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ABSTRACT

Despite the key importance of soil moisture–evapotranspiration (ET) coupling in the climate system,

limited availability of soil moisture and ET observations poses a major impediment for investigation of this

coupling regarding spatiotemporal characteristics and potential modifications under climate change. To

better understand and quantify soil moisture–ET coupling and relevant processes, this study takes advantage

of in situ soil moisture observations from the U.S. Climate Reference Network (USCRN) for the time period

of 2010–17 and a satellite-derived version of the evapotranspiration stress index (ESI), which represents

anomalies in a normalized ratio of actual to reference ET. The analyses reveal strong seasonality and regional

characteristics of the ESI–land surface interactions across the United States, with the strongest control of soil

moisture on the ESI found in the southern Great Plains during spring, and in the north-central United States,

the northern Great Plains, and the Pacific Northwest during summer. In drier climate regions such as the

northern Great Plains and north-central United States, soil moisture control on the ESI is confined to surface

soil layers, with subsurface soil moisture passively responding to changes in the ESI. The soil moisture–ESI

interaction is more uniform between surface and subsurface soils in wetter regions with higher vegetation

cover. These results provide a benchmark for simulation of soil moisture–ET coupling and are useful for

projection of associated climate processes in the future.

1. Introduction

Soil moisture is a central element of land surface

processes by influencing the land energy and water

budgets through its impact on evapotranspiration (ET)

(Seneviratne et al. 2010). In the classical conceptual

framework of three climate regimes (Budyko 1974;

Koster et al. 2004, 2019; Seneviratne et al. 2010; Teuling

et al. 2009), soil moisture does not impact ET variabil-

ity in wet and dry climate regimes, but strongly con-

strains ET variability in a transitional climate regime.

Whenever soil moisture decreases limit ET, more en-

ergy is available for sensible heat flux, thereby inducing

an increase in air temperature (Koster et al. 2006;

Seneviratne et al. 2006a; Gevaert et al. 2018). Increased

temperature can lead to a higher vapor pressure deficit

and evaporative demand, and thus to an increase in ET

and a further decrease in soil moisture. It has been

suggested that this positive feedback can go on until the

total drying of the soil occurs, intensifying and sus-

taining drought conditions (Seneviratne et al. 2010).

On average this soil moisture–temperature coupling is

expected to be stronger in transitional climate regime

(Miralles et al. 2012).

As water is needed for photosynthesis and leaf

growth, soil moisture impacts plants’ productivity and

survival during drought. In spring, wet conditions are

beneficial to vegetation growth but waterlogged soils

can delay planting. Temperatures impact photosynthesis

rate, plant and microbial respiration, leaf phenology andCorresponding author: Yafang Zhong, yafangzhong@wisc.edu
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nutrient release (Myneni et al. 1998; Nadelhoffer et al.

1991; Notaro et al. 2006). Both heat and cold stresses are

detrimental to vegetation health because plants’ toler-

ance mechanisms to temperature stresses are effective

only in certain thermal ranges (Anderegg et al. 2013;

Nievola et al. 2017). In extratropics, both temperature

and moisture are main drivers of vegetation activity;

whereas in tropics, temperature is arguably less impor-

tant than water and light. Conversely, vegetation affects

soil moisture and temperature mainly through transpi-

ration (Dirmeyer et al. 2006) and albedo feedbacks

(Bonan 2002; Teuling and Seneviratne 2008; Lozano-

Parra et al. 2018).

Despite the key importance of soil moisture–ET

coupling in land–atmosphere interactions, the scarcity

of soil moisture and ET observations poses a major

impediment for investigation of this coupling regarding

spatiotemporal characteristics and possible modifica-

tions with climate change (Koster and Suarez 1999,

2001; Dirmeyer 2000; Dirmeyer et al. 2009; Seneviratne

et al. 2010). The purpose of this study is to take advan-

tage of a satellite-derived version of the evapotranspi-

ration stress index (ESI; Anderson et al. 2007a,b), as a

normalized ratio of actual ET to reference ET, and

in situ soil observations from theU.S. Climate Reference

Network (USCRN), to better understand and quantify

soil moisture–ET coupling and relevant processes.

The objective is to explore subseasonal and regional

relationships between the ESI and soil moisture, soil

temperature, and indirectly, vegetation, across the

contiguous United States. Another objective is to

examine the relative roles of surface and subsurface

soils in the soil moisture coupling with the ESI.

The ESI was introduced in 2007 to the archive of

drought indices, with the most widely used indices

including the Palmer drought severity index (PDSI;

Palmer 1965), the standardized precipitation index

(SPI; McKee et al. 1993), and the standardized precipita-

tion and evapotranspiration index (SPEI; Vicente-Serrano

et al. 2010). The ESI represents anomalies in the ratio

of actual ET to a reference ET that would occur from a

well-watered grass surface under optimal meteoro-

logical conditions (Mecikalski et al. 2018). Negative

ESI anomalies represent smaller-than-normal refer-

ence ET fractions for a given location and time of year,

indicating higher-than-normal moisture stress in veg-

etation and thus unhealthy vegetation (Anderson et al.

2007a). As such, the ESI provides useful information

about vegetation health and can serve as a drought

monitor during agricultural and ecological droughts

(Otkin et al. 2015b, 2018). Using satellite data and a

fully automated Atmosphere–Land Exchange Inverse

model (ALEXI), the ESI maps have been generated

routinely covering the United States (Anderson et al.

2011, 2013). Previous rigorous evaluations of ALEXI

over a range of climatic and vegetation conditions

have shown that ALEXI ET estimates compare well

with ground-based data (Anderson et al. 1997, 2012;

Li et al. 2008). The USCRN soil observations have a

national coverage and consistent measurement tech-

niques across the United States, with measurements

made at multiple soil depths from 5 to 100 cm (Bell

et al. 2013). It is worth mentioning that this is not a

mechanism study of soil moisture–ET coupling, which

may require in situ ET observations such as from the

FLUXNET towers (Baldocchi et al. 2001).

This study employs lead–lag correlations to examine

the coupling between the ESI and land surface condi-

tions. Due to the complex interactions between soil

moisture, ET, temperature and vegetation, it is chal-

lenging to tease apart the ESI relationships with soil

moisture and temperature in a statistical sense. In our

best effort of doing so, partial correlations are used to

depict these ESI relationships in addition to regular

correlations. Partial correlations find the unique vari-

ance between the two variables while eliminating the

variance from a third variable, thereby measuring the

relationship between two variables while controlling

for a third variable. The study also builds upon prior

analyses by Notaro et al. (2006) that utilized the co-

variance of fractional vegetation cover and a lagging air

temperature or precipitation metric to quantify the at-

mospheric responses to changes in vegetation cover for

U.S. geographic regions characterized by a similar veg-

etation type and climatology. The same statistical ap-

proach is applied to relate ALEXI ESI to USCRN soil

moisture and temperature. The data and methods are

described in sections 2 and 3, respectively. Section 4

presents results, with conclusions and discussions pro-

vided in section 5.

2. Data

a. Evaporative stress index

In its current formulation, the ESI represents standard-

ized anomalies in the reference ET fraction, ET/ETref,

where ET is the actual ET and ETref is a reference ET

flux that would occur under optimal meteorological

conditions from awell-watered grass surface (Anderson

et al. 2013). Note that the ratio of actual to reference ET

is a bulk crop coefficient. Normalization by reference

ET reduces the impact of the non-moisture-related

drivers on ET, e.g., the seasonal cycle in solar radia-

tion and evaporative demand. Anderson et al. (2013)

has shown that the reference ET fraction exhibits little
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seasonal variability in some regions, but considerable

seasonality in other areas. To reduce such seasonality,

the climatological-mean seasonal cycle is removed from

the reference ET fraction before standardization for the

time of the year. The reference ET flux is computed

using a Penman–Monteith formulation for awell-watered

grass (Allen et al. 1998). In its original formulation, the

ESI was defined as the ratio of actual ET to a Priestley–

Taylor–based estimate of potential ET (Anderson et al.

2007a). However, Anderson et al. (2013) found that

reference ET computed from the Penman–Monteith

formulation gave better performance.

The actual ET flux is estimated using the ALEXI

model (Anderson et al. 2007a, 2011), a regional frame-

work that couples the land surface representation of

the Two-Source Energy Balance (TSEB; Norman et al.

1995) model to a simple atmospheric boundary layer

model (McNaughton and Spriggs 1986). Using land

surface temperatures retrieved from Geostationary

Operational Environmental Satellite (GOES) imag-

ery, ALEXI partitions latent and sensible heat fluxes

between soil and canopy components of the scene based

on the vegetation cover fraction estimates derived from

the Moderate Resolution Imaging Spectroradiometer

(MODIS) leaf area index product (Myneni et al. 2002).

The midmorning surface fluxes are computed for each

satellite pixel using the observed increase in land surface

temperatures during the morning growing phase of at-

mospheric boundary layer (from 1.5h after local sunrise

until 1.5h before local noon). The atmospheric boundary

layer model provides closure for the surface energy

balance equations, using predawn temperature profiles

in the lower troposphere obtained from the Climate

Forecast System Reanalysis (CFSR; Saha et al. 2010).

Since land surface temperatures are the primary model

input, ALEXI diagnoses large surface temperature

change as a signature of low ET. ALEXI is run daily

over cloud-free pixels on a 4-km-resolution grid cov-

ering the contiguous United States.

Because thermal-based satellite retrievals of surface

states and fluxes can be hampered by clouds, the daily

ET datasets often have limited spatial coverage. To

increase the data coverage across theUnited States, the

reference ET fraction is typically composited over a

week tomultiweek time periods before standardization

(Hain et al. 2009; Otkin et al. 2014, 2015a). ESI, ex-

pressed as pseudo z scores normalized to a mean of

0 and a standard deviation of 1, is computed for each

week using these composites of reference ET fraction.

This study uses weekly 7-day composite ESI values,

with the mean and standard deviations for each week

computed separately for each grid point using data

from 2001 to 2017. Weekly ESI was generated for each

USCRN site using the averages across the nine grid

points centered on the grid point nearest to the

USCRN station. The use of 3 3 3 grid aggregation

increases the sample size, thereby reducing impacts

of noise.

b. USCRN soil data

The soil moisture and temperature measurements

by the USCRN commenced in 2009 to 2010 (Bell et al.

2013). The USCRN sites differ vastly in terms of soil,

climate, and vegetation conditions (Wilson et al. 2016).

For each site where the soil profile allows, soil mea-

surements are made at five depths: 5, 10, 20, 50, and

100 cm. This study includes data from sites that offer at

least 7 years of soil moisture data from the 5 cm depth

during the time period from 2010 to 2017 (Fig. 1).When

the subhourly raw data are flagged as erroneous, the

corresponding daily data are reported as missing.

In this study, the soil information has been condensed

into three soil layers (0–20, 50 and 100 cm) to simplify

discussion. To estimate the average conditions for the

topsoil layer above 20-cm depth, the daily soil data are

linearly interpolated to a 1-cm resolution depth or-

dinate. First, the measurement values are assigned to

corresponding depths of the new depth ordinate, with

the top 5 cm adopting values from measurements at

5-cm depth. Second, linear interpolation is used to fill

in missing values, with the missing beginning and end

points remain as they were (https://www.ncl.ucar.edu/

Document/Functions/Built-in/linmsg.shtml). Third, if

over half of the resultant soil moisture or temperature

data in the 0–20-cm layer have nonmissing values, then

averages were taken across the vertical profiles in the

upper 20cm to depict soil conditions for the new topsoil

layer. Hereafter, discussions of soil moisture and tem-

perature conditions are referred to as topsoil (0–20 cm),

subsoil (50 cm), and deep soil layers (100 cm). As for the

ESI, daily averages of soil moisture and temperature data

are composited into weekly values. With the removal of

the mean seasonal cycle between 2010 and 2017, weekly

ESI, moisture and temperature anomalies are derived

and used in further analyses.

3. Methods

a. Regional analysis

Because the USCRN soil records are rather short in

time, regional analysis is applied to obtain more robust

results. The seven geographic regions (Fig. 1) consid-

ered are the Pacific Northwest (PNW), southwestern

United States (SWUS), northern Great Plains (NGP),

southern Great Plains (SGP), north-central United
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States (NCUS), southeastern United States (SEUS),

and East Coast of United States (ECOAST), with

each region characterized by a similar climatology

and vegetation type. The outlines of the regions are

approximate to those used in the regional analysis by

Notaro et al. (2006) that examined the impacts of

fractional vegetation cover on air temperature and

precipitation. Each of the regions contains 5–15 se-

lected USCRN sites, with the largest amount of weekly

data for the SGP and SWUS and least for the ECOAST

and PNW (Fig. 2). In general, the topsoil layer offers

more samples than the subsoil and deep soil layers,

and more samples are available for soil temperature

than for soil moisture. For all of the variables, regions,

and calendar months during the growing seasons, a

Pearson correlation greater than 0.14 in magnitude

is statistically significant at a 5 0.05 according to a

two-tailed t test.

b. Contemporaneous correlation analysis

Contemporaneous correlation analysis is a common

technique in the study of land–atmosphere coupling, and

the temporal correlation between soil moisture and ET

has been used as a standard metric for evaluating the

coupling strength (Dirmeyer et al. 2009; Lei et al. 2018).

A positive correlation represents the control of soil

moisture on ET in a soil moisture-limiting regime. A

negative correlation indicates soil moisture responds to

ET forcing rather than controlling ET in an energy-

limiting regime (Dirmeyer 2011). This clear-cut differ-

ence makes contemporaneous correlation a powerful

tool in depicting the coupling between soil moisture and

ET. Here, Pearson correlations are computed between

soil moisture, soil temperature, and the ESI for the

growing season and for each of the seven regions, using

weekly anomalies between March and October during

the time period of 2010–17 and from all of the selected

sites in that region. However, the contemporaneous

correlation between soil moisture and the ESI offers a

more complex picture due to the inclusion of a third

player in reference ET. A positive correlation between

soil moisture and the ESI may result from soil moisture

control on ET or result from elevated moisture stress

(i.e., negative ESI and worse-than-average moisture

availability) due to increased evaporative demand. The

contemporaneous correlation is thus not very effective

at depicting the coupling between soil moisture and the

ESI; however, this issue can be remedied through use

of lead–lag correlation analysis, as discussed in the next

section.

c. Lead–lag correlation analysis

Lead–lag correlation analysis is widely used in the

study of ocean–atmosphere coupling to help identify the

drivingmechanisms. For example, the largely symmetric

correlations of monthly wind and sea surface tempera-

ture (SST) with respect to the lags indicate essentially

two-way interactions in the tropics (Lian et al. 2018);

whereas in the extratropics, the much heavier loading

at wind-leading-SST lags indicates the surface wind is

driving the SST primarily (Frankignoul andHasselmann

1977; Zhong and Liu 2009). Similarly, this study uses

lead–lag correlation analysis to qualitatively describe

the relationship between the ESI and land surface con-

ditions over subseasonal time scales. The lead–lag cor-

relations are also used to evaluate the seasonal memory

of the ESI, soil moisture, and soil temperature. The

length of memory conveys information about the impact

of land surface conditions on the ESI as well as the

suitability of the generalized equilibrium feedback as-

sessment (GEFA) for this study (refer to section 3f).

The longer the memory the ESI exhibits, the stronger

FIG. 1. Amap shows theUSCRN sites that offer at least 7 years of data for 5-cm soil moisture

during the time period of 2010–17. Color blocks outline the seven regions each characterized by

a same vegetation type.
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influence the land surface conditions exert on the ESI.

By formulation, theGEFAmethod requires fast-changing

fields as the response fields and slow-changing fields as

the forcing fields, with sufficient separation in memory

between them.

d. Partial correlation analysis

In recognition of the generally negative relationship

between soil moisture and soil temperature that pre-

sumably stems from soil moisture–temperature cou-

pling, partial correlation analysis is used to discriminate

the impact of soil moisture from that of soil temperature

on the ESI. A partial correlation coefficient describes

the strength of a linear relationship between two vari-

ables, holding constant a third variable (Freund et al.

2010). For example, the partial correlation coefficient

for the ESI and soil moisture, controlling for soil tem-

perature, can be formulated as

r
EM.T

5
r
EM

2 (r
TE
)(r

TM
)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2TE

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2TM

p , (1)

where rEM is Pearson correlation coefficient between

ESI and soil moisture, rTE is that between soil temper-

ature and ESI, and rTM is that between soil temperature

and soil moisture. Given the complex relationships be-

tweenET, soil moisture, and temperature as discussed in

the introduction, partial correlation analysis is superior

to regular correlation analysis because it can separate

the impacts of soil moisture and soil temperature on the

ESI. However, partial correlation analysis may increase

uncertainty in correlation coefficients where there are

very strong relationships between soil moisture and soil

temperature. Multicollinearity problems arise when the

correlations between soil moisture and soil temperature

approach 21, and it becomes difficult to separate out

effects of one of the variables.

Partial correlations are computed for each calendar

month between March and October and for each of the

seven regions using weekly ESI anomalies from that

region and the specifiedmonth during the time period of

2010–17, and weekly soil moisture and soil temperature

anomalies from previous weeks or subsequent weeks.

For instances, correlations for June at lag 21 are com-

puted using weekly ESI anomalies from the 22nd, 23rd,

24th, and 25th weeks of the year, and weekly soil

anomalies from the 21st, 22nd, 23rd, and 24th weeks of

the year; correlations for June and lag11 are computed

using weekly ESI anomalies from the 22nd, 23rd, 24th,

and 25th weeks of the year, and weekly soil anomalies

from the 23rd, 24th, 25th, and 26th weeks of the year.

Weekly anomalies from all of the selected sites in that

region and from the consecutive four (or five) weeks

between 2010 and 2017 are aggregated before the

computation of partial correlations with Eq. (1). Partial

correlations are computed from lag 212 to 112. If the

ESI is missing due to being out of season, the weekly

anomalies are set to missing and ignored in the com-

putation of partial correlations.

Monte Carlo tests are performed to determine if the

partial correlations are statistically significant at a 5 0.05

(von Storch and Zwiers 1999; Czaja and Frankignoul

2002).Again, using June and lag21 as an example, weekly

ESI anomalies from the 22nd, 23rd, 24th, and 25th weeks

of the year are reshuffled randomly between years and the

resultant new time series are used to compute the partial

correlations with soil moisture and soil temperature from

the 21st, 22nd, 23rd, and 24th weeks of the year. Note that

only the order of the years for ESI anomalies is changed,

FIG. 2. Bar charts show the data volume (weeks) for each of the

seven regions and three soil layers duringMarch–October between

2010 and 2017: (a) ESI, (b) USCRN soil moisture (SM), and

(c) USCRN soil temperature (ST).

JULY 2020 ZHONG ET AL . 1473

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/21/7/1469/4961617/jhm

d190205.pdf by guest on 26 June 2020



not that of the weeks or the sites, so that the autocorrela-

tion of ESI anomalies at lags from 1 to 12 weeks and the

spatial correlation are unchanged. By doing so, the impact

of temporal and spatial correlations within each variable

on the effective sample size for estimating the partial

correlations is taken into account in the Monte Carlo

tests. This procedure is repeated 1000 times. If the

original partial correlation with soil moisture or soil

temperature is greater in strength than 95% of the

corresponding 1000 new values, then that partial cor-

relation is considered statistically significant. The sig-

nificance of the partial correlations is not shown for the

clarity on the figures, but has been used to determine if

the ESI responses to land surface forcing are statisti-

cally significant as described in section 3f.

e. Calculation of seasonal memory

The memory in the ESI and the seasonality for each

of the seven regions are evaluated with lead–lag cor-

relation analysis. Similar to the calculation of partial

correlations, Pearson correlations are computed for

each calendar month and from lag 240 to 140, using

weekly ESI anomalies from the specified region and

month during the time period of 2010–17, and those

from previous weeks or subsequent weeks. Based on

these correlations, a decorrelation time is estimated for

each month and both for the negative lags and for the

positive lags using the critical correlation of10.14. The

average of the decorrelation times from the negative

lags and from the positive lags is determined as the ESI

memory as a function of calendar month. Similarly, the

seasonal memory is estimated for soil moisture and soil

temperature for all three of the soil layers.

f. Generalized equilibrium feedback assessment

While the lead–lag partial correlations can help de-

termine whether the relationships between the ESI and

land surface conditions are one-way or two-way cou-

pling, the GEFA method is used to more quantitatively

assess the impact of land surface conditions on the

ESI. The response coefficients estimated by the GEFA

quantify the instantaneous response of the ESI to

changes in land surface conditions. The GEFAmethod

was originally developed by Liu et al. (2008) as a gen-

eralization of the univariate equilibrium feedback as-

sessment (EFA; Frankignoul et al. 1998; Notaro et al.

2006) to facilitate distinguishing the impacts on the

atmosphere and surface fluxes from persistent and

also interrelated oceanic forcings (Liu and Wen 2008;

Zhong et al. 2011). The key difference between this

approach and Granger causality based on the notion

of predictability (Salvucci et al. 2002; Sugihara et al.

2012; Tuttle and Salvucci 2017) is that the former uses

response coefficients to quantify the instantaneous

changes in the atmosphere (and/or surface fluxes)

under the land forcing (Liu et al. 2006; Notaro et al.

2006), whereas the latter allows identifying the cau-

sality between the land and the atmosphere at a later

time. For instance, Kaufmann et al. (2003) applied

Granger causality to quantify the lagged temperature

response to interannual changes in vegetation. The

instantaneous response would be greater than the

lagged causality response, as the difference represent-

ing the decay of the forcing with time (Liu et al. 2006;

Notaro et al. 2006). The formulation of the GEFA is

briefly summarized here.

Assume that the surface flux variability, such as the

ESI variability E(t), consists of a stochastic part associ-

ated with the atmospheric internal variabilityN(t) and a

land surface condition-forced part B 3 S(t), such that

E(t)5B3S(t)1N(t) . (2)

The land surface field S(t) consists of J forcings,

representing J land surface variables. The term B

is the response sensitivity vector with elements bj
measuring the impact of the jth land surface variable

on the ESI. Using data with the ESI lagging the land

surface conditions (Frankignoul et al. 1998; Czaja and

Frankignoul 2002), B is derived from the ESI-lagged

covariances as

B(t)5C
ES
(t)C21

SS (t) , (3)

where t is an ESI lag time that is longer than the

damping time scale of the atmosphere, CES(t) is the

lagged cross-covariance vector between the ESI and

land surface conditions, and CSS(t) is the autocovar-

iance matrix of land surface conditions. Here, the land

surface field consists of two variables, soil moisture

and soil temperature. This is a simplification of the

land surface forcing since vegetation is not included

explicitly.

As for the partial correlation coefficients, the lagged

cross-covariance vector and the autocovariance matrix

are estimated for each of the seven regions and for each

calendar month betweenMarch and October. Response

coefficients in B are then computed with Eq. (3), rep-

resenting the changes in the ESI due to a change in

weekly soil moisture or soil temperature. This procedure

is performed for each lag between 5 and 8 weeks and the

final GEFA response is the averaged results from the

four lags. To determine if the response coefficients are

statistically significant at a5 0.05, Monte Carlo tests are

performed with the ESI data reshuffled 100 times.

Further screening of the significant responses is made

by requiring that the corresponding partial correlation
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coefficients from the four lags share the same sign, in

that variations in the signs of these partial correlation

coefficients could signify transient soil anomalies but the

formulation of the GEFA method assumes a persistent

forcing on the atmosphere. For instance, for the ESI

response to soil moisture during June to be considered

as a significant response, the partial correlations be-

tween the ESI and soil moisture at the ESI lagging by

5–8 weeks must all be positive or negative.

4. Results

The regional and seasonal relationships of the ESI

to soil moisture and temperature were assessed using

contemporaneous correlation analysis, lagged partial

correlation analysis and the GEFA method, first to

provide a brief overview of the relationships during

the growing seasons and then to elaborate on those

relationships.

a. Relationships between the ESI, soil moisture, and
soil temperature

This subsection provides an overview of the regional

relationships between the ESI, soil moisture and soil

temperature during the growing seasons betweenMarch

and October based on contemporaneous correlations.

Correlations greater than 0.14 in magnitude are statis-

tically significant at a 5 0.05. Because the relationships

between the variables intrinsically depend on moisture

regimes and are typically nonlinear as the season prog-

resses (Koster et al. 2009), linear correlations should be

viewed as a simplification of the relationships.

For all regions except the ECOAST, the ESI is posi-

tively correlated with soil moisture for each of the three

soil layers, with the highest correlations from the topsoil

layer (Fig. 3a). These positive correlations could reflect

soil moisture control on ET, or elevated moisture stress

due to enhanced evaporative demand. The correlations

from the topsoil layer are largest for the SGP (10.49)

and smallest for the ECOAST (,10.15), agreeing with

the findings of Otkin et al. (2018) based on griddedmaps

of contemporaneous correlations between the ESI

and modeled soil moisture anomalies from the North

American Land Data Assimilation System Phase 2

(NLDAS-2; Xia et al. 2012 a,b). The correlations are

smaller in the eastern United States as it lies in an

energy-limiting regime most of the year. In the SGP and

PNW, the correlations from the subsoil and deep

soil layers are close to those for the topsoil layer,

indicating a tight moisture coupling between the layers.

In the SWUS, NGP and NCUS, however, the correla-

tions decrease markedly for the deeper layers com-

pared to the topsoil layer. The decrease occurs at a

greater depth in the SEUS as the correlations for the

subsoil layer remain close to those for the topsoil layer. It

appears that the subsoil and deep layers play an active

role in the soil moisture–ET coupling in relatively wet

climate regions, consistent with the finding of Short

Gianotti et al. (2019) that wet areas tend to exhibit

stronger surface–subsurface moisture coupling.

The ESI is negatively correlated with soil temperature

in the western and central United States (Fig. 3b), and

not correlated in the eastern United States. The nega-

tive correlations reflect the fact that the thermal-based

ALEXI model diagnoses high surface temperature as a

signature of low ET, and there is likely correlation

between surface temperature and subsoil tempera-

tures. The correlations are marginally stronger for the

FIG. 3. Bar charts show temporal correlations between weekly

ESI andUSCRN soil properties for the seven regions and three soil

layers during March–October between 2010 and 2017: (a) between

ESI and soil moisture (SM), (b) between ESI and soil temperature

(ST), and (c) between SM and ST.
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topsoil layer than the subsoil and deep soil layers, and

strongest for the SGP and weakest for the NCUS. The

correlations between soil moisture and soil tempera-

ture are generally negative, with the strongest corre-

lations (,20.30) found for the topsoil layer of the

western United States and the Great Plains as well as

the subsoil and deep soil layers of the SGP and PNW

(Fig. 3c). Overall, the correlations between the ESI

and soil moisture and soil temperature are strongest

for the western and central United States due to soil

moisture–ET coupling and soil moisture–temperature

coupling (Seneviratne et al. 2010). The ESI correla-

tions are stronger with soil moisture and temperature

in the topsoil layer than in the subsoil and deep

soil layers.

b. Coupling between the ESI and land surface
conditions

The relationships between the ESI anomalies and

changes in soil moisture and temperature are explored

using the lead–lag partial correlation analysis. Figures 4

and 5 display the partial correlations with soil moisture

and soil temperature from the topsoil layer both for the

ESI lagging and the ESI leading by up to 12 weeks. The

impacts of land surface conditions on the ESI can be

inferred from the partial correlations with the ESI lag-

ging, while the utility of the ESI as an indicator of sub-

sequent land surface conditions is reflected in the partial

correlations with the ESI leading. The calendar months

in the y coordinate refer to the time period used to

compute the ESI.

The partial correlations with topsoil moisture are

generally positive throughout the growing season across

the United States, both for the ESI lagging and for the

ESI leading. The partial correlations with topsoil tem-

perature are weaker and rather noisy as a whole. In the

SGP, known as a hot spot for land–atmosphere coupling,

the partial correlations with topsoil moisture are stron-

ger at the ESI lagging than at the ESI leading during

April–June (Fig. 4d), indicating the control of topsoil

moisture over the ESI. Note that the seasons are re-

ferred to the time period used to compute the ESI. This

helps explain the strong ESI–soil moisture coupling

during spring as evidenced by the large partial correla-

tions (10.55) at lag 0.During July–September, the ESI is

moderately correlated with topsoil moisture as well as

topsoil temperature as a proxy for surface temperature

(Fig. 5d). In October, the ESI is strongly coupled with

FIG. 4. Lead–lag partial correlations between the ESI and topsoil moisture (0–20 cm) from the USCRN mea-

surements for the time period of 2010–17: (a) PNW, (b) SWUS, (c) NGP, (d) SGP, (e) NCUS, (f) SEUS, and

(g) ECOAST. The y coordinate denotes theESI in a specified calendarmonth betweenMarch andOctober, and the

x coordinate denotes the ESI leading or lagging soil moisture by up to 12 weeks.
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topsoil moisture and is also a good indicator of subse-

quent moisture availability (Fig. 4d).

The strongest evidence for soil moisture control

over the ESI is found in the NCUS, where the partial

correlations between the summertime ESI and topsoil

moisture from the preceding weeks are as high as

;10.50 (Fig. 4e). Such control of topsoil moisture on

the ESI is also significant in the NGP and PNW during

July. On the other hand, the relationship of the ESI to

subsequent topsoil moisture is strongest in the NGP

during summer, with seasons referred to the topsoil

moisture. The relationship of the ESI to subsequent

topsoil temperature can go opposite ways (Fig. 5). The

cooling effect of ET can result in a negative partial

correlation between the ESI and topsoil temperature,

as can the changes in evaporative demand under heat

waves, e.g., in the SGP during summer. Positive cor-

relations between the ESI and subsequent topsoil

temperature are found in the SEUS and NCUS during

late summer and early fall.

Lead–lag partial correlations are also computed using

soil data from the subsoil and deep soil layers. The

seasonal patterns of the partial correlations are similar

to those from the topsoil layer for all regions except the

NGP and NCUS. For these two regions, compared to

those with topsoil moisture, the partial correlations with

deeper soil moisture tend to shift the loading from the

ESI lagging side toward the ESI leading side during

summer and fall, with seasons referred to the time

period used to compute the ESI (Figs. 6 and 7). This

indicates a more passive role by the soil moisture of

deeper layers in the interactions with the ESI over sub-

seasonal time scales, because of bare soils or shallow-

rooted vegetation. Compared to topsoil temperature, the

deeper soil temperature exhibits more negative par-

tial correlations, particularly during summer at the

ESI lagging. The strong correlations between July ESI

and April deep soil temperature may be attributed to

the lingering effect from snow cover.

These results accentuate the complex relationships

between the ESI and soil conditions that exhibit

strong seasonality and regional characteristics. The

ESI is most strongly coupled with soil moisture

(partial correlations . 0.40) in the SGP during

April–May and October, in the NGP during June–

July, in the NCUS from June to October, in the PNW

during July–August and October, in the SWUS during

April–July and September, and in the SEUS during

September–October. Here, seasons are referred to the

time period used to compute the ESI. The strong coupling

in the SGP during spring, in the NGP and PNW during

July, and in theNCUSduring June–September stems from

FIG. 5. As in Fig. 4, but for lead–lag partial correlations between the ESI and topsoil temperature.
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the control of soilmoisture on theESI asmanifested by the

greater correlations at the ESI lagging thanESI leading. In

theNGPandNCUS, the summertimeESI could be a good

indicator of subsequent soil moisture in deeper layers. The

ESI is also tightly coupled with deeper soil temperature

(partial correlations , 20.40) in the SGP and NGP from

June to October, and in the NCUS during June–July. The

strong correlations in the NGP and NCUS at the ESI

FIG. 6. Lead–lag partial correlations between the ESI and (left) soil moisture and (right) soil temperature for the

northern Great Plains (NGP) using the USCRNmeasurements at (a),(b) 0–20, (c),(d) 50, and (e),(f) 100 cm for the

time period of 2010–17. The y coordinate denotes the ESI in a specified calendar month between March and

October, and the x coordinate denotes the ESI leading or lagging soil moisture by up to 12 weeks.

FIG. 7. As in Fig. 6, but for the north-central United States (NCUS).
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lagging suggest that information about deep soil

temperature could be exploited to predict the ESI

over subseasonal time scales.

c. Quantifying the impacts of soil conditions on
the ESI

Numerous studies have evaluated the coupling strength

of soil moisture and surface fluxes and variables (e.g.,

ET and air temperature) using either observations

(e.g., Mueller and Seneviratne 2012; Lei et al. 2018) or

model simulations (e.g., Koster et al. 2006; Dirmeyer

2011), but they rarely attempt to separate the control

of soil moisture on ET and temperature from that of

ET and temperature on soil moisture. Here, the influ-

ence of land surface processes on the ESI is assessed

with the memory (or persistent time) of the ESI

anomalies. The memory of the ESI varies greatly with

season and region, ranging from less than a week to up

to 17 weeks (Fig. 8a). Since the persistence time of

synoptic meteorological conditions is less than a couple

of weeks, an ESI memory longer than that indicates

influence from land surface conditions. The longest

memory (.8 weeks) in the ESI is found in the central

United States from June through September, indicative

of strong coupling with land surface processes such as

depletion of soil moisture and vegetation phenology.

The land surface influence on the ESI is also shown

in the SWUS during spring and in the SEUS from

midsummer to early fall.

The soil moisture and temperature memories are

much longer (Figs. 8b,c), typically ranging between

6 and 30 weeks. As expected, deeper soils generally

have longer memory than the topsoil layer, with the

latter more directly exposed to synoptic meteorology.

In rare occasions, the soil moisture memory of topsoil

layer could be longer than that of subsoil and deep soil

layers due to snow cover and other processes at high

elevations (e.g., in the PNW) (Fig. 8b). Soil moisture

exhibits relatively short memory in the topsoil layer

of the eastern United States and SWUS compared to

locations in the central United States, which is consis-

tent with the finding of Seneviratne et al. (2006b) that

soil moisture memory from multimodel simulations

is highest at intermediate soil wetness. It may be be-

cause precipitation plays a dominant role for the

variations in moisture in the former regions, whereas

the coupling with ET gets more important in the lat-

ter region (Koster et al. 2019). Topsoil temperature

exhibits relatively long memory in the SGP and SEUS

during most of the growing season, and in the NGP and

NCUS during spring and early summer, indicating a role

of soil moisture–temperature coupling and vegetation

dynamics.

Instantaneous ESI responses to changes in soil mois-

ture and to changes in temperature are quantified with

the GEFA method. The GEFA is applied to the ESI

response field and to each of the land surface forcing

fields. Since topsoil and subsoil moisture and tem-

perature occasionally have a relatively short memory

(,6 weeks), the soil data from the deep soil layer are

used to best ensure sufficient separation from the ESI

in memory while serving as a surrogate for the colum-

nar soil conditions. That is, the ESI responses are not

attributed to changes in the deep soil layer solely, but

to changes in the entire soil column more likely. The

GEFA results suggest that the ESI responds positively

to changes in soil moisture mostly and negatively to

changes in soil temperature (Fig. 9), in agreement with

the results based on the ESI-lagging partial correlations.

Note that only significant ESI responses are shown here.

The negative responses to soil moisture in the NCUS

FIG. 8. Seasonalmemory (weeks) in (a) the ESI, (b) soil moisture

(SM), and (c) soil temperature (ST) as estimated with lead–lag

correlations for the seven regions and three soil layers. TS, SS, and

DS denote topsoils, subsoils, and deep soils, respectively.
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and SEUS duringMarch are likely related to snow cover

and delay of planting in waterlogged soils; and those

in the ECOAST during September may result from

the detrimental impacts of hurricanes on vegetation

(Fig. 9a). The positive responses to soil temperature in

the NGP and SEUS during April likely represent

early green-up in warm springs (Fig. 9b).

In the SGP, the ESI responds significantly both to

changes in soil moisture and to changes in soil temper-

ature as a proxy for surface temperature during most of

the growing season. The fraction of the ESI variability

explained by soil moisture variability is higher in spring

than in summer, as discussed above with partial corre-

lations. The partial correlation analysis identifies topsoil

moisture control of summertime ESI in the NCUS,

NGP, and PNW, but the GEFA captures that in the

PNW only, perhaps due to the use of deep soil moisture

as the forcing field and the potential decoupling from

topsoil moisture. For comparison, the hot spots of sum-

mertime land–atmosphere coupling in the North America

revealed by a multimodel estimate included the SGP,

NGP, and PNW (Koster et al. 2004). The significant

ESI responses to changes in soil temperature during

June–September confirm that surface temperature is a

good indicator of vegetation health across the United

States in summer (Karnieli et al. 2010).

The scatterplot of the significant ESI responses to

changes in soil moisture versus the background soil

moisture displays generally positive responses in drier

climate regimes and a first-order inverse relationship

with background soil moisture (Fig. 10). The inverse

relationship is consistent with the various functionals

that have been proposed to approximate the depen-

dence of ET on soil moisture (Jarvis 1976; Campbell

and Norman 1998; Chen and Dudhia 2001; Hain et al.

2009). In wetter regimes, the ESI responses could be

positive or negative, showing no clear tendency with

background soil moisture increasing. This agrees with

the finding of Dirmeyer et al. (2000) and Koster et al.

(2004) that ET in wet climates is not highly sensitive to

soil moisture variations.

5. Conclusions and discussion

This study explores the spatiotemporal characteristics

of the ESI coupling with soil moisture and relevant

processes, as well as the relative roles of surface and

subsurface soils in the coupling. The lead–lag partial

correlations reveal strong seasonality and regional

characteristics of the ESI–land surface interactions

across the United States. The control of soil moisture

on the ESI is strongest in the SGP during spring, and in

FIG. 9. Monthly mean ESI responses to changes in (a) soil moisture (per 0.1 SM) and (b) soil

temperature (per 18 ST) as estimatedwith theGEFAmethod and 100-cm soil data for the seven

regions.
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the NCUS, NGP and PNW during summer, as evi-

denced by the relatively large positive partial correla-

tions at the ESI lagging. In wet climate regions, the

subsoil and deep soil layers tend to act in synergy with

the topsoil layer regarding soil moisture coupling with

the ESI; whereas in relatively dry regions such as the

NCUS and NGP, they are not actively involved. Soil

temperature as a proxy of surface temperature exhibits

strong negative correlations at the ESI lagging in the

NGP and NCUS during summer. It indicates the control

of vegetation dynamics on the ESI, as surface temper-

ature tends to negatively relate to vegetation health in a

moisture-limiting regime.

The GEFA estimates of ESI responses to deep soil

moisture and temperature are able to confirm a signifi-

cant dependency of the ESI on soil moisture or tem-

perature in these instances of land surface control of the

ESI, given that the deep soil moisture and temperature

well represent the columnar soil conditions. The signif-

icant ESI responses to soil moisture across the contigu-

ous United States conform to a first-order inverse

relationship with background soil moisture in drier

climate regimes; whereas in wetter regimes, the ESI

responses are not obviously related to background soil

moisture. Even though the details of the ESI–soil

moisture relationship often depend on soil and vege-

tation properties (Dirmeyer et al. 2000, 2009; Hain

et al. 2009), our results suggest that such a pattern is a

general rule across vegetation types and the typical

range of soil moisture. The GEFA estimates provide a

more integrated assessment of the land surface influ-

ence on the ESI than the lead–lag partial correlations,

and can be readily used as a couplingmetric to facilitate

model–observation comparisons.

This work aims to document the spatiotemporal

characteristics of the ESI coupling with soil moisture,

rather than to deepen the understanding of land–

atmosphere interactions. Since remotely sensed sur-

face temperature is a primary input to the ALEXI

model, we caution against inferring a causal relationship

between the ESI and soil moisture and temperature

from the results presented. That being said, these results

are still relevant for the study of land–atmosphere in-

teractions as ALEXI ESI is a satellite-derived dataset

and has been shown to compare well with ground-

based data.

Soil moisture and temperature measurements from

the USCRN are used in the partial correlation analysis

and GEFA assessment to represent the land surface

forcing on the ESI. These are point-scale measurements

with correlation lengths for soil moisture fields typically

ranging from 10m to 1km (Grayson andWestern 1998).

However, due to the static influence of soil, vegetation,

and topography, surface soil moisture fields exhibit

temporally persistent spatial patterns at local scales up

to 5km (Jacobs et al. 2004; Crow et al. 2005). The partial

correlations and GEFA responses thus depict the re-

lationship between the finescale ESI (;12 km, from

3 3 3 grid aggregation) and local-scale soil moisture

patterns. Note that moisture fields in adjacent soils are

also interacting with the ESI, which is not captured due

to the spatially limited representation of in situ mea-

surements. Indeed, the spatial representation of in situ

soil moisture measurements is a long-standing issue for

soil moisture observations and the applications in the

study of land–atmosphere interactions. Continuing ef-

forts have been devoted to selecting measurement sites

that represent a wider geographic area, upscaling of soil

moisture measurements, and evaluating spatial rep-

resentativeness of existing soil moisture data, among

others (Mohanty and Skaggs 2001; Crow et al. 2005;

Ford and Quiring 2019).

The USCRN network offers limited number of mea-

surement sites that meet the selection criterion of this

study, with only a handful of sites in the ECOAST.

For future work, we will include other networks from

the National Soil Moisture Network to increase data

amount. For example, Soil Climate Analysis Network

(SCAN) measures soil moisture and temperature at the

same five depths as the USCRN, and has a national

coverage as well. Similar analyses may also be applied to

FIG. 10. Scatterplot of the ESI responses to soil moisture

(per 0.1 SM) from Fig. 9a vs background soil moisture. The black

curve represents the second-degree polynomial determined by a

least squares fit to the data.
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in situ ET observations from the FLUXNET towers.

Our initial survey of FLUXNET ET and soil data shows

good data availability in the SWUS andNCUS, but poor

in the other regions.
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