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A B S T R A C T   

Soil moisture deficiency is a major factor in determining crop yields in water-limited agricultural production 
regions. Evapotranspiration (ET), which consists of crop water use through transpiration and water loss through 
direct soil evaporation, is a good indicator of soil moisture availability and vegetation health. ET therefore has 
been an integral part of many yield estimation efforts. The Evaporative Stress Index (ESI) is an ET-based crop 
stress indicator that describes temporal anomalies in a normalized evapotranspiration metric as derived from 
satellite remote sensing. ESI has demonstrated the capacity to explain regional yield variability in water-limited 
regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to 
be degraded due to interannual phenological variability. This investigation selected three study sites across the 
U.S. Corn Belt – Mead, NE, Ames, IA and Champaign, IL – to investigate the potential operational value of 30-m 
resolution, phenologically corrected ESI datasets for yield prediction. The analysis was conducted over an 8-year 
period from 2010 to 2017, which included both drought and pluvial conditions as well as a broad range in yield 
values. Detrended yield anomalies for corn and soybean were correlated with ESI computed using annual ET 
curves temporally aligned based on (1) calendar date, (2) crop emergence date, and (3) a growing degree day 
(GDD) scaled time axis. Results showed that ESI has good correlations with yield anomalies at the county scale 
and that phenological corrections to the annual temporal alignment of the ET timeseries improve the correlation, 
especially when the time axis is defined by GDD rather than the calendar date. Peak correlations occur in the 
silking stage for corn and the reproductive stage for soybean – phases when these crops are particularly sensitive 
to soil moisture deficiencies. Regression equations derived at the time of peak correlation were used to estimate 
yields at county scale using a leave-one-out cross-validation strategy. The ESI-based yield estimates agree well 
with the USDA National Agricultural Statistics Service (NASS) county-level crop yield data, with correlation 
coefficients ranging from 0.79 to 0.93 and percent root-mean-square errors of 5–8%. These results demonstrate 
that remotely sensed ET at high spatiotemporal resolution can convey valuable water stress information for 
forecasting crop yields across the Corn Belt if interannual phenological variability is considered.  
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1. Introduction 

Globally, soil water deficits are the single most important factor 
limiting crop yield (Begg and Turner 1976). Numerous indicators based 
on precipitation, soil moisture, vegetation indices (e.g. the Normalized 
Difference Vegetation Index; NDVI), and evapotranspiration (ET) have 
been used to quantify crop water stress and its relationship to yield. 
Among these indicators, ET uniquely integrates multiple factors relevant 
to yield response (i.e., soil moisture, climate, biomass, and crop condi-
tion) and is intimately connected to crop moisture availability. As early 
as the 1960s, Jensen (1968) demonstrated the strong linkage between 
crop yield and the ratio of actual-to-reference ET (fRET), serving as a 
proxy for moisture stress. Inspired by this work, Doorenbos and Kassam 
(1979) established relationships between relative yield losses and rela-
tive water deficits during different phases of crop growth using co-
efficients derived from ET. 

Until recently, spatially explicit maps of ET and fRET have not been 
extensively used for crop stress monitoring and crop yield estimation. 
Advances in remote sensing retrieval techniques over a range of spatial 
scales have produced ET-based metrics that have been identified as 
valuable indicators of crop water stress (Moran 2004). However, few 
studies have focused on exploring the use of remote sensing-based ET 
retrieval to estimate crop yield. Spatially explicit ET data have been 
related to yield by empirical regressions or correlation analyses 
(Anderson et al. 2016a, 2016b; Tadesse et al. 2015; Yang et al. 2018) or 
by integration into process-based models (Bastiaanssen and Ali 2003; 
Huang et al. 2015; Mishra et al. 2013; Teixeira et al. 2013). 

The Evaporative Stress Index (ESI) was specifically designed to 
identify stress conditions associated with agricultural drought (Ander-
son et al. 2007a, 2016b). The ESI represents temporal anomalies in fRET, 
which is retrieved from remotely sensed land-surface temperature (LST) 
data using the Atmosphere-Land Exchange Inverse (ALEXI) surface en-
ergy balance algorithm (Anderson et al. 2007a, 2011, 2013). Given the 
linkage between fRET and root-zone soil moisture availability in vege-
tated areas (Hain et al. 2009, 2011), the ESI has been shown to provide 
enhanced early warning of deteriorating crop moisture conditions (i.e., 
flash drought) when compared with precipitation or VI-based indices 
(Anderson et al. 2011, 2013, 2015; Otkin et al. 2013, 2014). In addition, 
the ET-based ESI index has also demonstrated the capability to explain 
yield variability in regional- and field-scale studies (Anderson et al. 
2016a, 2016b; Mladenova et al. 2017; Otkin et al. 2016; Yang et al. 
2018). Operational ESI product archives are currently being developed 
over the United States and globally at 4–10 km resolution using time- 
differential thermal infrared (TIR) imagery from geostationary (Ander-
son et al. 2013) or polar orbiting (Hain and Anderson 2017) satellites. 

Although the regional ESI shows good agreement with other drought 
indicators that are based on precipitation and rainfall, as well as with 
drought severity patterns seen in the U.S. Drought Monitor, Anderson 
et al. (2013) noted increased noise in a 10-km resolution ESI product 
over intensively managed agricultural lands in the heart of the U.S. Corn 
Belt (see e.g., their Fig. 10). This noise was attributed to the strongly 
peaked seasonal curve in fRET in this region - small shifts in phenology 
from year-to-year (e.g., differing emergence dates) result in large tem-
poral anomalies that are not necessarily related to crop stress. Further 
degradation in the ESI signal may result from the inclusion of multiple 
crop and land-cover types at the 10-km pixel scale, each with a different 
characteristic phenological cycle. 

In order to detect the effect of phenological behavior on crop water 
use, and to reduce its impact on the diagnosed stress signal, Yang et al. 
(2018) conducted a high-resolution assessment of ESI correlations with 
crop yield at the field scale. This investigation used an ALEXI disag-
gregation algorithm (DisALEXI; Norman et al. 2003; Anderson et al. 
2004), which spatially downscales regional ALEXI fluxes based on finer- 
scale thermal imagery from sensors like Landsat (30-m with sharpening/ 
8–16 day revisit) and MODIS (500-m/~daily acquisition). A data fusion 
technique is then used to combine Landsat and MODIS ET image 

timeseries to generate high spatiotemporal resolution ET datacubes of 
30-m pixels and a daily timestep. Yang et al. (2018) used 5-year ET 
datacubes of 35 × 35 km extent developed over experimental fields near 
Mead, NE to demonstrate that by selecting pure, single crop pixels and 
correcting for year-to-year variations in field-observed crop emergence 
date, correlations between ESI and yield improved from 0.28 at the 4-km 
scale to 0.93 at the 30-m scale. 

The current investigation builds on the study of Yang et al. (2018) by 
extending the analysis to multiple sites, larger areas, longer timeframes, 
and season-wide phenological alignment strategies to further assess the 
potential operational value of 30-m ESI datasets for yield prediction. 
Thirty-meter ET datacubes were constructed over three sites across the 
U.S. Corn Belt –near Mead, NE, Ames, IA and Champaign, IL, allowing 
for sampling a broader range of climate and water management prac-
tices. The analysis was conducted over an 8-year period from 2010 to 
2017, which was characterized by both drought and pluvial conditions 
and a large range in yield values. Retrieved ET timeseries extracted from 
each datacube are evaluated with respect to long-term flux tower ob-
servations collected over corn and soybean crops to provide an assess-
ment of the accuracy in the baseline flux retrievals. Next, interannual 
variations in corn and soybean yield, emergence date and primary cli-
matic driving factors (precipitation and temperature) are assessed across 
all sites and years to establish context. Relationships between crop- 
specific ESI and county-level yield data are assessed with and without 
phenological correction for emergence date. We also evaluate correction 
of the post-emergence timescale by using growing degree-days (GDDs), 
rather than calendar date, to account for variations in temperature- 
induced crop growth rate from year to year (Qian et al. 2019). Finally, 
ESI-yield regression relations derived from sample datasets at times of 
peak correlation are used to evaluate the effect of phenology corrections 
on the accuracy of resulting yield estimates. 

2. Study domains 

The U.S. Corn Belt roughly spans across 10 Midwest states (South 
Dakota, Nebraska, Kansas, Minnesota, Iowa, Missouri, Wisconsin, Illi-
nois, Indiana, and Ohio), a region characterized by a large east-west 
precipitation gradient resulting in diverse agricultural practices. These 
ten states produced more than 80% of the U.S. corn crop over the past 
five years (NASS Quick Stats, 2010-2019). To test the variability in yield 
– ESI correlations across the Corn Belt, three sites (Mead, NE; Ames, IA; 
Champaign, IL; Fig. 1) were selected, representing growing conditions 
with increasing precipitation and decreasing irrigation intensity from 
west to east. Land use in the three sites is primarily agricultural with 
alternating years of corn and soybean crops. These modeling sites were 
selected (1) based on the availability of multiple flux towers with high 
quality, long-term records and yield biophysical measurements; and (2) 
to sample the predominant ET gradient across the Corn Belt resulting 
from varying climate and agricultural water management practices. 

For each study site, a modeling domain of approximately 90 × 90 
km, covering approximately 5–6 counties, was defined that included the 
target tower sites (Fig. 1). Thirty-meter resolution daily ET datacubes 
were constructed for each site for the period 2010–2017. The general 
characteristics of the sites and drought conditions over the study period 
are described in Sec 2.1–2.2, while details regarding the flux tower 
observations are provided in Sec. 4.1. 

2.1. Study sites 

The Mead, NE study area, covering parts of six counties, is primarily 
characterized by corn and soybean rotations with a mixture of irrigated 
and rain-fed fields. Croplands account for more than 85% of the total 
area within the modeling domain, and irrigation practices have signif-
icantly increased in the eastern part of Nebraska during the past three 
decades (Deines et al. 2019). The climate is humid continental, with an 
annual average temperature of 10.5 ◦C and an annual precipitation total 
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of 785 mm. 
The study area around Ames, IA includes parts of five counties sup-

porting rain-fed corn and soybean production (83% of the total land-
cover), typically grown in rotation in consecutive years. The average 
annual temperature in the Ames study area is 8.9 ◦C with an average 
annual rainfall of 845 mm. 

Agriculture in the Champaign, IL study area, extending over parts of 
six counties, is mostly rain-fed, cultivated with alternating years of 
soybean and corn crops that account for 88% of the total study area. The 
area has a climate classification of humid continental, with an annual 
average temperature of 11 ◦C and an annual precipitation total of 990 
mm. 

2.2. Climate conditions over the study period 

Due to the gradients in rainfall and water management practices that 
span the Corn Belt, crops grown in these three study sites are susceptible 
to periodic drought to differing degrees. Drought conditions at each site 
from 2010 to 2017, as characterized by the U.S. Drought Monitor 
(USDM) time series (http://www.droughtmonitor.unl.edu/Data/Time 

series.aspx) and regional GOES-based ESI, are shown in Fig. 2. The 
USDM classifies drought into five drought severity classes (i.e., D0: 
abnormally dry, D1: moderate drought, D2: severe drought, D3: extreme 
drought, and D4: exceptional drought). The ESI maps are computed from 
4-week composites at 4-km resolution. Also shown is the temporal 
evolution over the study period of percent area covered by each USDM 
class within the hydrologic unit code (HUC) region that encompasses 
each study domain and surrounding areas (102,002, 070802, 071300 
for Mead, Ames and Champaign, respectively). 

In 2012, most of the Corn Belt was affected by a flash drought, with 
rapid onset starting in mid-May. Otkin et al. (2016) identified the classic 
ESI flash drought signature in 2012, characterized by a pulse of high ET 
in April-early May as soil moisture reserves rapidly deplete followed by a 
steep trajectory toward negative (i.e., stressed) ESI. Fig. 2 shows that the 
Mead site was most strongly impacted by the 2012 drought, with a large 
percentage of the area under extreme drought (D3) for almost six 
months and 20% of the area was under exceptional drought (D4) for five 
months. In contrast, drought conditions in Ames and Champaign were 
not quite as severe in 2012, instead peaking at D3. As shown by Otkin 
et al. (2016), the ESI tracked the spatiotemporal patterns of USDM and 

Fig. 1. Study domains cover several counties outlined by red line. Background map in the top two rows is from the NASS 2017 Cropland Data Layer, showing corn 
and soybean cropped area. Flux tower locations are marked in red on true colour images from Google Earth shown in the bottom row. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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NASS crop conditions in 2012 well. Drought of varying degrees persisted 
through 2013 at the three study areas. All three study areas were also 
impacted by D0-D1 drought in 2017. 

3. Methods 

3.1. ET retrieval based on energy balance 

The Atmosphere-Land Exchange Inverse (ALEXI) surface energy 
balance model (Anderson et al. 1997, 2007a) and associated flux 
disaggregation algorithm (DisALEXI; Anderson et al. 2004; Norman 
et al. 2003) are used in this study to retrieve ET at different spatio-
temporal scales. In ALEXI, a simple slab model of energy conservation in 
the atmospheric boundary layer (McNaughton and Spriggs 1986), is 
coupled with the Two-Source Energy Balance (TSEB) model (Kustas and 
Norman 1999; Norman et al. 1995) to partition the surface energy 
budget: 

Rn = H+ λE+G (1)  

where Rn is net radiation, λE is latent heat, H is sensible heat, and G is 
the soil heat flux (all in units of Wm− 2). Primary remote sensing inputs 
are land surface temperature (LST), used to constrain energy balance, 
and vegetation cover fraction governing the partitioning between soil 
and canopy flux sources. 

ALEXI uses time-differential measurements of the morning LST rise, 
typically acquired by geostationary satellites with resolutions from 3 to 
10 km. Finer scale assessments of ET can be obtained using the DisALEXI 
algorithm (Norman et al. 2003, Anderson et al. 2012), which spatially 
downscales regional ALEXI latent heat flux by applying the TSEB to 
higher resolution LST data retrieved from thermal infrared (TIR) im-
agery collected on airborne or polar orbiting satellite platforms. To 
ensure consistency between spatial scales, the DisALEXI air temperature 
boundary conditions are iteratively adjusted until the disaggregated 
daily ET fluxes match the ALEXI flux baseline at the ALEXI pixel scale. 
Additional details are given in Sun et al. (2017). 

Instantaneous latent heat flux estimates at the satellite observation 
time are integrated to daily values and converted to mass flux (ET) by 
conserving the ratio between evapotranspiration and insolation: 

Fig. 2. Annual ESI (4-wk) and USDM 2010–2017 maps from the end of July for NE, IL and IA (left two columns), and timeseries of USDM drought classification areal 
percentages in the HUC region containing the Mead, Ames, and Champaign study domains (right column). D0 indicates abnormally dry, D1 is moderate drought, D2 
is severe drought, D3 is extreme drought, and D4 is an exceptional drought. 
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finst =
λEinst
Rsinst

(2)  

ETd =
finst*Rs24

λ*ρw
(3)  

where finst is the ratio of instantaneous latent heat to instantaneous 
insolation at the satellite overpass time, and Rs24 is the time-integrated 
daily (24-h) insolation rate (Cammalleri et al. 2014). The latent heat 
energy flux is converted to an ET mass flux using the latent heat of 
evaporation (λ) and the density of water (ρw). 

3.2. ET data fusion 

To create the sub-field scale ET datacubes (30-m/daily) used in this 
study, high temporal/low spatial resolution MODIS imagery (500-m/ 
~daily acquisition) and low temporal/high spatial resolution Landsat 
(30-m/periodic acquisition) ETd image timeseries were generated with 
DisALEXI and then fused using the Spatial and Temporal Adaptive 
Reflectance Fusion Model (STARFM; Gao et al. 2006, 2015). STARFM 
computes a spatially distributed weighting function from MODIS and 
Landsat image pairs on those days when both are available and applies 
these weights to downscale MODIS images to the Landsat scale between 
Landsat overpasses. For details regarding the ET data fusion process, the 
reader is referred to Cammalleri et al. (2014), Sun et al. (2017), and 
Yang et al. (2017). For this project, eight years of daily, 30-m resolution 
ET imagery were constructed over the three target domains. 

3.3. Regional ALEXI-based evaporative stress index (ESI) 

The Evaporative Stress Index (ESI) is based on a normalized ET 
metric; namely, the ratio of actual ET to a reference ET (ETref) expected 
under non-moisture limiting conditions: 

fRET =
ET
ETref

(4) 

Scaling actual ET by reference ET aims to focus the index on the soil 
moisture signal and minimize impacts due to seasonal variations in 
available energy. In this study, actual ET is retrieved at the ALEXI, 
MODIS, and Landsat pixel scale using the ALEXI/DisALEXI algorithm, 
while ETref is calculated from the FAO-56 Penman-Monteith reference 
ET for grass, as described in Allen et al. (1998). 

ESI is typically computed as standardized anomalies in fRET relative 
to baseline conditions (Anderson et al. 2007b, 2011, 2013). First, fRET is 
composited over a moving time window (typically 2, 4, 8 or 12 weeks, 
depending on the drought timescale of interest), advancing at a 7-day 
interval. Then ESI is computed as 

ESI(d, y, i, j) =
〈v(d, y, i, j) 〉 − 1

n

∑k=n

k=1
〈v(d, yk, i, j) 〉

σ(d, i, j) (5)  

where 〈v(d,y, i, j)〉 is the fRET composite for day d, year y, and i, j grid 
location, v(d,y, i, j) is the value on day d, n is the number of years in the 
period of record used to establish the baseline, and σ(d, i, j) is the stan-
dard deviation in v for that compositing interval. The anomaly space 
highlights the difference in moisture conditions between years with 
respect to a multiyear average determined over some period of record. 
While Yang et al. (2018) used a non-standardized anomaly in the pre-
vious 4-year analysis at Mead, NE, due to small sample size, expansion to 
8 years in the current study enabled reasonable assessment of the 
standard deviation term in Eq. (5). 

ALEXI ESI is currently computed routinely at 4-km resolution over 
the continental United States (CONUS) and at 5-km resolution globally 
and has been used in drought monitoring at regional and global scales. 
The coarse resolution of the regional product represents a mixture of 

crops and landcovers with different phenological cycles, limiting its 
utility for finer scale studies. 

3.4. Crop-specific, phenology-corrected ESI 

Differences in yield response to water stress occurring at different 
stages of crop development have been well studied, with reproductive 
phases often being most sensitive (Wilson 1968; Claassen and Shaw 
1970; Cakir 2004). Our hypothesis is that alignment of fRET annual 
timeseries by crop-specific phenological stage prior to anomaly 
computation will improve correlations between ESI and yield. Yang 
et al. (2018) demonstrated the value added in aligning fRET timeseries by 
emergence date. Here, we further study effects of within-season align-
ment of stress signals by growth stage, by replacing the calendar-day 
time axis used in standard ESI computations with a GDD timescale. 

A 30-m resolution crop mask (Crop Data Layer; NASS CDL, 2010- 
2017) for each year was applied to each fRET datacube to identify pixels 
associated with specific crop types. These identified pixels were then 
aggregated using linear averaging to the county level. In addition, a 
generic definition of the day-of-year index, dp was introduced into Eq. 7 
in order to account for year-to-year variability in crop phenology within 
the ESI computation: 

ESI
(
dp, y, c, u

)
=

〈
v
(
dp, y, c, u

) 〉
− 1

n

∑k=n

k=1

〈
v
(
dpk, yk, c, u

) 〉

σ
(
dp, c, u

) (6)  

where c is crop type (i.e., corn or soybean); u is the unit of spatial ag-
gregation, (i.e., county scale); and dp is a daily index, which may include 
a potential temporal shift to accommodate variable emergence date, and 
may also represent time increments in calendar days or growing degree 
days. 

We applied Eq. (8) to the three study sites at the county level for corn 
and soybean and evaluated three definitions of dp: calendar date, 
emergence-corrected calendar date, and emergence-corrected growing 
degree days. In the case of the calendar date alignment, dp was defined as 
day of year (DOY), starting from January 1st. In the case of emergence- 
corrected calendar date alignment, dp was set using the first year in the 
timeseries (2010) as a baseline and, prior to anomaly computation, time 
series for other years were adjusted forward or backward based on the 
difference in that year’s crop emergence date relative to emergence in 
2010. In the case of growing degree day alignment, dp reflects growing 
degree days accumulated from emergence. 

3.5. Growing degree day calculation 

The rate of crop development through the growing season depends 
largely on the accumulation of heat (Gilmore and Rogers 1958). The 
Growing Degree Day, or GDD, is a heat index that has been widely used 
to assess crop development (Liu et al. 2016; Neild and Newman 1987; 
Qian et al. 2019). GDD is calculated by subtracting a base temperature 
from the daily mean temperature, as defined in Eq. (9): 

GDD =
Tmax + Tmin

2
− Tbase (7)  

where Tmax and Tmin are daily maximum and minimum air temperatures 
respectively, and Tbase is the base temperature under which no signifi-
cant crop development is expected. Tbase varies with plant species and 
10

◦

C typically is used as the base temperature for corn and soybean 
crops (Pedersen et al. 2004; Ritchie et al. 1997). 

Accumulated GDD on day i (AGDDi) is derived by summing daily 
GDD (Eq. 10) from a specified starting date as 

AGDDi =
∑k=i

k=e
GDDk (8) 
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Here we define the beginning accumulation date as the date of corn 
and soybean emergence (i.e., k = e), which will differ due to different 
planting schedules. 

3.6. Yield anomaly – ESI correlation 

Over the past several decades, yields of corn and soybean have 
steadily increased due to technological advances in cultivation and 
management and genetic improvements in cultivars (Duvick 2005; Egli 
2008; Kucharik and Ramankutty 2005). In assessing correlations with 
climate factors, which typically have shorter-term variability, these 
longer term yield trends are often removed prior to analysis (Lu et al., 
2017). Here, we compute yield anomaly as departures from a linear 
regression in time over the 2010–2017 period: 

yield (u, y)
′

= yield(u, y) − yieldlin(u, y) (9)  

where u is the spatial aggregation unit (i.e., county), y is the year, and 
yieldlin is given by a linear temporal fit to all yield data for that unit over 
the period of record. 

To quantify temporal relationships between yield anomalies and ESI, 
the Pearson correlation coefficient was computed as a function of ESI 
composite date. Correlations were computed for each modeling domain 
based on np = nu × ny ESI - yield anomaly points, where nu is the number 
of counties used in the study domain and ny is the number of years in the 
analysis. The peak in the domain correlation curve pinpoints the date of 
maximum predictive power for yield estimation, and the regression 
equation derived for that peak date is used for yield estimation (Sec. 
3.7). Yield anomaly – ESI correlations were computed for calendar date 
alignment, emergence-corrected calendar date alignment, and GDD 
alignment (Sec. 3.4), and improvements in performance due to pheno-
logical corrections were assessed in terms of the impact on the peak 
correlation. 

3.7. Yield estimation and evaluation 

The predictive power of within-season ESI for estimating at-harvest, 
county-level yield was assessed using a bootstrapping strategy that was 
applied in both the time and space domains. Two tests were performed 
to assemble the np = nu × ny samples used to generate regression 
equations used for yield estimation, leaving out one year and one county 
in the bootstrapping analysis. The leave-one-year-out test evaluates the 
temporal (inter-annual) predictive capability of the ESI-yield relation-
ship, while the leave-one-county-out test assesses capacity for spatial 
extrapolation. Regression equations between yield anomalies and ESI 
were derived from the remaining samples and applied to the year or the 
county excluded from bootstrapping. Lastly, the yield estimates and 
yield anomalies were compared with NASS county-level yield data. 
Yield estimation and evaluation were conducted for the calendar date, 
emergence-corrected calendar date, and GDD temporal alignments. 

4. Data 

4.1. Micrometeorological measurements 

All three of the study domains contained two or more eddy covari-
ance systems collecting measurements of solar radiation (Rs), net radi-
ation (Rn), latent heat (λE), sensible heat (H), soil heat flux (G) and 
momentum fluxes, as well as temperature, wind speed and direction, 
humidity and precipitation. Seven flux towers were used in this study to 
evaluate the accuracy of the 30-m daily ET retrievals (Table 1). Flux 
towers USNe1, USNe2, and USNe3 (PI: A. Suyker) are located within the 
University of Nebraska Agricultural Research and Development Center 
near Mead, NE. Fields USNe1 (48.7 ha) and USNe2 (52.4 ha) are irri-
gated (center pivot), whereas field USNe3 (65.4 ha) is rain-fed (Suyker 
et al. 2004). Three AmeriFlux towers (USBr1, USBr2 and USBr3; PI: J. 
Prueger) operate within the Ames, IA domain. The footprints of USBr1 
and USBr3 sample two adjacent fields, whereas USBr2 was installed on 
the common boundary of these fields and may be influenced by both, 
depending upon the wind direction. In this study, only USBr1 and USBr3 
have been used. The Champaign site has hosted a long-term AmeriFlux 
flux tower installation (USBo1, PI: T. Meyers) since 1996 (Meyers and 
Hollinger 2004). USBo1 is in a rain-fed field, cultivated with alternating 
years of soybean and corn crops. In addition, the University of Illinois- 
Champaign maintains several flux towers in this area including USUiC 
which was installed in a rainfed corn/soybean rotation field (PI: C. 
Bernacchi). 

Due to the fact that the eddy covariance flux measurement technique 
does not enforce energy closure, we assessed model-observation agree-
ment using both observed fluxes and fluxes forced with a “residual 
correction” approach, which assigns the entire residual of the observed 
energy budget at the daily timescale to the daily latent heat flux (λE 
closed = RN − H − G) (Prueger and Kustas, 2005). The observed and 
residual closure values likely bound the true latent heat flux, and asso-
ciated model errors. Average closure errors (λE closed – λE) were 16–29% 
of daily net radiation for the towers and time periods listed in Table 1. 
For details regarding the flux and supporting micrometeorological 
measurements at Mead, Ames, and Champaign, readers are referred to 
Suyker and Verma (2009), Hatfield et al. (1999), and Meyers and Hol-
linger (2004). 

4.2. NASS yield and crop progress data 

The USDA National Agricultural Statistics Service (NASS) produces 
monthly yield forecasts for the major commodities during the second 
half of the growing season at U.S. national and state levels. These esti-
mates are primarily based on data collected through two surveys: 
Agricultural Yield (AY) and Objective Yield (OY) (NASS/USDA, 2006). 
The AY is a phone-based survey sampling thousands of producers across 
the country, asking them about perceived crop yields from their farm. 
The OY on the other hand is a plot-based survey in which very small 
within-field areas are randomly sampled and visited by an enumerator 
to obtain biophysical measurements for ascertaining yields. Given the 
OY is much more labor intensive, the sample size is only in the hundreds 
and limited to intensive growing states and major commodities. It 
should also be noted that within the last few years, remote sensing 

Table 1 
Flux tower data collected at Mead, Champaign, and Ames sites for validation.  

Site State Tower Lat Long Years Dominant land cover 

Mead NE USNe1 41.165 − 96.477 2010–2017 irrigated corn/soybean field 
Mead NE USNe2 41.165 − 96.470 2010–2017 irrigated corn/soybean field 
Mead NE USNe3 41.180 − 96.440 2010–2017 rainfed corn/soybean field 
Ames IA USBr1 41.976 − 93.693 2010–2017 rainfed corn/soybean field 
Ames IA USBr3 41.974 − 93.694 2010–2017 rainfed corn/soybean field 
Champaign IL USBo1 40.052 88.373 2010–2016 rainfed corn/soybean field 
Champaign IL USUiC 40.063 − 88.196 2010–2016 rainfed corn/soybean field  
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information from MODIS has also been adding independent and ancil-
lary information to better affirm the results of both the AY and OY 
surveys. 

For corn and soybeans, the first seasonal yield estimates are based on 
August 1 conditions and published no later than the 12th of the same 
month. Updated forecasts are then produced with the same day of month 
constraints for September, October and November. After harvest is fully 
complete, the finalized national and state yield estimates are released in 
January of the next year in the NASS Annual Summary report. Next, 
county-level estimates are released in late February based on a yet 
another survey, this time mail-based and having occurred in the late fall. 
The county efforts are different in that they are not probability-based, 
asking for crop statistics beyond just yield, and managed indepen-
dently for each state. However, the data ultimately reconcile to the 
Annual Summary established state yields and thus do not exist in 
isolation. Note that NASS does not publish measures of uncertainties 
alongside its county average estimates, given the complicated mix of 
survey and model information being integrated. 

NASS also publishes weekly state-level Crop Progress (CP) and 
Condition reports giving estimates of crop development stage for pri-
mary crops. These span planting to harvest from April to November. 
While the data collected for these reports are qualitative in that they rely 
on the expert judgement of local cooperative crop reporting respondents 
within each sampled state, they show reasonable agreement with 
remotely sensed phenological metrics (Gao et al., 2017, 2020). Progress 
data for corn are expressed as a percentage of the crops in the reporting 
unit (state level for publically available data) planted, emerged, silking, 
doughing, dented, mature, and harvested; and for soybean as a per-
centage of the crop planted, emerged, blooming, setting pods, dropping 
leaves, and harvested. The average number of days reported by NASS 
from 20 to 80% emergence for the study states and period was 16 days 
for corn and 19 days for soybean. In specifying annual phenological 
offsets for each county we define “emergence date” as the midpoint of 
this range – the day a crop achieved about 50% emergence within that 
state. 

4.3. Growing degree day (GDD) 

Growing Degree Day data for corn were obtained from the High 
Plains Regional Climate Center (HPRCC) Corn Growing Degree Day 
(GDD) decision support tool (https://hprcc.unl.edu/gdd.php), which 
provides high quality data that are widely used for crop development 
analysis in the Midwest (Skaggs and Irmak 2012; Grassini et al. 2015). 
The HPRCC-accumulated corn GDD for counties starts from the earliest 
insurable planting dates for corn (by county) based on the 2014 crop 
insurance records or from April 1 if there is no crop insurance record 
available. Because there are no soybean GDD data readily available, in 
this study, we calculated the accumulated soybean GDD from the 
HRPCC corn GDD by adjusting the starting date. Specifically, we recal-
culated the accumulated GDD from daily GDD starting from the state- 
level crop emergence date obtained from the NASS CP reports for corn 
and soybean (NASS CP, 2010-2017). 

4.4. ET model inputs 

ALEXI is routinely run over the CONUS at 4-km resolution using 
brightness temperature observations from the Geostationary Opera-
tional Environmental Satellites (GOES). Land-surface temperature data 
retrieved from GOES-East (at 75◦W) and GOES-West (at 105◦W) are 
combined to provide a full coverage of CONUS (Anderson et al. 2007a, 
2007b). 

ALEXI 4-km ET fields were disaggregated to 500 m resolution using 
standard Collection 6 MODIS products as input to the DisALEXI algo-
rithm. These include LST and view angle maps (MOD11_L2; Wan et al. 
2015), geolocation fields (MOD03), land-surface albedo (MCD43A; 
Wang et al. 2018) and leaf area index (LAI) (MCD15A3H; Myneni, et al. 

2015). A gap-filling and smoothing technique was applied to the MODIS 
ET retrievals to obtain daily data and fill gaps due to clouds and swath 
limitations (Yang et al. 2018). 

Periodic ET retrievals at 30-m resolution were also obtained with 
DisALEXI using Landsat data over three Worldwide Reference System 
(WRS) scenes: Mead (path 28/row 31), Ames (path 26/row 31), and 
Champaign (path 23/row 32). Landsat 5, 7, and 8 data from 2010 to 
2017 were acquired for these path-row scenes. A total of 330, 142, and 
214 Landsat scenes were processed for Mead, Ames, and Champaign, 
respectively, excluding any scenes with snow cover or > 30% cloud 
cover. The resulting average Landsat revisit frequency was 15 days be-
tween images, with a maximum gap of 33 days in the growing season 
from April to October. 

Atmospherically corrected Landsat surface reflectance (SR) data at 
30-m resolution were downloaded from the USGS Earth Resources 
Observation and Science (EROS) Center. TIR data at were also down-
loaded and were atmospherically corrected using MODTRAN (Berk et al. 
1989; Cook et al. 2014). Because the TIR data have varying native 
spatial resolution (120 m, 60 m and 100 m for Landsats 5, 7, and 8, 
respectively), the Data Mining Sharpener (DMS; Gao et al. 2012a) tool 
employing a TIR-SR machine learning technique was applied to the 
thermal data to achieve a consistent 30-m resolution for all Landsat 
scenes. LAI at 30-m resolution was derived from MODIS 500-m LAI and 
Landsat 30-m SR data using a reference-based regression tree approach 
(Gao et al. 2012b). Gaps in derived Landsat ET images due to cloud 
cover or scan line corrector failure (Landsat 7) were filled using the gap- 
filling technique described by Yang et al. (2017). 

For both ALEXI and DisALEXI, meteorological model inputs of solar 
radiation, wind speed, air temperature, vapor pressure, and atmospheric 
pressure were obtained from the Climate Forecast System Reanalysis 
(CFSR; Saha et al. 2014) archive. 

5. Results 

5.1. Model evaluation with flux observations 

To test the performance of the DisALEXI-Landsat retrievals, which 
provide the high-resolution spatial structure for the fused daily ET 
timeseries, the modeled energy balance was compared with daytime- 
integrated measurements from the seven flux towers. Model fluxes of 
daily solar radiation, net radiation, latent heat, sensible heat, and soil 
heat on the Landsat overpass dates during the growing season (DOY 
90–300) were extracted from DisALEXI-Landsat output at the tower 
locations. Fluxes were averaged over a box of 3 by 3 Landsat pixels 
around the tower locations to represent the surface footprint with a 
dimension on the order of 100 m. For some flux tower sites (e.g. USBo1), 
the extraction point was offset by 1–2 Landsat pixels to avoid field edge 
effects. 

The statistical accuracy of the model flux partitioning on Landsat 
dates over the seven flux tower sites (Table 1) is presented in Fig. 3 and 
reported in Table 2. Quantitative measures include the number of ob-
servations, the mean observed flux, the mean modeled flux, the mean 
bias error (MBE), the mean absolute error (MAE), the root mean square 
error (RMSE), and the percent error (% ERR, defined as the ratio of MAE 
and the mean observed flux). 

Across the three study sites, the primary energy inputs – solar radi-
ation (Rs) and net radiation (Rn) - agree reasonably well with local 
measurements. Solar radiation from CFSR has errors on the order of 5% 
at the seven flux sites, while errors in net radiation are on the order of 
10%. Errors in Rs are comparable to insolation accuracies reported at 
other study sites (Anderson et al. 2019), with a few outliers where cloud 
conditions were not well represented in the CFSR reanalysis. In future 
studies, geostationary satellite-derived insolation products could be 
used to improve model radiation input (Anderson et al. 2019). 

Modeled latent heat fluxes are compared to observations both with 
and without closure correction, which generally can be considered to 
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Fig. 3. Comparisons of observed and Landsat-retrieved daytime integrated fluxes on Landsat overpass dates at the seven flux tower sites within the three modeling 
domains: USBo1 and USUiC (Champaign); USBr1 and USBr3 (Ames); USNe1, USNe2, and USNe3 (Mead). 
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bound the ‘true’ flux. The ‘residual corrected’ latent heat flux has better 
agreement in the three study sites, as might be expected since the TSEB 
inherently closes the modeled energy budget. Differences between 
modeled and observed fluxes reflect a combination of both model and 
observational error, including errors from imposing energy balance 
closure. Percent errors on Landsat overpass dates are on the order of 
17–25%, consistent with typical errors of 20% or larger obtained in 
previous flux measurement comparison studies (Kustas and Norman, 
1997; Twine et al. 2000; Wilson et al. 2002). 

The fused daily ET estimates show good agreement with ET 

measurements computed from the closed latent heat flux values (last 
column in Table 2), with RMSE of 1.1–1.3 mm d− 1 and MAE of 0.9–1.1 
mm d− 1 for all flux sites. These daily ET accuracies are close to the 
performance reported from prior ET fusion experiments (Cammalleri 
et al. 2013, 2014; Semmens et al. 2016; Sun et al., 2017; Yang et al., 
2017) and are in line with the target model accuracy of approximately 1 
mm d− 1 for agricultural applications as cited by Seguin et al. (1999). 

Fig. 4 compares modeled fused daily ET with time-series observa-
tions from the seven flux towers across the Mead, Ames, and Champaign 
study sites. Note that 2015 ET observations from the USNe3 flux site are 

Table 2 
Summary of the statistical indices quantifying model performance for daytime-integrated surface energy fluxes on Landsat overpass dates at the seven flux tower 
stations (unit: MJm− 2 d− 1), and daily ET from the fused timeseries (unit: mm d− 1).  

Flux Stats Rs Rn H G λE λE Daily ET Daily ET 

tower unclosed closed unclosed closed 

USNe1 N 68 68 68 68 68 68 1412 1412  
Mean O 25.2 16.7 2.3 3.5 8.3 11.0 2.8 3.8  
Mean P 25.2 14.6 1.6 3.2 9.8 9.8 3.4 3.4  
RMSE 2.0 2.6 1.3 1.9 2.8 2.7 1.3 1.2  
MBE 0.0 − 2.1 − 0.7 − 0.3 1.5 − 1.1 0.7 − 0.4  
MAE 1.4 2.2 0.9 1.5 2.4 2.0 1.1 0.9  
% error 5.4 12.9 39.8 43.0 29.3 17.8 38.3 24.2 

USNe2 N 72 72 72 72 72 72 1565 1565  
Mean O 25.1 16.0 2.2 3.6 8.4 10.2 2.7 3.4  
Mean P 25.2 14.5 1.6 3.1 9.7 9.7 3.3 3.3  
RMSE 2.0 2.1 1.2 2.0 2.9 2.5 1.3 1.2  
MBE 0.1 − 1.4 − 0.6 − 0.4 1.3 − 0.5 0.5 − 0.1  
MAE 1.3 1.6 0.9 1.5 2.4 1.8 1.0 0.9  
% error 5.3 9.9 41.4 43.2 29.1 17.2 38.3 25.8 

USNe3 N 65 65 65 65 65 65 1395 1395  
Mean O 24.0 14.9 1.6 4.3 7.2 9.1 2.4 3.1  
Mean P 24.7 13.6 1.7 3.7 8.1 8.1 2.9 2.9  
RMSE 2.1 2.0 0.8 2.2 2.6 2.8 1.2 1.1  
MBE 0.7 − 1.3 0.2 − 0.5 1.0 − 1.0 0.5 − 0.3  
MAE 1.5 1.5 0.6 1.9 2.2 2.2 0.9 0.9  
% error 6.1 9.8 41.3 44.9 30.8 24.0 37.9 26.9 

USBr1 N 32 32 32 32 32 32 1103 1103  
Mean O 24.1 15.8 2.1 3.9 7.7 9.8 2.4 3.2  
Mean P 25.7 15.4 1.6 4.2 10.0 10.0 3.3 3.3  
RMSE 2.5 1.7 1.0 1.9 3.3 2.3 1.4 1.1  
MBE 1.6 − 0.4 − 0.5 0.4 2.3 0.1 0.8 0.0  
MAE 2.1 1.3 0.8 1.6 2.7 2.0 1.1 0.9  
% error 8.7 8.5 38.4 41.3 35.1 20.0 45.4 26.6 

USBr3 N 32 32 32 32 32 32 1188 1188  
Mean O 22.9 14.2 1.9 3.8 6.8 8.5 2.3 3.0  
Mean P 24.5 14.2 1.6 4.2 8.9 8.9 3.2 3.2  
RMSE 2.2 1.6 1.3 1.9 3.1 2.1 1.5 1.1  
MBE 1.6 0.0 − 0.3 0.3 2.1 0.4 0.9 0.2  
MAE 1.8 1.2 0.9 1.4 2.5 1.7 1.2 0.9  
% error 7.8 8.2 49.5 37.2 37.2 19.4 51.5 28.7 

USBo1 N 35 35 35 35 35 35 777 777  
Mean O 24.3 14.7 2.5 3.8 7.8 8.4 2.7 3.0  
Mean P 24.5 14.4 1.6 3.7 9.0 9.0 3.4 3.4  
RMSE 2.2 1.8 2.1 2.0 2.8 2.7 1.4 1.3  
MBE 0.2 − 0.3 − 0.9 − 0.2 1.2 0.6 0.7 0.4  
MAE 1.2 1.2 1.6 1.6 2.2 2.1 1.1 1.0  
% error 5.0 8.4 64.4 41.9 27.5 25.5 40.7 34.2 

USUiC N 33 33 33 33 33 33 852 852  
Mean O 25.1 15.9 3.1 1.4 9.4 11.4 3.3 3.7  
Mean P 24.5 14.3 3.8 1.6 8.9 8.9 3.2 3.2  
RMSE 1.2 2.1 2.3 1.1 3.1 3.7 1.4 1.4  
MBE − 0.6 − 1.6 0.7 0.2 − 0.5 − 2.5 − 0.1 − 0.5  
MAE 1.1 1.8 1.9 0.9 2.6 3.0 1.1 1.1  
% error 4.4 11.6 63.0 61.7 27.3 26.2 33.9 28.5 

All sites N 337 337 337 337 337 337 8292 8292  
Mean O 24.4 15.4 2.2 3.5 7.9 9.8 2.7 3.3  
Mean P 24.9 14.4 1.9 3.4 9.2 9.2 3.2 3.2  
RMSE 2.0 2.0 1.4 1.8 3.0 2.7 1.3 1.2  
MBE 0.5 − 1.0 − 0.3 − 0.1 1.3 − 0.6 0.6 − 0.1  
MAE 1.5 1.5 1.1 1.5 2.4 2.1 1.1 0.9  
% error 6.1 10.0 49.7 43.1 30.6 21.4 40.2 27.7 

N: number of samples; Mean O: mean observed flux; Mean P: mean predicted flux; RMSE: root mean square error; MBE: mean bias error; MAE: mean absolute error; Rs: 
solar radiation; Rn: net radiation; G: soil heat flux; H: sensible heat flux; λE: latent heat flux; ET: evapotranspiration. The closed values indicate that the energy balance 
residual correction has been applied (Prueger and Kustas, 2000), while unclosed indicates that energy balance closure was not imposed on the measurements. 
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not included in the comparison due to data availability issues. In gen-
eral, the fused ET estimates reproduce the observed seasonal and 
interannual trends at the seven flux towers. In some sites and years, 
however, the model missed the peak value in the observed ET (e.g., 
USBr1 in 2013, USUiC in 2013 and 2016). In these cases, no clear 
Landsat scenes were available during the peak ET period due to cloud 
cover and the fused timeseries were not able to recover the highest 
fluxes. 

5.2. Yield and phenology variations 

Before analyzing yield-ESI correlations, we examined the natural 

variability in yield, emergence date, and forcing meteorological condi-
tions that occurred over the period of record. Fig. 5a shows annual mean 
corn and soybean yields for counties in the three study domains, along 
with box plots that show yield averages and variability for each site over 
the full study period. These box plots demonstrate an increase in both 
corn and soybean yield and yield variability from west to east (i.e., from 
Mead, NE to Champaign, IL). The lowest yields occurred in the 2012 
flash drought year, except for soybean at Ames. 

The higher yield variability at Ames and Champaign, particularly for 
corn, may be related to variability in annual rainfall (Fig. 5b) given that 
most crops in these regions are rain-fed. The USDM plots (Fig. 2) indi-
cate that the Mead domain was most impacted by drought over the study 

Fig. 4. Timeseries of closed ET observations (blue dots), 30-m ET retrievals on Landsat overpass dates (green diamonds), and daily ET estimates from STARFM (red 
line) at the seven flux tower sites. Precipitation is shown on the top of each panel as dark blue bars. Mead includes USNe1, USNe2, and USNe3 flux towers; Ames 
includes USBr1, and USBr3; Champaign includes USBo1 and USUiC. Note that USNe1 and USNe2 are located in irrigated fields, and therefore the precipitation 
amount includes both rainfall and irrigation. The other five tower sites are in rain-fed fields. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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Fig. 5. Yield (a) precipitation and temperature (b) and emergence date (c) variation across Mead, Ames, and Champaign for corn and soybeans (2010–2017). Boxes 
are drawn from 25th percentile to 75th percentile of the data with a horizontal red line denoting the median. Whiskers represent the minimum and maximum data 
value. Data source: USDA NASS county level yield; DAYMET 1 km data; USDA NASS state level crop progress reports. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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period. Temperature values show similar levels of year-to-year vari-
ability across the three study sites, with cooler temperatures at Ames due 
to its higher latitude. 

Mean emergence date also varied across the three study sites, with a 
tendency toward later emergence for both corn and soybeans from west 
to east. The earliest corn emergence date at the Mead site occurred in 
2012, due to higher early season temperatures and growing degree day 
accumulation. The latest soybean emergence date at Ames was in 2013, 
with extreme wet conditions in early spring delaying planting, and 
therefore emergence. These conditions also contributed to the low 
soybean yields in that year. In summary, the combined study domain 
exhibited notable variability in phenology, yield and climate conditions 
over the period of record, warranting evaluation of phenological cor-
rections to the ESI-yield relationships. 

5.3. Correlations between yield anomalies and ESI at county level 

Fig. 6 shows the correlations between yield anomalies and ESI for the 
three time-axis alignments (calendar date, emergence date, and accu-
mulated GDD) for corn and soybeans, for individual counties (colored 
curves) and for all counties within the domain combined (black dashed 
curve). The vertical solid lines indicate average emergence date and 
harvest date as obtained from NASS CP reports. While the calendar date 
and emergence date alignment plots cover the growing season (week 15 
to week 45), the GDD plot shows the period starting from emergence and 
ending at 3000 AGDD which is beyond physiological maturity for both 
corn and soybeans. The vertical dashed line indicates the date when 
USDA NASS releases the first yield estimates for corn and soybeans 
(August 1). In the GDD plot, this line represents the average AGDD on 
August 1 over the period of record to allow for comparison with the 
calendar date alignment. 

The temporal correlation patterns between emergence and harvest 
are qualitatively similar between the three alignments. In many, but not 
all, cases, the emergence-corrected and GDD alignments have the 
advantage of reducing noise in the correlation curve. One notable 
feature is that the GDD alignment shifts the peak correlation to an earlier 
date than that obtained with the calendar and emergence-corrected 
alignment. The GDD alignment also tends to broaden and smooth the 
period of peak correlation, which confirms its value in controlling for 
variable growth rate post emergence. Patterns in GDD-aligned correla-
tion curves are strikingly similar between the corn and soybean crops. 

For all three time-axis alignments for corn, the peak correlation in 
the mean curve occurs before the harvest event (right vertical line in 
Fig. 6), indicating predictive power for within-season yield estimation 
prior to harvest. Peak correlation pre-harvest for corn fields ranges from 
0.67 to 0.98 and occurs 4–16 weeks before harvest. In some cases, the 
peak correlations are several weeks before August 1, prior to the yield 
estimate released from USDA NASS. In the GDD alignment, the peak 
correlations in the mean curve are before August 1st for the three sites 
and they all fall between 1000 and 1400 AGDD, the accumulated heat 
required for silking in corn (Neild and Newman, 1990). This coincides 
with the findings of Yang et al. (2018) that peak correlations between 
field-scale ESI and yield anomalies at the Mead flux sites occurred 68 
days after emergence, corresponding to the silking stage for maize when 
grain development is particularly sensitive to soil moisture deficiencies. 

The peak correlation for soybeans occurs before the harvest event in 
all three alignments at the three study sites. Peak correlations for soy-
bean fields range from 0.58 to 0.98 and occur 10–15 weeks before 
harvest. The peak correlations in the GDD alignment fall between 1100 
and 1500 AGDD, which is roughly around the initial reproductive stage 
and before physiological maturity (Pedersen et al., 2004). Studies have 
shown that in water-limited environments, maximum water use in 
soybeans occurs during reproductive stages, when the yield is very 
sensitive to moisture deficiency (Dogan et al. 2007; Pejić et al. 2011). 
Water stress imposed during reproductive stages (e.g., beginning of pod, 
beginning of seed, and full seed) can result in a substantial yield 

reduction compared to a fully watered crop (Dogan et al. 2007; Korte 
et al. 1983). 

In general, the phenology-based alignment of the fRET timeseries 
prior to anomaly computation improves performance in terms of noise- 
reduction, timeliness and window of peak correlation. An exception is 
seen in the case of soybeans within the Ames domain, where both 
emergence and GDD alignments reduce peak correlation between ESI 
and yield anomalies. The correlation curve collapses to a narrow peak 
during the growing season in the calendar date alignment relative to 
other cases. The emergence and GDD alignments further reduce the peak 
(from 0.91 to 0.79, and 0.78, respectively), although the window for 
peak correlation is broadened. This reduction is thought to be due pri-
marily to a large shift in the emergence date in 2013 as revealed in 
Fig. 5c, where NASS reported a more than two-week delay in soybean 
emergence at the state level relative to the median 2010-2017 date. This 
was due to extremely wet conditions during the early spring of 2013 
which delayed planting. This delay, however, may be spatially variable 
across the state and not well-represented at the county scale by the state 
level reports. This suggests the potential value of integrating timely 
remotely sensed indicators of crop phenology, as discussed further in 
Sec. 6.2. 

5.4. Yield estimation at county level 

The regression functions between yield anomaly and the ESI derived 
on the peak correlation date (as seen in Fig. 6) can be used for yield 
estimation. As an independent test of the accuracy of the ESI-based yield 
and yield anomaly estimates, the “leave-one-out” bootstrapping 
methods described in Sec 3.8 were applied. Figs. 7 and 8 compare NASS 
county-level yield data for corn and soybeans with yield estimates 
generated from the two bootstrapping strategies using calendar date, 
emergence-corrected calendar date, and GDD temporal alignments. 
Results for both yield anomalies and yield are shown. Note that the yield 
anomaly is estimated directly from the regression equations, whereas 
estimated yield is the sum of estimated yield anomaly and the multi-year 
yield trend. 

Figs. 7-8 show that correlations for yields are higher than for yield 
anomalies in all cases. This is expected, given that adding back the data- 
derived yield trends artificially boosts the correlation. In addition, the 
“leave-one-county-out” bootstrapping strategy produces higher corre-
lations than the “leave-one-year-out” tests, especially for the calendar 
date and corrected-emergence alignments. While spatial autocorrelation 
in yield and ESI variability between counties is likely inflating the cor-
relation coefficients in this case, these results were retained as a baseline 
for assessing the “leave-one-year-out” evaluations. 

Using the “leave-one-year-out” bootstrapping strategy, the GDD 
alignment provides superior yield estimates in comparison to the other 
two time-axis alignments across all sites and for both crops (Figs. 7-8). 
The fact that comparable accuracies are achieved with GDD between 
both bootstrapping strategies suggests that in accounting for the annual 
variability in growing season conditions we can derive yield relation-
ships using the heat unit scale which are more robust in both time and 
space. 

For example, for the “leave-one-year-out” sampling strategy, corn 
and soybean yields in the 2012 flash drought year were poorly predicted 
by regression equations developed from the other years of data with 
both calendar date and emergence date alignments, particularly for the 
Mead and Champaign sites (Figs.7–8). The extreme conditions for that 
year were not well represented among the remaining data under those 
alignments. However, the use of GDD enabled the low yields in 2012 to 
be reasonably predicted from relationships in other years. 

In most cases, simply correcting for the emergence date improved 
correlations between ESI and yield anomalies, as found in Yang et al. 
(2018). A notable exception was seen in the case of soybeans at Ames, 
where the “leave-one-year-out” correlation between estimated and 
observe yield anomalies was reduced from 0.32 to 0.17 by aligning fRET 
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Fig. 6. Correlation between yield anomalies and ESI for corn (a) and soybean (b) as a function of calendar date (top); calendar date with emergence correction using 
2010 as baseline (middle); and AGDD (bottom) at Mead (left), Ames (middle) and Champaign (right). Colored curves indicate correlations for individual counties, 
while the black dashed curve includes all counties within the domain. The vertical solid lines indicate average emergence and harvest dates. The vertical dashed line 
denotes August 1. 
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on the emergence date. As noted in Sec. 5.3, this is largely due to the 
2013 growing season where the delayed emergence reported at the state 
level in the NASS crop progress reports may not have been representa-
tive of all the counties included in this study. Fig. 8 indicates that the 
large correction for late soybean emergence at Ames in 2013 had the 
effect of degrading yield estimates for 2013 and 2014 with the emer-
gence date time-axis alignment. However, with additional modification 
of the time axis post-emergence, accounting for variability of within 
season crop progress using GDD time units, correlations for yield 
anomalies improved from 0.17 to 0.56, comparable to the all-year peak 
correlations in Fig. 6. A similar result is obtained at Mead where drought 
impacts on corn yields in 2012 were better captured when annual stress 
curves were aligned by phenological growth stage using GDD. 

These collective results are summarized in Fig. 9, showing RMSE in 
yield estimates from the two bootstrapping sampling approaches and 
three time-axis alignments. The leave-one-county-out prediction accu-
racies are similar for all alignments, suggesting year-to-year variability 
in growing conditions for a given county are reasonably well repre-
sented by samples from adjacent counties. The accuracies with GDD 
alignment (RMSE of 0.6–0.8 Mg/ha for corn and 0.20–0.25 Mg/ha for 
soybean; 5–7% of the mean observed yields) approximate the maximum 
predictive power of ESI in isolation for the Corn Belt. The leave-one- 
year-out results are more indicative of operational use, where observa-
tions from prior years are used to forecast impacts in the current year. In 
each case, yield estimates developed from empirical regressions using 

GDD within-season time adjustments are able to approach the maximum 
predictive capacity of the ESI, resulting in RMSE of 0.7–0.9 Mg/ha for 
corn and 0.20–0.26 Mg/ha for soybean, or 5–8% of the observed yield. 

6. Discussion 

6.1. Comparison to previous Corn Belt yield estimation studies 

Historically, most remotely sensed yield estimation efforts have 
focused on using vegetation indices computed from visible and NIR 
bands. However, VI-based indices can miss early signals of water stress 
that may occur during phenologically sensitive stages of crop growth. 
Over the Ames study domain, Gao et al. (2018) showed that the inter- 
annual variability of yield could not be well captured by using stan-
dard VIs alone, even using high temporal and spatial resolution VI 
timeseries developed through multi-sensor data fusion. In contrast, ET 
retrieved from thermal remote sensing inherently incorporates infor-
mation from visible, NIR and TIR bands and conveys information about 
biomass accumulation, crop health and soil water supply. Knipper et al. 
(2019), for example, demonstrate quick response of thermal-based ET 
retrievals to a controlled stress event in an irrigated vineyard, while 
NDVI timeseries maps showed a minimal response. More recent narrow- 
band indices of crop biophysical function such as Solar Induced Fluo-
rescence (SIF) and Photosynthetic Response Index (PRI) show potential 
for yield estimation (Cheng et al. 2013; Guan et al. 2016), but these 

Fig. 7. Comparison of corn yield anomaly (a, b) and yield (c, d) reported by NASS yield and yields estimated using two bootstrapping strategies: leave-one-year-out 
(left column) and leave-one-county-out (right column). In each plot, there are three alignments: calendar date (top row in each plot); calendar date with emergence 
correction using 2010 as a baseline (middle row in each plot); and AGDD (bottom row in each plot) for Mead (left), Ames (middle), and Champaign (right) 
2010–2017. Each dot is the yield for one county for a given year. The X-axis is the NASS yield survey data and the Y-axis is the modeled yield. 
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measurements are not routinely and globally supported by satellites at 
Landsat-like resolutions. 

Table 3 summarizes results from recent studies of corn and soybean 
yield prediction in the U.S. Corn Belt. Note that all of the county level 
studies in Table 3 use NASS county level data as validation datasets. 
Although uncertainties in the NASS county-level yields are not provided, 
- a common set of validation data lays a foundation for comparison 
across different studies. Yield estimation accuracies obtained in these 
studies are shown in terms of R2 and RMSE where available. In com-
parison, ESI performance with phenological correction is relatively high, 
suggesting diagnostic ET timeseries provide utility in forecasting yields 
at this scale. While the Yang et al. (2018) ESI study obtained higher 
performance metrics, this earlier study was conducted over a signifi-
cantly smaller geographic area (5 counties in NE) and a shorter period of 
record (6 years). In addition, local field observations of crop emergence 
were used for phenological correction, whereas the methods proposed 
here used only routinely available state-level reports and may be more 
indicative of operational performance. 

6.2. Importance of full phenological correction 

The Yang et al. (2018) 5-year study explored only partial pheno-
logical correction to ESI timeseries; namely, adjustments for year-to- 
year variability in crop emergence date. The results obtained in the 8- 
year, multi-state study presented here demonstrate that this is not 

sufficient for wide-scale application over a broad range of seasonal 
conditions. While emergence corrections serve to reduce spurious 
anomalies at the start of the growing season, conditions at critical 
growth stages later in the growing season can remain in disalignment if 
the temporal axes post-emergence are not further scaled by annual heat 
accumulation units. This disalignment contributes noise to the correla-
tion curves shown in Fig. 6, and reduces yield predictability for years 
with significantly different seasonal growing conditions (Figs. 7 and 8). 
Similar findings were reported by Qian et al. (2019) in monitoring crop 
condition using NDVI timeseries, who found better agreement between 
NDVI anomalies and NASS crop condition reports using time axes based 
on GDD rather than calendar day. 

6.3. Improvement of temporal sampling and phenology specification 

The critical nature of crop-specific phenological corrections to 
moisture stress time-series used in yield estimation underscores the 
utility of mapping ESI at field-scale, thus facilitating separation of signal 
between different landcover types which may have very different sea-
sonal phenologies. However, one of the most significant limitations 
thermal-based field-scale ET retrieval is the paucity of medium resolu-
tion satellite-based thermal imaging sources. Given the cloud clima-
tology characteristic of the Corn Belt, Landsat alone often does not 
provide sufficient clear-sky temporal sampling to adequately track 
changes in crop moisture status. For example, Fig. 4 shows examples at 

Fig. 8. Comparison of soybean yield anomaly (a, b) and yield (c, d) reported by NASS yield and yields estimated using two bootstrapping strategies: leave-one-year- 
out (left column) and leave-one-county-out (right column). In each plot, there are three alignments: calendar date (top row in each plot); calendar date with 
emergence correction using 2010 as a baseline (middle row in each plot); and AGDD (bottom row in each plot) for Mead (left), Ames (middle), and Champaign (right) 
2010–2017. Each dot is the yield for one county for a given year. The X-axis is the NASS yield survey data and the Y-axis is the modeled yield. 
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USBr1 (Ames) and USUiC (Champaign) where the peak of the seasonal 
ET curve in 2013 and 2016 was not captured due to lack of clear Landsat 
imagery. Work is underway to integrate new sources of thermal data, 
such as the ECOsystem Spaceborne Thermal Radiometer Experiment on 
Space Station (ECOSTRESS) and the Visible Infrared Imaging Radiom-
eter Suite (VIIRS) into the ET timeseries generation to better capture the 
changing evaporative status of the land surface (Anderson et al. 2020). 
The DMS thermal sharpening toolkit is key to bringing these disparate 
thermal images to a common 30-m spatial resolution for datacube 
construction (Xue et al. 2020). 

The study also identified potential issues with the use of state-level 
crop emergence information from NASS Crop Progress reports for 
phenological corrections at the county scale. Since the 1980s, satellite 
data have been used to study phenology, such as to estimate growing 

season duration (Henricksen and Durkin 1986), and to identify crop 
emergence dates (Badhwar and Thompson 1983). At the regional or 
global scale, land surface phenology datasets have been produced from 
various moderate-resolution satellite data sources, including MODIS and 
VIIRS at the resolution of 500 m (Friedl et al. 2002; Zhang et al. 2003, 
2018). Field-scale studies such as Gao et al. (2017) and Bolton et al. 
(2020) have developed 30-m resolution phenological metrics using 
Landsat and Sentinel-2 data and related these products to different crop 
growth stages. Moreover, they demonstrated that remotely sensed 
“green-up” can be used to retroactively predict emergence date. More 
recently, Gao et al. (2020) developed a within-season crop emergence 
mapping approach. The approach requires high temporal and spatial 
resolution data and has been assessed using the Harmonized Landsat and 
Sentinel-2 (HLS) data. Operationally, within-season maps of crop 

Fig. 9. RMSE values (unit in Mg/ha) for corn and soybean yields across three sites tested on two bootstrapping strategies and three time-axis alignments.  

Table 3 
Selected studies of remotely sensed corn and soybean yield estimates in the U.S. Corn Belt (CB).  

Study Predictors (resolution) Yield scale 
(coverage) 

Study span Methods Timescale R2 RMSE 
(Mg/ha) 

Johnson 2014 MODIS NDVI, daytime LST (250 m/8-day) County (All CB 
states) 

2006–2012 Machine learning 
(Cubist) 

Calendar 0.77 
0.71 

1.3 
0.5 

Lobell et al. 
2015 

LAI and Daymet gridded weather (daily/30 m) Field (IA, IL, IN) 2000–2013 APSIM and multiple 
linear regression 

Calendar 0.14–0.58 
0.03–0.55 

N/A 

Guan et al. 2017 PRISM climate data (4 km/daily) Satellite SIF, ET, 
QuikSCAT, AMSR-E VOD, MODIS EVI (0.05–0.5◦

/daily-monthly) 

County (Core CB 
counties) 

2007–2009 Partial least-square 
regression 

Calendar ≥ 0.6 N/A 

Gao et al. 2018 EVI2 (daily, 30 m) fused from MODIS, Landsat, 
Sentinel2 surface reflectance 

County (central IA) 2001–2015 Linear regression Calendar 0.59 
0.39 

0.8* 
0.4 

Li et al. 2019 PRISM climate data (4 km/monthly); MODIS EVI, 
LST (250 m-1 km/16-day) 

County (7 CB 
states) 

2003–2016 Statistical fitting 
functions 

Calendar 0.79 
–0.85 

0.9–1.04 

Jiang et al. 2020 PRISM climate (2.5 arcmin/daily); MODIS surface 
reflectance (500 m/8-day) 

County (12 CB 
states) 

2006–2015 LSTM model Emergence 0.76 1.5 

Yang et al. 2018 ESI (daily, 30 m) County (5 counties 
in NE) 

2010–2015 Linear regression Emergence 0.86–0.94 0.3–0.5 

Yang et al. 2021 
(this study) 

ESI (daily, 30 m) County (17 
counties in NE, IL, 
IA) 

2010–2017 Linear regression GDD 0.71–0.84 
0.62–0.86 

0.6–0.9 
0.2–0.3 

Note: Accuracies are indicated R2 and RMSE. Only best stats are included if studies doing multiple experiments to test the best performance model. Bold fonts are stats 
for corn and regular fonts are stats for soybean. *RMSE in Gao et al. 2018 was not included in the original paper. Dr. F. Gao computed the RMSE for this manuscript 
using the same dataset, including 20 counties in central Iowa from 2001 to 2015. 
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emergence and other critical phenological at the field scale could be 
used to phenologically align ESI timeseries for yield forecasting. Remote 
sensing can provide spatially explicit phenological information for 
improving time-axis alignment in ESI at the field scale that the NASS CP 
report at the state or district (multiple counties) level cannot capture. 

7. Conclusion 

This study examined the utility of remotely sensed ET in conveying 
spatially and temporally explicit water stress information for yield 
prediction. Actual ET and ESI timeseries were generated at 30-m spatial 
resolution and daily time steps from 2010 to 2017 for three study sites 
across the U.S. Corn Belt represented by agricultural landscapes around 
Mead, NE, Ames, IA and Champaign, IL. The satellite ET estimates 
agreed well with observations from flux towers deployed in these study 
areas, with a RMSE of 1.2 mm d− 1 on average. In each study domain, ESI 
was correlated with anomalies in NASS estimates of county level corn 
and soybean yields to identify periods where yield was most sensitive to 
water stress. To examine the role of crop phenology in yield anomaly-ESI 
correlations, fRET timeseries used to compute ESI were aligned by cal-
endar date, emergence-corrected calendar date, and growing degree 
days (GDD). Although all three alignments gave high peak correlations 
between yield anomaly and ESI, the GDD alignment proved more robust 
if provided with accurate information about the crop emergence date. 
Peak correlations in the GDD alignment occur during the silking stage 
for corn and during the reproductive stage for soybean; stages when 
these crops are particularly sensitive to soil moisture deficiencies. 

Yield estimates based on regression equations developed at the times 
of peak correlation using a bootstrapping approach agree well with 
NASS county-level crop yield data, with correlation coefficients that 
range from 0.79 to 0.93 and estimation errors of 5–8% based on GDD 
alignment and a “leave-one-year-out” bootstrapping strategy. In the 
cases where correlation coefficients decreased when incorporating state- 
level phenological information into the ESI alignment, work is underway 
to evaluate the use of field scale phenology information generated from 
high spatiotemporal remote sensing data. Given the success in crop yield 
estimation at multiple locations and years, this study demonstrates the 
utility of remotely sensed ET at high spatiotemporal resolution in pre-
dicting yield response to water stress. Future work will continue to 
develop strategies for utilizing remotely sensed ET in yield estimation, 
such as ingesting fRET timeseries maps into gridded crop models through 
data assimilation. 
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Ottlé, C., Stoll, M., 1999. IRSUTE: a minisatellite project for land surface heat flux 
estimation from field to regional scale. Remote Sens. Environ. 68, 357–369. 

Semmens, K.A., Anderson, M.C., Kustas, W.P., Gao, F., Alfieri, J.G., McKee, L., Prueger, J. 
H., Hain, C.R., Cammalleri, C., Yang, Y., 2016. Monitoring daily evapotranspiration 
over two California vineyards using Landsat 8 in a multi-sensor data fusion 
approach. Remote Sens. Environ. 185, 155–170. 

Y. Yang et al.                                                                                                                                                                                                                                    

https://doi.org/10.3390/rs61111244
https://doi.org/10.3390/rs61111244
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0100
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0100
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0105
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0105
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0105
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0110
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0110
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0110
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0115
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0115
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0120
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0120
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0125
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0125
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0130
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0130
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0130
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0130
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0135
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0135
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0135
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0140
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0140
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0145
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0145
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0145
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0150
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0150
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0150
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0155
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0155
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0155
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0160
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0160
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0160
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0165
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0165
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0165
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0170
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0170
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0175
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0175
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0175
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0175
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5055
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5055
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5055
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5020
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5020
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5020
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5020
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0180
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0180
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0180
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0185
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0185
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0185
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0190
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0190
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0190
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0190
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0200
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0200
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0200
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0205
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0205
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0215
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0215
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0215
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0220
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0225
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0225
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0225
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0225
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5030
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5030
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5030
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0230
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0230
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0230
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0230
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0230
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0235
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0235
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0235
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0240
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0240
https://doi.org/10.1029/97WR00704
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0245
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0245
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0245
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5035
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5035
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5035
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0250
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0250
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0250
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5025
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5025
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0255
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0255
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0255
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0260
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0260
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0265
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0265
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0270
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0270
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0275
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0275
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0275
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0275
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0280
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0280
https://doi.org/10.5067/MODIS/MCD15A3H.006
https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php
https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php
http://www.nass.usda.gov/Publications/National_Crop_Progress/
https://quickstats.nass.usda.gov/
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0305
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0305
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0310
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0310
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0315
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0315
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0315
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0320
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0320
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0320
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0325
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0325
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0325
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0330
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0330
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0330
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0335
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0335
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0335
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0335
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0340
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0340
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0345
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0345
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0345
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5005
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf5005
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0350
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0350
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0350
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0360
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0360
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0365
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0365
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0365
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0375
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0375
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0375
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0380
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0380
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0380
http://refhub.elsevier.com/S0034-4257(21)00055-9/rf0380


Remote Sensing of Environment 257 (2021) 112337

19

Skaggs, K.E., Irmak, S., 2012. Long-term trends in air temperature distribution and 
extremes, growing degree-days, and spring and fall frosts for climate impact 
assessments on agricultural practices in Nebraska. J. Appl. Meteorol. Climatol. 51, 
2060–2073. 

Sun, L., Anderson, M.C., Gao, F., Hain, C., Alfieri, J.G., Sharifi, A., McCarty, G.W., 
Yang, Y., Yang, Y., Kustas, W.P., 2017. Investigating water use over the C hoptank R 
iver W atershed using a multisatellite data fusion approach. Water Resour. Res. 53, 
5298–5319. 

Suyker, A., Verma, S., 2009. Evapotranspiration of irrigated and rainfed maize–soybean 
cropping systems. Agric. For. Meteorol. 149, 443–452. 

Suyker, A., Verma, S., Burba, G., Arkebauer, T., Walters, D., Hubbard, K., 2004. Growing 
season carbon dioxide exchange in irrigated and rainfed maize. Agric. For. Meteorol. 
124, 1–13. 

Tadesse, T., Senay, G.B., Berhan, G., Regassa, T., Beyene, S., 2015. Evaluating a satellite- 
based seasonal evapotranspiration product and identifying its relationship with 
other satellite-derived products and crop yield: a case study for Ethiopia. Int. J. Appl. 
Earth Obs. Geoinf. 40, 39–54. 
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