation systems,
primarily through use of an augmented state vector and based on statistical assumptions
about the distribution of the model parameter [7, 1, 40, 37, 12, 60, 66, 65, 70, 64, 39]. These
studies have generally shown that reasonably accurate parameter estimates can be obtained
if the data assimilation statistics are used to estimate a single model parameter. Unlike
these previous studies, however, our approach uses the asymptotics of the model dynamics
to provide a functional form for the relationship between the unknown model parameter and
the estimated model error when accumulated over a sequence of assimilation cycles. We will
demonstrate in section 4.4 that this simple diagnostic tool provides a reasonable approach to
parameter estimation for the dynamical system under consideration.

4. Numerical results using the L63 model. The purpose of this section is to use the L63
model to perform numerical experiments that demonstrate the validity of the model error
identification and correction methods developed in the previous sections and their use within
a data assimilation system. We begin by showing in section 4.1 that the error asymptotics
developed in Theorem 2.1 accurately represent the behavior of the L63 model and that they
are able to capture the rapid evolution of the model error in each of the state variables. We
then demonstrate in section 4.2 that the model error asymptotics can be used to improve
the model background error covariance matrix B through inclusion of a dynamic component
that captures the current model errors. It is then shown in section 4.3 that the coefficients
of the nonlinear asymptotical expansion can be reasonably estimated by solving a regularized
least squares minimization problem without explicit a priori knowledge of the error behavior.
This is accomplished through use of a polynomial expansion of the model variables. Finally,
we show in section 4.4 that the \rho parameter can be reconstructed using the bias correction
coefficient vector. Moreover, it is shown that it is possible to reconstruct this parameter using
the analysis increments that are readily available in all data assimilation systems.

4.1. Analysis of the asymptotic error estimators for the L63 model. In this section,
we assess the ability of the asymptotics derived in Theorem 2.1 to accurately capture the
rapid evolution of model errors in the coupled L63 system during a cycled data assimilation
experiment covering Nt = 600 assimilation cycles with an assimilation frequency \delta tassim =
0.06. Though the true \rho parameter in the coupled L63 system varies with time following (2.4),
it was set to a constant value (\rho = 28) during the data assimilation experiment to represent
a dynamic and unknown model bias. Output from the truth simulation employing the time-
varying \rho parameter was used to generate observations with zero measurement error (\epsilon = 0)
for (x1, x2, x3), which were then assimilated using a 3DVAR system. The analysis x(a) duringD
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NONLINEAR CONDITIONAL MODEL BIAS ESTIMATION 319

a given assimilation cycle was determined using

(4.1) x(a) = x(b) +BHT (R+HBHT ) - 1(y  - H(x(b))),

where H = I, the observation error covariance matrix R was given the form of the identity
matrix scaled by the factor r,

(4.2) R = r \cdot I,

and the background error covariance matrix B was given the form

(4.3) B =

\left(   (x
(b)
1  - x

(true)
1 )2 0 0

0 (x
(b)
2  - x

(true)
2 )2 0

0 0 (x
(b)
3  - x

(true)
3 )2

\right)   
with x(b) being the background state, x(true) being the true dynamical state obtained from
the truth simulation, and the diagonal elements of B containing the model error variances.
We chose to use a diagonal matrix here because it is a reasonable place to start and, as is
shown in this section, still has a positive impact on the assimilation performance. Given the
strong correlations between errors in the x1 and x2 variables (see Figure 3), it is possible
that including the off-diagonal elements would have led to even better results; however, their
inclusion in the B matrix is left for future work. Note that even though this is a perfect
observation experiment, we chose to set the scaling factor r to a small nonzero value so that
we could use the data assimilation system rather than directly inserting the observations
into the model. This approach maintains consistency with the other experiments presented
in this section and is a reasonable approach because we generally would not know that the
observations are perfect in a real data assimilation system and therefore would likely still
assume that the observation errors come from a Gaussian distribution.

Figure 3 shows the evolution of the true \rho parameter and the model errors x
(b)
1  - x

(true)
1 ,

x
(b)
2  - x

(true)
2 , and x

(b)
3  - x

(true)
3 during the assimilation experiment. The true error for each

model variable is shown in blue, whereas the model errors estimated using the asymptotic error
estimators in (2.5)--(2.7) are depicted by the red dashed lines. For the asymptotic model error
estimates, x1(\rho 0, t0) is taken to be its instantaneous value at each assimilation time. Inspection
of the error time series (Figures 3(a)--(c)) reveals that the asymptotic error estimators are able
to accurately capture the magnitude of the true errors in the model background, as well as
their rapid changes with time, when all other errors in the system are eliminated. The model
errors display more rapid variations than the \rho parameter (Figure 3(d)) because the time
step used by the coupled model is five times faster than that used in the hidden model S2 to
perturb \rho . The true \rho parameter oscillates in a quasi-periodic manner for an extended period
of time either below or above \rho = 28 with occasional transitions between values less than
or greater than this threshold as the hidden model driving the changes in \rho true propagates
from one wing of the butterfly to the other (see Figure 2(a)). These quasi-periodic oscillations
could be thought of as representing biases associated with the diurnal or seasonal cycles in
atmospheric models.D
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320 J. A. OTKIN, R. W. POTTHAST, AND A. S. LAWLESS

Figure 3. Time series showing the evolution of the true model error (blue lines) and asymptotic error
estimations (red dashed lines) for the (a) x1, (b) x2, and (c) x3 model state variables, and for the (d) \rho true
parameter (red line) for an experiment lasting Nt = 600 assimilation cycles with \delta tassim = 0.06 and the
measurement error \epsilon set to zero.

4.2. Using bias estimators to improve assimilation performance. The development of
methods to accurately estimate the model background error covariance matrix B is important
for all data assimilation algorithms. In this section, we demonstrate that the assimilation
quality, as measured using OMB statistics, can be improved through inclusion of appropriate
model error estimators during the data assimilation step. We also examine the optimality of
using either a fixed or dynamically varying B matrix and assess the influence of the observation
error on these estimates.

For this exercise, we performed cycled 3DVAR data assimilation experiments using two
versions of the L63 model where we chose to use a constant \delta \rho = 1 in the truth simulationD
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or where we allowed \delta \rho to vary with time based on the influence of the hidden system S2
described in section 2.1. The first version is used to represent a situation where a given
parameter that does not vary in the real world is assigned the wrong constant value in the
numerical model. Here, we assume that we know the asymptotics describing the sensitivity
of the model to small perturbations in \rho , but that we do not know the correct scaling factor
c for \delta \rho . In other words, we know the true value of \delta \rho only up to a constant c \in \BbbR , which
includes the case of a constant but unknown \delta \rho . For brevity, this section only includes results
for the scenario in which \delta \rho is allowed to vary with time. Note that even though the errors
in the asymptotic estimates will be larger in this situation because the maximum size of \delta \rho is
larger, the conclusions regarding the importance of using the dynamically varying B matrix
are the same for the experiments using the constant and time-varying \delta \rho perturbations.

To assess the sensitivity to the matrix B, we initially performed an experiment where a
constant covariance matrix of the form B = b \cdot I \in \BbbR 3\times 3 was used during each assimilation
cycle, where b is used to scale the identity matrix. We then searched for the constant b that
produced the smallest OMB errors averaged over Nt = 600 assimilation cycles. Finally, we
repeated the search using a dynamical B matrix, which as in (3.16), is the sum of a constant
matrix as in (3.12) and a dynamical part as given by the term (3.13) that is computed using
the model error estimators described in Theorem 2.1. The form of B = Bk at time tk with
the index k = 1, 2, . . . , Nt of analysis steps, is chosen as

(4.4) Bk = b \cdot 

\left(  1 0 0
0 1 0
0 0 1

\right)  +

\left(  error21,k 0 0

0 error22,k 0

0 0 error23,k

\right)  ,

where the diagonal elements in the second part of (4.4) are defined as

error1,k = c \cdot 0.5 \cdot \sigma \cdot x1(\rho 0, tk) \cdot (\delta t)2 \cdot \delta \rho k,(4.5)

error2,k = c \cdot x1(\rho 0, tk) \cdot \delta t \cdot \delta \rho k,(4.6)

error3,k = c \cdot x21(\rho 0, tk) \cdot (\delta t)2 \cdot \delta \rho k.(4.7)

Equations (4.5)--(4.7) correspond to the model first guess errors for x1, x2, and x3, respectively,
for each assimilation time tk. The numerical experiments evaluated in this section were carried
out using c = 1.

Two examples illustrating the relationship between the size of b and the average model first
guess errors when using either the constant or dynamic estimates for B during the assimilation
experiments are shown in Figure 4. The first example (Figure 4(a)) has relatively frequent
assimilation cycles (\delta tassim = 0.02) and small random observation errors (\epsilon = 0.2), whereas
the observation errors are larger (\epsilon = 0.5) and the observations are assimilated less frequently
(\delta tassim = 0.04) during the second example (Figure 4(b)). Random errors added to each
observation were drawn from a Gaussian distribution scaled by the value of \epsilon chosen for each
case.

In both examples, the behavior of the relationship shown in Figure 4 is well known in the
field of inverse problems where a regularization that is too small increases the influence of
the observation errors and a regularization that is too large will not be able to fully exploitD

ow
nl

oa
de

d 
02

/2
2/

21
 to

 1
28

.1
04

.4
6.

19
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

322 J. A. OTKIN, R. W. POTTHAST, AND A. S. LAWLESS

Figure 4. Scan of the average model first guess errors plotted as a function of the size of b when the
background error covariance matrix B is a multiple of the identity matrix (B = b \cdot I) (black dashed line) or
when it is obtained using the dynamic B estimator presented in (4.4) (blue dotted line). Panels (a) and (b)
show results from experiments using assimilation update intervals \delta tassim and random observation errors \epsilon set
to (\delta tassim = 0.02, \epsilon = 0.2) and (\delta tassim = 0.04, \epsilon = 0.5), respectively. The first guess error statistics were
computed using output from 600 time steps.

the new information provided by the observations. The optimal B, which varies depending
upon the observation and model errors present during a given assimilation cycle, will lead
to the smallest first guess errors. Of importance for this discussion is that the smallest first
guess errors for both examples occur when the dynamic B matrix is used. It is also evident
that the optimal size of b decreases when the dynamical error estimators are used to scale
B because they are better able to capture the actual errors in the model background during
each assimilation cycle. Together, these examples demonstrate that it is highly desirable to
employ dynamical estimators of the model first guess error in data assimilation algorithms.

4.3. Numerical estimation of the bias estimator polynomial coefficients. In this section,
we investigate the determination of the model bias estimator coefficients \alpha using output from
cycled 3DVAR experiments employing different assimilation intervals and observation error
magnitudes. For these experiments, we employ the dynamical background error covariance
matrix B shown in (4.4) during each data assimilation cycle, with the dynamic model errors
for (x1, x2, x3) computed using the asymptotic error estimators in (4.5)--(4.7) with the scaling
factor c set to 1. Sensitivity tests revealed that the model error coefficients were stable over
a broad range of values for the scaling factor b; therefore, for convenience, it was set to 0.1
during the experiments discussed in this section. This behavior and the chosen value for b are
consistent with the results shown in Figure 4.

Experimentation also revealed that the matrix A used to determine the bias correction
coefficients \alpha in (3.26) is ill-posed with singular values smaller than 10 - 4 and a condition
number larger than 104. Therefore, to improve its conditioning, Tikhonov regularization was
used by replacing the least squares estimator A\dagger = (ATA) - 1AT in (3.26) with the TikhonovD
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Table 1
Reconstructed bias correction coefficients (\alpha recon) for each model variable (x1, x2, x3) determined using

(3.23) and truth-minus-background statistics accumulated over 600 assimilation cycles for two experiments
employing different observation errors and assimilation update intervals. The zeroth to second order terms are
shown in each row. Columns 2--4 and 5--7 show the results for experiments employing (\delta tassim = 0.01, \epsilon = 0)
and (\delta tassim = 0.02, \epsilon = 0.01), respectively. The Tikhonov regularization parameter areg was set to 10 - 5 for
both experiments.

Exp 1 Exp 2
for x1 for x2 for x3 for x1 for x2 for x3

\alpha recon(0, 0, 0) 4.94E-02 -5.30E-03 -4.06E-03 1.16E-01 -7.26E-03 -1.28E-01
\alpha recon(1, 0, 0) 0.92 1.06 2.37E-03 0.76 1.16 -5.95E-01
\alpha recon(2, 0, 0) -2.57E-04 4.08E-05 1.03 9.79E-03 1.52E-03 0.94
\alpha recon(0, 1, 0) 2.38E-02 -4.92E-02 1.31E-02 2.65E-02 -1.13E-01 -2.45E-01
\alpha recon(0, 2, 0) 3.13E-04 -2.35E-05 -3.94E-03 2.32E-03 -1.84E-04 5.25E-02
\alpha recon(0, 0, 1) -1.11E-02 6.09E-04 -4.77E-02 1.88E-04 5.97E-03 -1.30E-01
\alpha recon(0, 0, 2) 2.13E-04 -1.85E-05 2.86E-03 -8.31E-04 -3.04E-04 3.10E-03
\alpha recon(1, 1, 0) -1.88E-04 -3.84E-06 -4.02E-02 -9.54E-03 -9.32E-04 -2.04E-01
\alpha recon(1, 0, 1) 3.54E-03 -4.07E-04 4.04E-04 5.71E-03 -2.03E-03 2.42E-03
\alpha recon(0, 1, 1) -2.21E-03 -4.42E-05 -1.08E-04 -4.80E-03 6.95E-05 3.10E-02

inverse:

(4.8) Q := (\alpha regI +ATA) - 1AT ,

where \alpha reg is the Tikhonov regularization parameter. Sensitivity tests showed that setting
\alpha reg to a small value (10 - 5) provided the most accurate results. This means that the bias
correction coefficients for a given model variable can be determined using:

(4.9) \alpha = (\alpha regI +ATA) - 1AT q.

Table 1 shows results computed using truth-minus-background statistics accumulated over
Nt = 600 assimilation cycles for two experiments, including one where perfect observations
(\epsilon = 0) were assimilated at \delta tassim = 0.01 time intervals (left columns) and a second exper-
iment where random errors were added to the observations (\epsilon = 0.01) and the assimilation
interval was increased to \delta tassim = 0.02. The scaling factor r for the observation error covari-
ance matrix in (4.2) was set to 10 - 5 and 10 - 4, respectively, for each of these experiments,
with \delta \rho for a given time step obtained from the hidden system S2 described in section 2.1.
The coefficients of the polynomial expansion of the model bias are computed separately for
each model variable (x1, x2, x3). Here, we have used all polynomial terms up to the second
order when computing the dynamic B matrix in (4.4) because of the presence of the x21 term
in the asymptotics shown in (3.20). To ease interpretation of the results, we have included \delta \rho 
and the constant 0.5, \sigma , \delta t, and (\delta t2) terms as they appear in (4.5), (4.6), and (4.7) such that
the estimation outcomes shown in Table 1 should be either 0 or 1 depending upon whether
or not a given term is in the polynomial expansion. This means that the reconstructed bias
correction coefficient \alpha recon(1, 0, 0) should equal one for x1 and x2, \alpha recon(2, 0, 0) should equal
one for x3, and all of the other \alpha recon values should be zero.

Inspection of Table 1 shows that the maximum error for each state variable (x1, x2, x3)
is 8\% (e.g., \alpha recon = 0.92) for the experiment in which perfect observations were assimilated,D
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and that the errors for most of the remaining \alpha recon terms are very small. This demonstrates
that the bias correction coefficients can be accurately estimated in this situation such that the
only remaining sources of error are likely associated with numerical discretization errors or
the exclusion of higher order polynomial terms from the asymptotical expansion (e.g., higher
than the second order). The error in each \alpha recon term increases during the second experiment
where measurement errors were added to the observations prior to their assimilation. Even
so, the results show that the method is still able to identify the dominant terms and that it is
possible to obtain reasonable estimates for the bias correction coefficients in the presence of
observation error. Finally, other experiments were performed where the size of the observation
error and the length of the assimilation cycling interval were varied, with all of the experiments
showing similar effects to those demonstrated in Table 1 if reasonable observation errors and
cycling intervals were used.

4.4. Reconstruction of the \bfitrho parameter. In this section, we explore the effectiveness of
using the bias correction coefficient vector \alpha to reconstruct the \rho parameter within the data
assimilation system. The truth simulation for this particular exercise was performed using the
coupled L63 model described in section 2.1. A cycled data assimilation experiment covering
Nt = 600 assimilation cycles with \delta tassim = 0.04 was then performed using observations from
the truth simulation. Given that the true state of a real-world system is unknown, here we
choose to use the analysis-minus-background difference as a proxy for the model error q in
(3.26) because the model background x(b) and model analysis x(a) are both readily available
from data assimilation systems.

Because \rho varies with time in the coupled L63 system used to perform the truth simulation,
it is not advantageous to use assimilation statistics accumulated over a long time period to
estimate the value of this parameter for a specific assimilation cycle. Instead, we compute the
coefficient vector \alpha using output from 10 consecutive assimilation cycles rather than from the
full assimilation period. This length was chosen as a balance between the desire to acquire a
large enough sample to robustly estimate \delta \rho and the need to use a short enough time period
to ensure that the instantaneous \delta \rho values during a given time interval do not deviate strongly
from the mean \delta \rho over that interval. To ease comparison to the reconstructed mean \delta \rho , the
average of the individual \delta \rho estimates obtained using the simple diagnostic tools shown in
(3.27) are used to represent the true mean \delta \rho over each time period. Together, these choices
are consistent with the constraints that would be encountered in a real-world data assimilation
system.

Figure 5 shows the evolution of the instantaneous model errors x
(b)
1  - x

(a)
1 , x

(b)
2  - x

(a)
2 ,

and x
(b)
3  - x

(a)
3 , along with the actual and reconstructed values for \delta \rho for three experiments

employing different observation errors. The images on the left show the true error for each
model variable in blue, whereas the dashed red lines show the model errors estimated using
the asymptotic error estimators in Theorem 2.1. For the images on the right, the black
and blue lines denote the true instantaneous and true mean \delta \rho values, respectively, whereas
the red lines depict the corresponding mean \delta \rho estimates reconstructed using the \alpha vector.
Results are shown for three experiments assimilating observations with measurement errors
\epsilon = \{ 0, 0.02, and 0.04\} and scaling factors r = \{ 0.0004, 0.0004, and 0.0016\} for the observation
error covariance matrices.D
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Figure 5. (a) Time series showing the evolution of the model error given by the first guess minus analysis
(blue line) for x1, x2, and x3, and their estimation computed using the error asymptotics (dashed red line). Here,
\delta t = 0.04 and \epsilon = 0. (b) Time series showing the evolution of the true \delta \rho (black line). The mean \delta \rho parameter
computed over intervals of 10 assimilation cycles is shown by the dashed blue line, with the corresponding
dynamic estimation computed using the mean bias correction coefficients shown by the red lines. (c)--(d) Same
as (a)--(b), except for the case where the assimilation experiment was performed using \delta t = 0.04 and \epsilon = 0.02.
(e)--(f) Same as (a)--(b), except for the case where the assimilation experiment was carried out using \delta t = 0.04
and \epsilon = 0.04.
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Inspection of the time series in Figure 5 reveals that the mean \delta \rho values reconstructed
from the coefficient vector \alpha accurately capture the magnitude and evolution of the true \delta \rho for
the case where the assimilated observations have zero measurement error (Figure 5(b)). The
asymptotic error estimators also do an excellent job representing the true model errors during
this experiment (Figure 5(a)). As the observation error increases, however, the model error
time series become more noisy (Figure 5(c), (e)) and the accuracy of the \delta \rho reconstruction
decreases due to the increased noise (Figure 5(d), (f)). The errors in the \delta \rho reconstruction
are largest for time periods when the true \delta \rho reaches a local minimum or maximum because
the rapid variation with time during those situations makes it more difficult to properly
reconstruct \delta \rho . Regardless, these results show that it is possible to use the coefficient vector \alpha 
to obtain useful information about the trajectory of \delta \rho during the truth simulation. Because
the true state was not used during this exercise, these results also demonstrate that reasonable
parameter and model bias estimates can be obtained using differences between the model
analysis and background states. This is important because whereas the true state of a real-
world system is generally unknown, the model analysis and background states are both readily
available from data assimilation systems.

5. Conclusions. In this study, we have examined the behavior of dynamic model errors
and their influence on the quality of the model analysis and first guess during cycled data
assimilation experiments using the L63 model and a 3DVAR data assimilation system. We
showed that conditional model biases due to errors in the specification of a model param-
eter can be represented as a polynomial function that can be estimated using the model
background-minus-truth or background-minus-analysis statistics for the realistic situation
where the modeling system consists of polynomial forcing terms. We have also suggested
a regularized least squares regression method to estimate the model biases and then described
how these model error estimators could be used in the data assimilation system to improve
the accuracy of the model analysis and first guess.

We have carried out all derivations, estimations, and numerical experiments using the well-
known L63 model to demonstrate the validity and feasibility of the ideas developed during this
study. The L63 model allows us to study all parts of the system, bias estimators, and tools in
a detailed way that would not be possible if we had used a full physics numerical model while
still being able to represent the chaotic nonlinear characteristics of the real atmosphere. The
results showed that the asymptotics are indeed a valid method to estimate an important part of
the model first guess error, and that their use in data assimilation has the potential to improve
the accuracy of the model background and analysis. We showed that model error estimators
computed using the difference between the model background and analysis, which are readily
available from all assimilation systems, are an effective way to estimate model error. In this
framework, the model analysis serves as an approximation of the true state, which is unknown
in a real-world system. Reasonable results can be achieved even when relatively large errors
are present in the observations if Tikhonov regularization is employed during the estimation
of the polynomial model error coefficients. Finally, we also show that the polynomial model
bias coefficient vector can be used to reconstruct \delta \rho during the assimilation experiments.

In the current work, we have restricted our attention to a small-scale system containing
three state variables. Real-world numerical weather prediction (NWP) models and data assim-D
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ilation systems have much deeper complexity and their dimensions are much larger than the
system used here. Thus, future work is necessary to investigate the validity of the above ideas
in high-dimensional models and to determine if the methods developed during this study can
improve the representation of the background error covariance matrix B used by such systems.
For the experiments presented in this paper, all of the state variables were observed during
each assimilation cycle, which of course is not possible in a real data assimilation system.
It will be important to evaluate the utility of the method when the observation uncertainty
is higher or the measurements do not observe the full state of the model. It is reasonable
to expect that it will be more difficult to estimate the model errors in such situations. It
is also possible that the size of the initial condition uncertainty relative to the model error
could impact the performance of this method. For example, the model error contribution
to the forecast uncertainty will typically increase relative to the initial condition uncertainty
over longer time periods. This would suggest that the model error estimation method may
be especially useful for longer assimilation windows or when the observations are assimilated
less frequently. A final point to consider is that we already knew which model parameter
was incorrectly specified in the L63 model during the data assimilation experiments, which
made it possible for us to target its reconstruction using the bias correction coefficient vec-
tor. Though this knowledge made the problem easier to solve, it is still consistent with many
real-world situations where it is known a priori that a certain parameter varies with time but
has been assigned a constant value in the NWP model due to computational constraints or
incomplete knowledge on how to predict its evolution. With this knowledge, it should be
possible to use the general polynomial expansion of the model variables method developed in
section 4.3 to determine if there are relationships between any of the polynomial terms and
a chosen parameter and then use that information to reconstruct the value of the parame-
ter.

The dynamic B method developed during this study could be interpreted as providing
dynamic additive covariance inflation capturing systematic model errors that are not repre-
sented by the static B used by variational systems nor by the dynamic B used by hybrid
and EnKF assimilation methods. Inclusion of the dynamic model bias estimates in the B
matrix could therefore make it possible to reduce the amount of covariance inflation that is
used during the data assimilation step in EnKF systems. This is potentially advantageous
because the dynamic B is computed based on the current conditions rather than using random
perturbations drawn from a climatology as is typically done with additive covariance inflation
methods. It may also provide a complementary approach to weak-constraint 4DVAR where
instead of providing the model an additional degree of freedom through introduction of a
model error forcing term, we instead enhance the quality of the B matrix through inclusion
of the model bias estimates before it is used by the assimilation algorithm. More detailed
investigations of these and other topics are left for future work.

Acknowledgment. We thank the reviewers for their valuable comments that helped im-
prove the quality of the manuscript.
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