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ABSTRACT: Current state-of-the art regional numerical weather forecasts are run at horizontal grid spacings of a few

kilometers, which permits medium- to large-scale convective systems to be represented explicitly in the model.With the

convection parameterization no longer active, much uncertainty in the formulation of subgrid-scale processes moves to

other areas such as the cloud microphysical, turbulence, and land surface parameterizations. The goal of this study is to

investigate experiments with stochastically perturbed parameters (SPP) within a microphysics parameterization and

the model’s horizontal diffusion coefficients. To estimate the ‘‘true’’ uncertainty due to parameter uncertainty, the

magnitudes of the perturbations are chosen as realistically as possible and not with a purposeful intent of maximal

forecast impact as some prior work has done. Spatial inhomogeneities and temporal persistence are represented using a

random perturbation pattern with spatial and temporal correlations. The impact on the distributions of various hy-

drometeors, precipitation characteristics, and solar and longwave radiation are quantified for a winter case and a

summer case. In terms of upscale error growth, the impact is relatively small and consists primarily of triggering

atmospheric instabilities in convectively unstable regions. In addition, small in situ changes with potentially large

socioeconomic impacts are observed in the precipitation characteristics such as maximum hail size. Albeit the impact of

introducing physically based parameter uncertainties within the bounds of aerosol uncertainties is small, their influence

on the solar and longwave radiation balances may still have important implications for global model simulations of

future climate scenarios.

KEYWORDS: Cloud parameterizations; Ensembles; Model comparison; Numerical weather prediction/forecasting;

Stochastic models

1. Introduction

Current state-of-the art regional forecasts are run at nu-

merical spacings of a few kilometers, which allows for the

explicit representation of convection. With the convection

scheme no longer active, the uncertainty in the formulation of

subgrid-scale processes remains in other areas such as the

representation of the surface and planetary boundary layer

and cloud microphysical processes. While the former plays an

essential role in the convective initiation, the latter often

determines the properties of clouds, precipitating hydrome-

teors and the amount of radiation that reaches the ground.

A long-standing problem of ensemble prediction systems

is that they are underdispersive, i.e., that the verifying analy-

sis frequently lies outside the uncertainty predicted by the

ensemble members. A major reason has been attributed to

model uncertainties (Palmer 2001; Berner et al. 2011, 2017).

Uncertainties in the formulation of parameterized processes

remain problematic even at convection-permitting resolutions

(Bouttier et al. 2012; Romine et al. 2014; Schwartz 2019).

The first generation of parameter perturbation schemes in-

troduced static perturbations; i.e., each ensemble member

had a different but fixed parameter (e.g., Murphy et al. 2004;

Hacker et al. 2011; Berner et al. 2015; Christensen et al. 2015).

A disadvantage of this approach is that each ensemble member

has a potentially different bias. Alternatively, the parameters

can be varied stochastically; i.e., each parameter is perturbed

with a temporally evolving perturbation field (e.g., Bowler

et al. 2008, 2009; Ollinaho et al. 2017; Jankov et al. 2017, 2019).

This assures that all ensemble members have the same clima-

tology, although their bias can be different from the unper-

turbed forecast. For best results, the perturbation fields should

have both, spatial and temporal correlations (e.g., Buizza et al.

1999; Berner et al. 2009).

Jankov et al. (2017, 2019) used the stochastic pattern

generator developed by Berner et al. (2015) to perturb key

parameters in the convection and planetary boundary

layer scheme. They found a small reduction of biases in

near-surface variables. Stanford et al. (2019) applied the

same pattern generator to perturb the mass–size relation-

ship for unrimed and partially rimed ice as well as the ice

fall speed–size relationship in the P3 bulk microphysics

scheme (Morrison and Milbrandt 2015; Milbrandt and

Morrison 2016) and noted changes to precipitation timing,

maxima, and area.

Here, the same stochastic pattern generator is used to

perturb key parameters in the Thompson and Eidhammer

(2014; hereafter, TE14) ‘‘aerosol-aware’’ microphysics scheme,

namely the size spectrum for cloud water, the activation of cloud

condensation and ice nuclei and the size spectrum of graupel/hail

as described in the next section. Many microphysical processes

(e.g., riming and autoconversion) employ empirical relationships

to represent average functional properties of particles, which

cannot be captured even by going to higher resolution (Stanford

et al. 2019). The idea of this research is to place the stochasticCorresponding author: Gregory Thompson, gthompsn@ucar.edu

MAY 2021 THOMPSON ET AL . 1481

DOI: 10.1175/MWR-D-20-0077.1

� 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 04/28/21 01:28 AM UTC

mailto:gthompsn@ucar.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


perturbations as near to the root of uncertainty as possible:within

parameters that control microphysical characteristics and/or

processes.

This paper presents the implementation details of the sto-

chastically perturbed parameter applied to the microphysics

scheme (SPP-MP) and is organized as follows: section 2 dis-

cusses sources of uncertainty in the microphysical processes

along with details on the parameter perturbation and the nu-

merical model experiments. Additionally, section 2 describes

perturbations using SPP separately to perturb the effective

mixing length used within the standard horizontal diffusion

scheme (SPP-HDF), while section 3 shows how the stochastic

perturbations affect the specific microphysical aspects. The

impact of SPP-MP on satellite brightness temperature for two

verification periods are reported in a companion paper by

Griffin et al. (2020). The relative impacts of the changes by

SPP-HDF in comparison to SPP-MP are mentioned along with

other primary findings in section 4.

2. Methodology

a. The stochastic pattern generator

The key element of the stochastic pattern generator is

that it generates at each time t a two-dimensional random

field r(x, y, t) with prescribed spatial and temporal correlations.

These, together with an overall amplitude, fully determine the

perturbation field.

Assuming the random perturbation field r(x, y, t) in spectral

space is given as follows:

r(x, y, t)5 �
K/2
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l52L/2
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k,l
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where k and l are the (K1 1)(L1 1) wavenumber components

in the zonal x and meridional y directions, respectively; rk,l is

the spectral coefficient; and X and Y represent the number of

grid points in the x and y directions, respectively. The Fourier

modes e2pi(kx/X 1 ly/Y) form an orthogonal set of basis functions

on the rectangular domain 0 , x ,X and 0 , y ,Y. Each

spectral coefficient rk,l evolves over time as a first-order au-

toregressive process:

r
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Here, a is the linear autoregressive parameter, gk,l the

wavenumber-dependent noise amplitude and �k,l a Gaussian

white-noise process with mean zero and standard deviation

one.We note that rk,l contains two terms: 1) a linear autoregressive

parameter that is a function of the model time step Dt and a pre-

scribed temporal decorrelation time t, a 5 exp(22Dt/t), acting
on the previous state and 2) a wavenumber-dependent noise

FIG. 1. (a) Realization of perturbation time series at a single grid point, (b) probability distribution function with variance 0.75 and cutoff

values of 62.5, and (c) temporal autocorrelation function.

FIG. 2. Example perturbation patterns for three different spatial scales: (a) convection permitting, (b) mesoscale, and (c) synoptic scale.
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amplitude gk,l that is a function of a prescribed length scale k and

determines the wavenumber-dependent variance of a Gaussian

white-noise process «k,l:
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Here rk,l 5 (k2/X2 1 l2/Y2)1/2 is the effective radial wave-

number and sk,l are the spectral variances. The normalization

constant Fo is chosen, so that the variance at any grid point, s2,

is given by the total variance in spectral space.

The scheme is fully determined by three parameters: the

temporal decorrelation time t, the spatial length scale (or

spatial decorrelation) k, and the variance in gridpoint space,

s2. For the case t 5 0 and k 5 0, the scheme introduces noise

that is white in time and space, with variance s2. Therefore,

prescribing a temporal decorrelation time and a length scale

allows the stochastic perturbations to evolve in time and space

with an assigned degree of ‘‘memory’’ (Fig. 1). The result is a

stochastically sampled, two-dimensional, time-varying field

(Fig. 2) of correlated parameter values that follow locally a

Gaussian distribution with a prescribed mean and standard

deviation.

b. Stochastically Perturbed Parameter applied to
Microphysics (SPP-MP)

The TE14 scheme is modified to accept perturbations to

three different microphysics aspects. These aspects consist of

parameters in the microphysics formulation or in statistical

parameters used to represent a bulk distribution. Aspects may

be perturbed individually or in combination. Different from

previous studies (e.g., Hacker et al. 2011; Ollinaho et al. 2017),

the aim here is not to conduct sensitivity studies to find the

parameters that will have maximal impact but represent true

microphysics parameter uncertainty as suggested by observa-

tions. The following will discuss rationale for each of the per-

turbed MP parameters in detail.

1) NUMBER SPECTRUM FOR CLOUD WATER

Within the TE14 scheme, the number spectrum for cloud

water is assumed to follow a generalized gamma distribution:

N(D)5N
0
Dme2lD , (4)

whereD is the droplet diameter,N0 is the intercept parameter,

m is the shape parameter, and l is the distribution slope. Unlike

some bulk microphysics schemes that use a constant shape

parameter, the TE14 scheme uses a variablem that is diagnosed

at each grid point in space and time based on the predicted

cloud droplet number concentration and was designed to

match observations from Martin et al. (1994). The current

simple diagnosis of m uses the formula:

m5

�
1000

N
c

1 2

�
, (5)

where Nc is the cloud water droplet concentration (cm23) ex-

plicitly predicted by themodel andm is bounded between 2 and

15. The relationship between Nc and m, however, contains

some observational spread and uncertainty (see e.g., Miles

et al. 2000). The importance of the variable shape parameter is

seen in Fig. 3 with an example liquid water content (LWC) of

0.25 gm23 and two values of the shape parameter: m 5 2 and

12. The larger value of m for the same LWC results in a larger

mean diameter of water drops. In fact, this figure illustrates a

case in which the lower value would not be a condition for

which rain begins to occur whereas the higher value of mwould

initiate the ‘‘autoconversion’’ process in which cloud water

converts to rain in the TE14microphysics scheme. Cloud water

would begin to convert to rain in the case of m 5 12 (green

curve) since the mean cloud drop size would be larger than

FIG. 3. Number distribution of cloud water drops as a function of

diameter (LWC 5 0.25 gm23) using generalized gamma function

with shape parameter: m5 2 (red curve) and m5 12 (green curve).

FIG. 4. The fraction of aerosols that activate as CCNas a function

of vertical velocity (m s21). The curly braces provide a visual in-

dication of potential perturbations at four values of vertical velocity.
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approximately 14mm whereas the red curve with m 5 2 would

not begin forming rain because mean cloud droplet size would

be too small (,10mm). For this reason, we choose to introduce

uncertainty into this relationship by altering the shape pa-

rameter by adding perturbations using the SPP method. Since

the predicted onset of rain can be instrumental in many sub-

sequent microphysical processes (e.g., freezing into solid

ice/graupel, collection of smaller cloud droplets by accretion,

let alone its faster falling velocity to reach the ground as pre-

cipitation), having uncertainty related to rain production

should be a highly important process worthy of using in this

type of experiment.

2) ACTIVATION OF CLOUD CONDENSATION

NUCLEI (CCN)

Another highly uncertain aspect of the TE14 scheme is the

activation of aerosols as cloud droplets and ice crystals.

Because there are few in situ observations or routine mea-

surements of aerosols in three-dimensional space, let alone

consistent measurements over time, there are large uncer-

tainties in the aerosol number concentration. This, in turn,

leads to uncertainty in the number of aerosols that activate into

cloud particles. The existing TE14 scheme activates the num-

ber of cloud condensation nuclei (CCN) based on a lookup

table consisting of vertical updraft strength, temperature, and

aerosol characteristics (mean and standard deviation of aerosol

diameter as well as the available aerosol concentration). In the

current version of the scheme, the model-predicted gridscale

vertical velocity is used to retrieve the matching prepopulated

updraft strength from the table. However, it is well known

that a model’s gridscale vertical velocity does not represent the

motions of eddies occurring at scales smaller than the grid in-

crement (e.g., Peng et al. 2005).

Figure 4 illustrates the importance of vertical velocity in the

activation of aerosols as CCN in the microphysics scheme. The

vertical velocity (along with temperature) dictates the super-

saturation, which is the dominant factor controlling the num-

ber of aerosols that nucleate as cloud droplets. The figure was

created by assuming an aerosol concentration of 3000 cm23 at a

temperature of 278Kwith different updraft strengths shown on

the x axis. In this example, if the model’s grid-resolved vertical

velocity is 0.1m s21, then 30% of the available aerosols will

activate as CCN. However, if the SPP method altered the ve-

locity to 0.3m s21, then nearly 55% of available aerosols would

activate. Thus, nearly double the cloud droplets would exist,

which would also affect the final determination of the cloud

water spectrum as shown by Eq. (2). It is important to note that

the original grid-resolved vertical velocities remains unchanged.

The SPP-altered value w0 was used to retrieve the activated

fraction of aerosols from a lookup table.

In addition to nucleation of aerosols as cloud droplets (i.e.,

CCN), the TE14 scheme also creates cloud ice crystals from the

mineral dust concentration as ice nuclei, or IN. Thus, similar to

activating CCN, the controlling factors of temperature and

vertical velocity combine to determine the supersaturation and

affect the IN and ice crystal concentration; however, unlike the

CCN and resulting cloud droplet distribution assumptions, the

cloud ice spectra does not use a variable shape parameterm but

instead uses a constant value of zero (inverse exponential

distribution).

3) SIZE SPECTRA OF GRAUPEL/HAIL

The third stochastic perturbations applied to theY-intercept

parameter of the graupel/hail size spectrum, thus fundamen-

tally altering the size spectra of the graupel/hail hybrid cate-

gory. The assumed number density function for this category

follows the same generalized gamma distribution of Eq. (1).

The Thompson bulk microphysics parameterization was spe-

cifically designed to predict only one free variable of amixed or

hybrid graupel/hail category, its mass mixing ratio, in order to

reduce computational cost as compared to fully double-

moment schemes. One-moment schemes typically assume an

inverse-exponential size distribution [m 5 0 in Eq. (1)] with

an a priori assigned and constant Y-intercept parameter (N0).

Numerous observations from aircraft and surface measuring

campaigns (e.g., McFarquhar and Black 2004; Knight et al.

1982; Field et al. 2019) generally support this distribution

shape, although the intercept parameter has been known for

decades to vary by as many as two to three orders of

magnitude.

Since using a fixed intercept parameter potentially hinders

the simulation outcome, we developed a relationship com-

bining graupel mass mixing ratio and amount of supercooled

liquid water to compute a space-/time-varying Y-intercept

parameter diagnostically during a simulation. From prior ob-

servational studies, the intercept parameter is permitted to

vary from 104 to 106m24 consistent with overall observations,

but the diagnostic relationship itself was ad hoc and not ex-

tensively tested. The McFarquhar and Black (2004) observa-

tions contradict the scheme’s existing diagnostic relation for

decreasing intercept parameter as a function of higher graupel

mixing ratio; although their observations were collected in

tropical storms so their applicability to midlatitude deep con-

vection is unknown. Similar to Fig. 3, the change to graupel

Y-intercept parameter effectively changes the size spectra to

smaller or larger mean particle size, which has obvious impli-

cations to the final maximum hail size to reach the ground.

c. Stochastically Perturbed Parameter applied to
Horizontal Diffusion (SPP-HDF)

Since the microphysics scheme in numerical models only

creates clouds where updrafts are sufficiently cooling the air

to condense water vapor into cloud particles, the impacts of

SPP-MP are likely to take time to show up inmany simulations.

However, in certain instances when a convective downdraft

(cold pool) produces subsequent low-level convergence and

forces adjacent new updraft, its evolution may be altered more

rapidly and dramatically due to the graupel Y-intercept

perturbations that are responsible for bringing precipitation

to the ground more slowly or quickly depending on the

perturbation. This scenario, however, represents relatively

small areas among a weather forecast covering very large

geographic regions. Therefore, we also targeted another

part of model uncertainty—the model’s horizontal diffusion

(mixing) coefficients. Jankov et al. (2019) used the SPP scheme

to perturb the MYNN-PBL vertical mixing coefficients, but
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our tests aimed to perturb horizontal mixing in an effort to

cause wider impacts to the full domain making new clouds

possible to form/dissipate differently than a control experi-

ment. Stanford et al. (2019) also altered the horizontal diffu-

sion in WRF using various static factors, but our effort used a

SPP field separate from the one used for SPP-MP to study if

changing horizontal diffusion would impact the clouds in

larger/smaller ways than SPP-MP.

d. Numerical model experiments

The stochastic pattern generator was configured to have a

spatial length scale of 200 km and temporal scale of 2 h to be

applicable for typical summertime mesoscale convective

complexes in the central United States (Table 1). While the

SPP field itself had a standard deviation of 0.75 and cutoff

values at61.875, these values had to be altered for each of the

three aspects discussed in section 2 since they were applied

to different physical parameters. Therefore, in application

to the graupel intercept parameter, the SPP field was used to

offset the log10 of the diagnosed value of Y-intercept pa-

rameter. In the case of the cloud water shape parameter, the

SPP field was doubled thereby permitting rounded-whole-

number changes as large as 64 in the final diagnosed value.

Finally, for the change to CCN activation, the perturbation

field was offset by the minimum found on the entire grid then

scaled by 1/4 to achieve an absolute maximum of w0 5
0.9375m s21. To avoid introducing a net downward vertical

velocity, which makes no sense for the supersaturation

equation, all perturbations of this variable always resulted in

increased velocity and CCN activation. The perturbation to

IN was a simple multiplication factor of 50 times the SPP

random value, which for one standard deviation resulted in

13.5 times more ice crystals, and a maximum factor of nearly

100 times the default number of ice nuclei.

The code changes made within WRF could allow a different

perturbation value to be chosen from different vertical levels

of a three-dimensional SPP field; however, we applied the same

value from the grid’s lowest level to each of the three param-

eters. There is no expectation whatsoever that a specific value

used in one aspect internal to the MP scheme would have any

physical correlation to the same value perturbing another MP

aspect. In other words, perturbing the graupel Y-intercept

parameter by an order of magnitude increase has nothing to do

with a positive perturbation to the cloud water shape param-

eter. For the sake of completeness, however, experiments were

also run in which each of the three MP aspects were perturbed

with different vertical levels of the 3D SPP grid of values;

however, no relationships to the outcomes could be determined.

We did not performmultiple experiments using different spatial

or temporal scales and believe this is potential future work.

Our experiments are based on version 3.9.1.1 of the Weather

Research and Forecasting (WRF) Model (Skamarock et al.

2005) configured similar to the High-Resolution Rapid Refresh

(HRRR) model (Benjamin et al. 2016). The continental U.S.

domain used in our experiments was slightly smaller than the

standardHRRR-domain and comprised 15363 1024 grid points

in the east–west and north–south directions, a 3-km grid spacing,

and the same 50 vertical levels as the real-time HRRR model.

The physical parameterization settings were kept similar to

the HRRR with the MYNN planetary boundary layer scheme

(Nakanishi and Niino 2004), Rapid Radiative Transfer Model

for GCMs (RRTMG; Iacono et al. 2000), and the Rapid

Update Cycle land surface model (Smirnova et al. 2016). Since

the experiments used 3-km grid spacing, no convective pa-

rameterization was used. Unlike the operational HRRR, the

time step was 15 s and no limit was placed on the micro-

physical tendencies as is done in the HRRR with its 20-s time

step. The simulation design mimics similar simulations to

support the annual NOAA Hazardous Weather Testbed

Spring Forecasting Experiment (HWT-SFE, e.g., Clark et al.

2012, 2018). Initial condition data for our experiments used

the operational Rapid Refresh (RAP) model data (at 13-km

spacing) while the lateral boundary conditions used the

Global Forecast System (GFS) because our experiments ran

for 72-h duration.

Simulations were run with all permutations of the three

microphysical aspects as well as a ‘‘control’’ run that omitted

the SPP-MP. Table 2 shows the list of experiment names used

in upcoming figures and which microphysical aspect was al-

tered in the SPP-MP experiment.

WRF simulations using all aspects of SPP-MP (P7 in

Table 2) were initialized at 1200 UTC for 10 days in May 2017

TABLE 1. List of stochastically perturbed parameters, spatial and temporal scales, and magnitude.

Aspect perturbed Spatial length scale (km) Temporal scale (h) Magnitude perturbation (for one std dev)

Graupel intercept parameter 200 2 60.75

Cloud droplet shape parameter 200 2 62.0

w0 used in CCN activation 200 2 10.375m s21

IN concentration 200 2 113.53
Horizontal diffusion 50 1 (1 6 0.2)3

TABLE 2. Experiment names and enabled perturbations.

Expt Graupel Cloud water CCN and IN Diffusion

Control No No No No

P1 (G) Yes No No No

P2 (W) No Yes No No

P3 (GW) Yes Yes No No

P4 (A) No No Yes No

P5 (GA) Yes No Yes No

P6 (WA) No Yes Yes No

P7 (GWA) Yes Yes Yes No

P8 (HDF) No No No Yes
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FIG. 5. Histograms of column-maximum graupel/hail size 18, 30, 42, and 54 h for the 19 May 2017 simulation,

color coded by sensitivity experiment. Note in particular the 18-h (54-h) forecast shows the experiments with

graupel intercept parameter perturbed produced fewer (more) large graupel/hail size.
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(1, 7, 9, 15, 17, 19, 21, 23, 25, and 27 May) and at 0000 UTC for

10 days in Jan 2018 (7, 9, 11, 13, 19, 21, 23, 25, 27, and

29 January). Validation of WRF forecasts were done in com-

parison toGOES-16 satellite data as found in a separate paper

by Griffin et al. (2020). This research instead focuses on 2 dates

in each set of 10 days because the total number of simulations

using seven distinct experiments would be too extreme and

unnecessary to show the point of the code alterations. Results

discussed in the next section pertain to simulations only on 17

and 19May 2017 and 11 and 21 January 2018 when synoptic-scale

midlatitude cyclones crossed most of the continental United

States over a period of 72 h and contained expansive clouds and

precipitation. Some of the remaining dates in the set of twenty

had less active weather patterns and the chosen dates provide

plentiful examples of sensitivities seen in most cases.

3. Results

Given the subtleties of the parameter perturbations as well as

the complex interactions between competing and complimentary

FIG. 6. SPP perturbation pattern (color fill) and maximum-in-column graupel/hail size (m;

gray shades) from the (top) 18-h forecast valid at 1800 UTC 19 May 2017 and (bottom) 54-h

forecast valid at 0600 UTC 21 May 2017. Boxes outline the regions most responsible for the

changes to histograms presented in Fig. 5.
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FIG. 7. SPP perturbation pattern (color fill) and radar reflectivity difference (P2

minus control, dBZ) at the model lowest level from the (top) 57 h forecast valid at

0900 UTC 13 Jan 2018, (middle) 60-h forecast valid at 1200 UTC, and (bottom) 63-h

forecast valid at 1500 UTC. The dark-red (dark-green) outlined ovals represent areas

with correlated increase (decrease) of radar reflectivity and positive (negative) SPP

perturbation field.At all three times shown, the number of points with larger reflectivity

in the P2 experiment is shown as the first value in the bottom-left corner while the total

union of all grid points containing radar reflectivity at the model lowest level is the

second value.
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microphysical processes in the simulated weather evolution, it is

often extremely difficult to pinpoint how the parameter pertur-

bations translate to the expected feedbacks when analyzing the

simulation output. Based upon the decisions made to perturb the

specific aspects of the MP scheme, some feedbacks to the final

forecast should be discernable in the simulations, which is what

we discuss in this section.

a. Sensitivity to changing graupel spectra

Since the design of the graupel experiment is to alter the Y-

intercept parameter of the size spectra of graupel, it should be

possible to note the resultant change to a diagnosed maximum

size of graupel (or hail). The surface precipitation amount may

also be affected by this change; however, due to the relatively

small number of grid points that receive graupel at the surface,

the change to precipitation is difficult to ascribe directly to the

perturbation. Additionally, the numerical effects of ‘‘chaos

seeding’’ (Ancell et al. 2018; e.g., their Fig. 4) or, more gen-

erally, sensitivity to small perturbations (Lorenz 1963) greatly

confound the situation with error growth propagating most

rapidly in convective regions to produce completely unphysical

responses to minute perturbations. On the other hand, a cal-

culated mean or maximum size of graupel is a more direct

response to the characterization of the graupel spectra. In the

case of this sensitivity experiment, a Y-intercept parameter per-

turbed to increase (decrease) over the unperturbed value posi-

tively implies a smaller (larger)maximumdiameter. Therefore, the

diagnosed maximum graupel/hail size implemented as in Gagne

et al. (2019) was investigated by comparing the control and SPP-

MP experiments.

Histograms showing the frequency of WRF grid points

containing specific maximum size of graupel/hail were helpful

to find the feedback of perturbations as shown in Fig. 5. Note,

in particular, that the 18-h forecast reveals a lower frequency of

large size graupel/hail in the experiments with perturbed

graupel intercept parameter whereas the situation reverses in

the 54-h forecast. To trace this feedback to the perturbation

field, Fig. 6 presents the 2D SPP field used to perturb the in-

tercept parameter together with the maximum diagnosed

particle size as a semitransparent overlay. The boxed regions

represent locations with positive (negative) perturbations at

forecast hour 18 (54) that leads to smaller (larger) graupel/hail

diameter. Although this figure represents one case, it was

found very similarly in all four events/dates simulated.

b. Sensitivity to changing cloud water spectra

Sensitivity to the cloud water distribution shape param-

eter are far more difficult to discern in the results than the

graupel spectra changes. The design of perturbing the shape

parameter was intended to affect directly the precipitation

process of warm rain. The microphysics scheme’s way of

mimicking the collision–coalescence process in warm rain is

through an autoconversion parameterization of cloud to

rainwater. The existing MP scheme description of this pro-

cess is found in Thompson et al. (2004) and follows the

original work of Berry and Reinhardt (1974). Increasing

(decreasing) the value of the gamma shape parameter shifts

the mean size of cloud water larger (smaller) and subse-

quently promotes (inhibits) warm rain formation. Therefore,

investigating the onset of rain through radar reflectivity

data was useful to determine if this change produced the

desired effect.

Figure 7 shows three consecutive 3-h forecasts from 57 to

63 h of the perturbation field together with an overlay of radar

reflectivity difference between P2 experiment and control.

Here we can see relatively subtle changes to increase the re-

flectivity where the perturbations are positive and vice versa.

Since the autoconversion process is active at only a very small

FIG. 8. Histograms of 24-h (left) cloud droplet number concentration and (right) cloud ice number concentration

for the WRF sensitivity experiments of 17 May 2017.
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number of grid points at any simulated instant as well as the

fact that the perturbation pattern is ‘‘moving’’ through the

domain at different rates than the weather systems, it will be

difficult to find readily this sensitivity in many other variables.

c. Sensitivity to changing CCN and IN activation

The change to cloud condensation and ice nucleation by

introducing a positive vertical velocity perturbation to the ac-

tivation of aerosols produces the largest change found in this

study. This is expected since increasing cloud water and ice

concentrations of every cloudy point will alter cloud longevity,

precipitation formation, radiation, and many other aspects,

mostly due to the size changes of cloud water/ice. In other

words, for a given value of liquid or ice water content, the

additional number of particles directly means that the mean

size reduces. There are myriad feedbacks of smaller cloud

particles including reduced collection by rain, snow, and

graupel (due to lower collection efficiency), inhibition of warm

rain (for the reasons mentioned in the previous subsection),

and lower terminal velocity.

Figure 8 presents histograms of cloud water and ice number

concentrations from the 24-h forecast of the set of 8 experi-

ments and clearly reveals that, as designed, the number of

cloud droplets and ice crystals is increased in all experiments

where this parameter was perturbed, P4–P7.More subtly, there

is a reduction seen in P4–P7 in the lower bins of droplet/ice

concentration from the shift produced by the perturbations

acting to increase its number.

A more obvious visualization of the difference in cloud

droplet number concentration in experiments P4–P7 as com-

pared to P1–P3 is shown in Fig. 9. The vertically integrated

number of droplets is clearly increased by the perturbation

when activating cloud droplets (and ice). Consequently, the

evidence that more numerous cloud droplets inhibits rain

formation is found in Fig. 10. The graphic shows the 3-hourly

frequency with which each sensitivity experiment had more

grid points with 3-hourly rain accumulation higher than the

control experiment. Experiments P1–P3 without enhanced

CCN and IN nucleation had roughly equivalent number of grid

points of 3-h rain amount larger or smaller than the control

experiment whereas experiments P4–P7 had significantly more

points with less 3-h rain amount. This is a rather clear dem-

onstration of the second aerosol indirect effect as postulated by

Albrecht (1989).

Different from the rain amount, the 3-h snow amount was

more frequently greater in P4–P7 than control while P1–P3

showed no clear signal in change of snow amount. Prior

aerosol–cloud–precipitation studies by Igel et al. (2013) and

FIG. 9. Difference of column-sum cloud droplet number concentration between each sensitivity experiment and the control. As ex-

pected, the concentration is larger in experiments P4–P7 due to the increased CCN activation intended in the experiments while in the

remaining experiments it is difficult to see any systematic increase or decrease of droplet concentration.
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Thompson and Eidhammer (2014) demonstrated that the

more numerous and overall smaller cloud droplet sizes ad-

vect farther north of synoptic-scale cyclones and are sub-

sequently captured in the riming process by snow. Our

results further confirm this trend and suggest that aerosols

can be responsible for precipitation redistribution (also see

Lee and Feingold 2010).

The other commonly discussed aerosol indirect effect, fre-

quently called the ‘‘albedo effect’’ following Twomey (1974) is

clearly evident in our results. The panels in Fig. 11 show the

difference in shortwave radiation reaching the ground in the

18-h forecast valid at 1800 UTC 21 January 2018 from each

sensitivity experiment. The increased cloud droplet con-

centration led to more reflective clouds that lower the

amount of shortwave radiation at the ground. In many re-

gions of the synoptic-scale cyclone in this example, the ra-

diation difference between any one experiment and control

is more than 210Wm22, which is roughly an order of

magnitude more than suggested by the IPCC (2014) first

aerosol indirect effect; although our result is a single time

snapshot in a regional model rather than a global long-term

simulation average. In combination, the smaller cloud

droplet and ice size produces a less efficient precipitation

process that results in thicker clouds.

The impact of increasing droplet and ice concentrations is

much less obvious in the longwave radiation differences as

compared to shortwave radiation as shown in Fig. 12. Here we

see mixed results of increased and decreased outgoing long-

wave radiation at top of the atmosphere. Within regions of

widespread high-altitude ice clouds, it appears longwave radia-

tion is decreased, most likely due to the effect of slower-falling

ice crystals as would be expected by the shift in mean size of ice;

yet in nearby regions there are also increases in longwave radi-

ation suggesting perhaps that liquid clouds are somewhat

thicker.

d. Sensitivity to changing horizontal diffusion

To place into context the magnitudes of impacts due to the

various perturbations used in SPP-MP, additional experiments

were run that altered only the horizontal diffusion coefficients

as compared to control while not using SPP-MP. Most of the

time, the resulting impacts to the variables previously shown

with experiments P1, P2, and P3 were subjectively similar to

this HDF experiment. In reviewing graphics of numerous

FIG. 10. The frequency of occurrence when (top) rain and (bottom) snow is greater in the

sensitivity experiment (P1–P7) as compared to the control experiment. Due to a decrease in

overall cloud droplet size in members P4–P7 from activating more CCN and IN, rain formation

is hindered, whereas snow is increased.
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variables from the four 72-h simulations with 3-hourly output,

most of the plots showed the same nearly random positive and

negative difference patterns that were seen in experiments P1 to

P3, even though the time and spatial scales used in the HDF

experiment were shorter than the other experiments. Less often,

however, the HDF experiment showed more dramatic impacts

than SPP-MP in some variables as seen in Figs. 13 and 14.

A principal difference between the HDF and SPP-MP ex-

periments is the fact that changing horizontal diffusion/mixing

may alter thermodynamic and kinematic fields sufficiently to

cause clouds to either form or dissipate. This is evident in both

Figs. 13 and 14 as there are clearly more total grid points that

differ for the cloud fraction and shortwave radiation than any

of the other seven experiments. There is no possible way to

attribute the complete chain of effects from the HDF changes

to the production or dissipation of clouds, especially when

compounded by the ubiquitous seeding chaos effects (Ancell

et al. 2018). The examples displayed in Figs. 13 and 14 con-

tained the most striking examples of differences and even the

same day at different forecast times showed much lower im-

pacts. It is postulated that perhaps the periods of strongest

synoptic-scale convergence or divergence occurred near the

times in the graphics to produce the effects shown here.

4. Discussion and conclusions

In this study we introduced a stochastic parameter pertur-

bation (SPP) scheme that was used to perturb key parameters

in an aerosol-aware microphysics scheme (SPP-MP) and in the

model’s horizontal diffusion coefficients (SPP-HDF). The de-

tails for motivating our choices of key parameters and their

implementation were described as they were used by Griffin

et al. (2020) to study forecast uncertainty in brightness tem-

perature comparisons against GOES-16 satellite data. The

companion paper of Griffin et al. (2020) contained a statistical

verification of an ensemble using SPP-MP and showed a rela-

tively minor improvement in spread/skill for a collection of 10

winter cases but not for 10 convective-season cases.

An advantage of SPP is that the perturbations preserve the

local conservation properties and physical consistency of the

physical parameterization schemes. While some stochastic

schemes such as the stochastically perturbed physics tenden-

cies scheme (SPPT) scheme (Palmer et al. 2009; Berner et al.

2015) are tuned to represent missing ensemble spread, we

used a ‘‘forward’’ approach and studied the sensitivity to

physically justifiable parameter perturbations. Onemajor aspect

of this work is to introduce realistic perturbation amplitudes

FIG. 11. Difference of shortwave radiation reaching the ground/bottom between each sensitivity experiment and control experiment

from the 18-h forecast valid at 1800 UTC 21 Jan 2018. Experiments P1–P3 lack the additional CCN and IN activation and show no

systematic change in radiation, whereas experiments P4–P7 havemore reflective clouds and show a clear representation of the first aerosol

indirect effect (Twomey 1974).

1492 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 04/28/21 01:28 AM UTC



FIG. 12. As in Fig. 11, but for the difference in longwave radiation at the top of the atmosphere between each sensitivity

experiment and the control experiment from (a) the 18-h forecast and (b) 15 h later.
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that are informed by ‘‘true’’ parameter uncertainty found in

microphysics literature and not unrealistically large amplitude

perturbations designed solely to maximize impact. By design

all other sources of model error and joint parameter uncer-

tainty between MP and other physical parameterization schemes

were not assessed.

A number of simplifying assumptions were used such as the

same perturbation pattern being used for all three aspects of

MP parameters that were perturbed, thus assuming perfect

correlation between the different parameter perturbations. No

sensitivity tests to the spatial length or temporal scales were

performed. Such tests were performed by Jankov et al. (2019)

for SPP applied to theMYNNboundary layer scheme and little

sensitivity was reported. Given that the microphysical ten-

dencies are rather intermittent in time and space, we would not

expect that a different spatial scale would produce dramatically

different outcomes than those presented here. Indeed, we hy-

pothesize that the intermittency of the MP-tendencies is one

reason for the relatively small impact of SPP-MP.

Another simplifying assumption was the choice of Gaussian

and constant (‘‘barotropic’’) vertical structure to the SPP pat-

tern to avoid any imbalances in the local conservation prop-

erties. However, perturbing the cloud water shape parameter

and aerosol activation of water and ice technically represent

structural model error as they could affect the vertical structure

of clouds.

Based on the limited number of cases studied here, realistic

parameter perturbations to the microphysics results in only

small upscale error-growth when compared to that needed to

improve ensemble dispersion characteristics. The upscale error

growth is organized by the flow, in particular convective in-

stabilities, so that the impact of perturbing the horizontal dif-

fusion coefficients led to very similar uncertainty estimates as

perturbing the activation of cloud condensation and ice nuclei.

This is consistent with previous studies (e.g., Hacker et al. 2011;

Berner et al. 2015; Jankov et al. 2017, 2019; Stanford et al. 2019)

and can, in part, be remedied by representing uncertainty in

other parameterizations schemes, especially the boundary

layer scheme and land surface model. Future work is planned

to study forecast error spectra in simulations with SPP-MP or

parameter perturbations in the PBL to better understand the

physical mechanisms of upscale error growth

Locally, the perturbations could have a large impact such as

when estimating the uncertainty of extreme weather, e.g.,

large, damaging hail, and may have substantial socioeconomic

benefits in agriculture, aviation, road transportation, etc. An

aspect not studied here is that stochastic parameter perturba-

tions have the potential to change themean state of the climate

FIG. 13. Difference of vertically integrated cloud fraction between each sensitivity experiment and the control experiment from the 60-h

forecast valid at 1200 UTC 13 Jan 2018. Note that experiment P8 (HDF) contains more numerous pixels in total that were affected in

addition to showing larger positive and negative shifts of cloud fraction compared to other experiments.
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system. (e.g., Lin and Neelin 2000; Berner et al. 2017; Zadra

et al. 2018; Palmer 2019). Given the central role of aerosols

becoming cloud condensation nuclei for radiative transfer

properties, future work should study the role of uncertainties in

the formulation of microphysical processes/parameters not

only in short-term forecasts, but also in long climate simulations.
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