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A B S T R A C T

Severe droughts in the Southern Great Plains (SGP: Kansas, Oklahoma, and Texas) in recent years have reduced
the productivity of tallgrass prairie and resulted in substantial economic losses to the beef cattle industry in this
region. Understanding spatial and temporal patterns of agricultural drought in the SGP can help ranchers to
develop and implement drought mitigation strategies. In this study, the Land Surface Water Index (LSWI),
calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) near infrared and shortwave
infrared bands, was used to assess agricultural drought in the tallgrass prairie region of the SGP during
2000–2013. The number of consecutive days with LSWI< 0 (DNLSWI) during the growing season was defined
as the drought duration, which, was then used to identify and analyze frequency of summer drought and whole
growing season drought (WGSD). The spatial pattern of DNLSWI was consistent with the east-to-west decreasing
precipitation gradient across the SGP region. Summer drought duration as depicted by the DNLSWI in the
western portion of the study area was around one and a half month. The occurrence of WGSD increased from one
year in the east to up to six years in the west, demonstrating the susceptibility of the tallgrass prairie region to
drought. In addition to the total amount of precipitation, its intra-annual distribution also played an important
role in drought development. A comparison with other widely used national drought products, namely the
Evaporative Stress Index (ESI), the Vegetation Drought Response Index (VegDRI), and the United States Drought
Monitor (USDM), shows that LSWI-based drought has good agreement with ESI and USDM. Quantitative ana-
lyses indicate that LSWI-based drought agreed better with ESI in severe drought conditions than in moderate or
pre-drought conditions. Severe drought periods characterized by the USDM also had low LSWI values. The areas
affected by drought derived from the LSWI-based drought index were significantly correlated with hay pro-
duction. As an indicator of vegetation water stress at moderate spatial resolution (∼500 m), the LSWI has the
potential to show drought conditions for an individual ranch and offer guidance for drought mitigation activities
and livestock production.

1. Introduction

Drought is a complex natural hazard caused by a deficit in pre-
cipitation over different time periods (McKee et al., 1993). It is one of

the most costly natural disasters and imposes wide-ranging impacts on
the economy, environment, and society (Hayes et al., 2012; Mishra and
Singh 2010). Tallgrass prairie, an important native grassland type in the
Southern Great Plains (SGP: Kansas, Oklahoma, and Texas) of the
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United States (U.S.), is susceptible to frequent droughts (Basara et al.,
2013; Christian et al., 2015; Gu et al., 2007; Gu et al., 2008; Hoerling
et al., 2014; Schubert et al., 2004). Poor vegetation growth during
agricultural drought reduces crop and forage production which, in turn,
threatens the survival of animals and the viability of the livestock
business in the SGP (Garbrecht 2015). The agricultural drought of 2011
in Texas caused more than $7.62 billion in losses, with about half of the
loss attributed to reduction in livestock production (AgriLifeToday,
2011; Fannin 2012; Ziolkowska 2016). Thus, it is crucial to provide
information about drought characteristics (e.g., spatial distribution of
different drought durations in each year) and regional drought assess-
ment (e.g., drought severity and regional susceptibility to drought) for
agricultural end users and policy-makers in the SGP to facilitate
drought mitigation and adaptation decisions (Otkin et al., 2015).

Drought can be characterized from different perspectives reflecting
the reduction of precipitation and/or its impacts on other factors, in-
cluding runoff, streamflow, soil moisture, evapotranspiration (ET), and
vegetation water stress (Fig. 1). Meteorological drought mainly focuses
on deficits in precipitation. Hydrological drought depicts inadequate
streamflow and/or surface and ground water levels. Agricultural
drought occurs when vegetation experiences stress due to inadequate
soil moisture availability, reflecting a more ecosystem point of view on
the impacts of drought. As agricultural drought develops, the plant
canopy experiences a loss of vegetation water content and pigments
such as chlorophyll, and eventually a loss of green leaves.

Many drought indices, based on anomalies or percentiles in relevant
hydrologic variables (e.g., precipitation, soil moisture or ET), have been
developed to monitor various classes of drought (Hayes 2006; Zargar
et al., 2011). Among these, two meteorological drought indices, namely
the Palmer Drought Severity Index (PDSI) (Palmer 1965) and the
Standardized Precipitation Index (SPI) (McKee et al., 1993, 1995), are
currently most widely used. These early standard meteorological
drought indices (e.g., PDSI and SPI) tend to focus on precipitation de-
ficiencies at coarse spatial resolution (i.e., the climate division level).
They provide valuable information for policy makers to implement
drought mitigation actions; however, these indices are usually based on
sparsely located long-term meteorological stations. Hydrological
drought indices often use basin-specific parameter values, making it
difficult to compare among basins (Dai 2011; Mu et al., 2013). Agri-
cultural drought indices have been developed to monitor soil water
deficits and the subsequent crop failure in the drought. The Crop
Moisture Index (CMI), which is related to PDSI, is able to track the
agricultural drought by considering soil moisture deficit in the top
1.5 m of soil column (Palmer 1968). The role of vegetation was not
reflected in the early stages of the development of agriculture drought
indices because of the complexity of different plant physiological pro-
cesses and lack of data (Palmer 1965). Most agricultural drought in-
dices use soil moisture to indicate drought and do not explicitly

consider vegetation water stress (Narasimhan and Srinivasan 2005;
Palmer 1965, 1968).

Satellite remote sensing is providing consistent observations of ve-
getation dynamics, which can be incorporated into drought monitoring
over large areas at high spatial and temporal resolutions (AghaKouchak
et al., 2015; Wardlow et al., 2012a). Remote sensing products such as
vegetation greenness indices, vegetation water indices, and land surface
temperature have been widely used to monitor and assess drought
conditions since the 1980s (Gao 1996; Hayes et al., 2012; Peters et al.,
2002; Rouse Jr et al., 1974; Wan et al., 2004). At the late stage of a
severe drought, plant leaves often wither and abscise, resulting in a
change in leaf area index (LAI) that can be tracked by the Normalized
Difference Vegetation Index (NDVI) (Fig. 1) (Cheng et al., 2006). NDVI,
calculated as a normalized ratio between red and near-infrared (NIR)
bands (Tucker 1979), has been incorporated into different drought
products such as the Vegetation Condition Index (VCI) (Kogan 1995),
Vegetation Drought Response Index (VegDRI) (Brown et al., 2008), and
Vegetation Temperature Condition Index (VTCI) (Wan et al., 2004). The
Enhanced Vegetation Index (EVI) is another vegetation greenness index
with improved sensitivity to soil background and atmospheric condi-
tion (Huete et al., 2002). At the middle stage of agricultural drought,
plant photosynthetic capacity is harmed by reduction of leaf chlor-
ophyll content, which can be approximated by EVI as a proxy (Lawlor
2002; Medrano et al., 2002). At the early stage of agriculture drought,
vegetation water stress is often characterized by the decrease of leaf
water content. Water-related vegetation indices such as the Normalized
Difference Water Index (NDWI) (Gao 1996) and the Land Surface Water
Index (LSWI) (Xiao et al., 2004), calculated as a normalized ratio be-
tween NIR and shortwave infrared (SWIR) bands, are more sensitive to
the leaf water content and water stress than are vegetation greenness
indices such as NDVI and EVI (Gu et al., 2007; Gu et al., 2008; Jackson
et al., 2004; Maki et al., 2004; Wagle et al., 2014). Consequently, recent
studies have shown the ability of LSWI to track drought-impacted ve-
getation or to monitor drought (Bajgain et al., 2016; Bajgain et al.,
2015; Chandrasekar et al., 2010; Wagle et al., 2015; Wagle et al., 2014).

Wagle et al. (2014) examined the seasonal dynamics of LSWI de-
rived from the Moderate Resolution Imaging Spectroradiometer
(MODIS) and the CO2 flux data at two tallgrass prairie eddy flux tower
sites during 2005–2006 in Oklahoma, and reported that LSWI< 0
during the growing season indicates drought-impacted vegetation.
Another study (Bajgain et al., 2015) used LSWI to assess and track
drought conditions at two tallgrass prairie sites in Oklahoma during
2000–2013 and showed that LSWI< 0 was corresponded well with
moderate or severe drought categories indicated by the United States
Drought Monitor (USDM) (Svoboda et al., 2002). Another follow up
paper validated the LSWI-based drought algorithm for 113 Mesonet
stations across Oklahoma and showed that LSWI is sensitive to rainfall
variations and can be used as an indicator of drought occurrence

Fig. 1. Different timescales of drought, highlighting observables of vegetation water stress expressed as remote sensing proxies. Only the primary factors affecting the remotely sensed
vegetation indices are listed.
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(Bajgain et al., 2016). Based on these previous site-level findings
(Bajgain et al., 2016; Bajgain et al., 2015; Wagle et al., 2014), we hy-
pothesize that the LSWI-based drought algorithm can be applied to
assess the drought dynamics of tallgrass prairie at the regional scale
such as in the SGP.

The specific objectives of this study are (1) to apply the LSWI-based
drought algorithm in the tallgrass prairie of the SGP during 2000–2013;
(2) to analyze the impacts of precipitation distribution on different
drought patterns; and (3) to compare the LSWI-based drought map with
other U.S. national drought products such as the Evaporative Stress
Index (ESI) (Anderson et al., 2011; Anderson et al., 2007; Otkin et al.,
2013), VegDRI (Brown et al., 2008), and USDM (Svoboda et al., 2002),
during normal, summer drought, and growing season drought years.

2. Materials and methods

2.1. Study area

This study focuses on the SGP region in the U.S., specifically in-
cluding Kansas (KS), Oklahoma (OK), and Texas (TX) (Fig. 2). These
three states are known for extensive ranching and farming. The mean
annual precipitation (MAP) shows a decreasing gradient from east
(1400 mm) to west (200–400 mm) across the region (http://www.
prism.oregonstate.edu/normals). Precipitation is highly variable both
inter- and intra-annually (Christian et al., 2015; Flanagan et al., 2017;
Weaver et al., 2016). Maximum temperatures in summer are usually
associated with low atmospheric humidity and strong winds, which in
turn produce high rates of soil moisture depletion through ET, the main
reason for summer drought (Dong et al., 2011). Soil types are mainly
sandy and clay with small surface slopes (Carter 1994). Shortgrass
prairies are distributed in the arid and semiarid western part of the SGP,
while tallgrasses prairies are primarily located in the sub-humid eastern
part of the region (Carter 1994).

2.2. Data

2.2.1. MODIS-based LSWI and NDVI
The SGP is covered by six MODIS tiles (Fig. 2). The 8-day composite

MODIS Surface Reflectance product at a 500-m spatial resolution
(MOD09A1) (Vermote and Vermeulen 1999) was used to calculate

LSWI and NDVI at 500 m. MOD09A1 includes seven-bands: blue
(459–479 nm), green (545–565 nm), red (620–670 nm), two near in-
frared (NIR1: 841–876 nm; NIR2: 1230–1250 nm), and two shortwave
infrared (SWIR1: 1628–1652 nm, SWIR2: 2105–2155 nm) bands at a
500-m spatial resolution. MOD09A1 also includes quality control flags
for consideration of various image artifacts (e.g., clouds and cloud
shadow). For each 8-day composite image, LSWI (Xiao et al., 2002a,
2002b) and NDVI (Tucker 1979) were calculated using surface re-
flectance (ρ) from MODIS red, near infrared (NIR1) and shortwave in-
frared bands (SWIR1) as:
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−

+
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2.2.2. MODIS land surface temperature (LST) data
The MODIS 8-day Land Surface Temperature (LST) product

(MOD11A2) at a 1-km spatial resolution from 2000 to 2013 was used to
depict the nighttime LST (LSTnight) (Wan and Dozier 1996) and define
the thermal growing season. Detailed descriptions of MOD11A2 can
be found at https://lpdaac.usgs.gov/dataset_discovery/modis/modis_
products_table/mod11a2. The LST data were resampled from 1-km to
500-m spatial resolution using nearest neighbor interpolation. To
evaluate the effects of resampling of LST on data processing, we com-
pared the start date and end date of LST> 5 °C (SOD and EOD) before
and after resampling based on one tile of the MODIS (h10v05) LST data
in 2012 (Fig. S1). The two figures in each group look very similar to
each other. The means of SOD and EOD were close in the corresponding
group (Table S1).

2.2.3. MODIS land cover type data
The MODIS Land Cover Type product (MCD12Q1) was used to gen-

erate the grassland mask (Friedl et al., 2002) and then to define the
tallgrass prairie layer. The IGBP (International Geosphere-Biosphere
Program) classification scheme was used, which includes a grassland
class (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_
table/mcd12q1).

2.2.4. Precipitation data
Precipitation data were downloaded from PRISM Climate Group,

Oregon State University (http://prism.oregonstate.edu). The time series
of precipitation datasets are modeled using climatologically-aided in-
terpolation, which uses the long-term average pattern (i.e., the 30-year
normals) as first-guess of the spatial pattern of climatic conditions for a
given month or day. Monthly precipitation data for 2000–2013 were
used to generate summer precipitation (June-August, JJA) and annual
precipitation.

Precipitation data measured by automated weather stations cov-
ering Oklahoma were also included to evaluate the LSWI-based drought
at site level. The dataset was acquired from a previous LSWI-based
drought related study in Oklahoma (Bajgain et al., 2016). The pre-
cipitation anomalies were compared against LSWI anomalies at 113
Mesonet stations across Oklahoma for the drought years.

2.2.5. Forage production data
Forage production, especially for hay, is affected by drought as most

of the hay producing fields rely on rainfall. Hay production data from
the United States Department of Agriculture − National Agricultural
Statistics Service (https://www.nass.usda.gov/Quick_Stats) were used
to evaluate the LSWI-based drought depictions in each state included in
the study. A simple linear regression model was used to examine the
relationships between drought affected area and hay production for
each state.

Fig. 2. Location of the Southern Great Plains (SGP) study area and the coverage of the
tallgrass prairie (in the inset). MODIS tile boundaries are indicated as dark lines. The base
map shows the 30 year (1981–2010) mean annual precipitation over the region.
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2.3. Algorithms for mapping agricultural drought

Based on findings from our previous studies (Bajgain et al., 2016;
Bajgain et al., 2015; Wagle et al., 2014) that the LSWI can assess the
impact of drought on tallgrass prairie vegetation at individual sites, this
study aims to expand its use to identify both summer drought and
whole growing season drought (WGSD) conditions at the regional scale
(SGP). Fig. 3 illustrates the steps in the drought identification algorithm
as applied to MODIS time series data for a given year. Nighttime LST
data from the entire year were first used to determine the temperature-
defined growing season, which is the time between the start and end
dates for consecutive three 8-day periods with nighttime LST> 5 °C
(Morison and Morecroft 2008; Zhang et al., 2015; Zhou et al., 2016).
Second, the drop of LSWI below zero during summer (JJA) was used to
indicate severe agricultural drought in summer (Bajgain et al., 2015).
Third, the summer drought duration maps were generated by counting
the number of days with LSWI< 0 (these days do not need to be
consecutive) in JJA (DNLSWI). Years with all LSWI values less than zero
during the LST-defined plant growing season were defined as WGSD
years (Fig. 3).

As the LSWI-based drought algorithm was originally developed for
the tallgrass prairie, we focused on tallgrass prairie area in this study.
The tallgrass prairie map was generated as the study area mask based
on the MODIS land cover maps (MCD12Q1) for 2001–2013 and LSWI
data. The grassland layer from MCD12Q1 for 2001 was used as a close
approximation of 2000 since the MCD12Q1 dataset starts from 2001.
Using these time series, the number of years that each pixel classified as
grassland was computed, as well as the annual maximum value of LSWI
(LSWImax) during the LST-based growing season. To exclude sparse
vegetation areas, the tallgrass mask was generated by selecting those
pixels that meet two criteria over 14 years: (1) the number of years as
grassland is 7 or more (50% or higher) and (2) the number of years with
LSWImax> 0 is 7 or more (50% or higher) (Fig. 2 inset). This tallgrass
prairie mask was then used to conduct the analyses of drought duration
described later in the manuscript (Fig. S2).

2.4. Agricultural drought dynamics and comparison with other drought
products

Annual agricultural drought maps were created to show the evolu-
tion of agricultural drought over the study period. Each drought map
includes both summer and WGSD conditions. The drought maps for
three consecutive years (2010, 2011, and 2012) were selected to re-
present three different drought conditions (normal, WGSD, and summer
drought). WGSD and summer drought years were identified from

annual and summer precipitation anomalies (Fig. S3), respectively,
based on the fourteen-year mean (2000–2013). A mean summer
drought duration map was generated showing the average drought
duration for 2000–2013. The occurrence of WGSD map shows the fre-
quency of WGSD during the study area from 2000 to 2013. These two
summary maps indicate the spatial pattern of agricultural drought in
the tallgrass region in the SGP.

Three U.S. national drought products, namely ESI, VegDRI, and
USDM, were also compared with the LSWI-based drought product to
characterize different drought conditions. The ESI (Anderson et al.,
2013; Anderson et al., 2011; Anderson et al., 2007) quantifies temporal
anomalies in the ratio of actual to potential ET using thermal infrared
remote sensing observations and the Atmosphere-Land Exchange In-
verse (ALEXI) surface energy balance model. It has been used to esti-
mate the moisture stress of plants, as well as associated yield impacts
(Anderson et al., 2016a; Anderson et al., 2015; Anderson et al., 2016b).
VegDRI is a new ‘hybrid’ index that integrates satellite-based observa-
tions of vegetation conditions, climate-based drought index data, and
biophysical characteristics of the environment, including PDSI, SPI, and
NDVI, to depict drought-related vegetation stress (Brown et al., 2008;
Tadesse et al., 2015; Wardlow et al., 2012b). The USDM is a composite
drought index which incorporates climatic, hydrologic, and soil data
along with professional inputs in order to provide weekly maps of
drought conditions (Svoboda et al., 2002).

A direct comparison between the LSWI-based drought with ESI,
VegDRI, and USDM is difficult due to their differences in temporal
scales and spatial resolutions. ESI data are provided at weekly time
steps composited over a period of 1–3 months. The VegDRI and USDM
are also created weekly. In this study, we used 3-month ESI composites
ending on the last week of August to compare with LSWI-based drought
duration. The VegDRI and USDM for the last week of August were used
in the comparison. The comparison was done for the period 2010–2012,
which represent three different drought conditions (normal, WGSD, and
summer drought).

2.5. The relationship between precipitation and LSWI-based drought
duration

Because agricultural drought is triggered in part by a precipitation
deficit, it is worthwhile to investigate the relationship between pre-
cipitation and LSWI-based drought duration. Summer drought duration
from LSWI-based drought maps and cumulative summer rainfall (JJA)
from PRISM data for 2010–2012 were extracted and analyzed. The
relationships between summer drought duration and summer rainfall
were analyzed and the pattern of cumulative summer rainfall in

Fig. 3. A schematic diagraph of the seasonal dynamics of LST,
LSWI, and NDVI during drought and non-drought years for a
sample data point is located at 36.556481°N,
−98.317713°W. The LST-defined growing season is depicted
for the duration of nighttime LST> 5 °C.

Y. Zhou et al. Agricultural and Forest Meteorology 246 (2017) 111–122

114



Fig. 4. Comparison of LSWI-based drought duration with ESI, VegDRI, and USDM in normal, WGSD, and summer drought years. (a) Summer drought duration and WGSD in 2010, (b)
Summer ESI in 2010, (c) Summer VegDRI in 2010, (d) USDM 20100831, (e) Summer drought duration and WGSD in 2011 (f) Summer ESI in 2011, (g) Summer VegDRI in 2011, (h) USDM
20110830, (i) Summer drought duration and WGSD in 2012, (j) Summer ESI in 2012, (k) Summer VegDRI in 2012, (l) USDM 20120828.
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different drought condition years are also presented. The site-level
precipitation data from the Oklahoma Mesonet were also used to
evaluate the LSWI-based drought. The spatial patterns of WGSD and
annual precipitation deviation from the mean in 2011 (WGSD year)
demonstrate the effects of annual precipitation on the WGSD. The re-
lationship between WGSD affected area and the annual precipitation
anomaly was also investigated.

3. Results

3.1. LSWI-based drought maps and comparison with ESI, VegDRI, and
USDM

The tallgrass prairie in the SGP was affected by frequent droughts
during the study period (Fig. S4) and the drought duration was con-
sistent with the decreasing precipitation gradient from east to west in
most years (Fig. 2). Some areas experienced a short duration of summer
drought even in a normal rainfall year (e.g., 2010, Fig. 4a). Central SGP
experienced a long period of summer drought in 2012 (indicated by
dark red color) (Fig. 4i). 2011 was the most severe WGSD year in OK
and TX (indicated by black color), with more than half of the tallgrass
prairie areas affected (Fig. 4e). For KS, 2002 was the most severe WGSD
year (Fig. S4c).

Fig. 4 shows ESI, VegDRI, and USDM summer drought depictions for
2010–2012, and compares with spatial patterns in the LSWI-based
drought duration. The LSWI-based drought map, ESI, and VegDRI
provided more detailed drought information than did USDM because of
their higher spatial resolution and number of drought categories. The
LSWI-based drought map showed a short period of drought occurrence
in the western SGP even in a normal year (2010) (Fig. 4a), while
summer ESI indicated wet or near normal conditions for most of the
areas (Fig. 4b) and VegDRI showed scattered pre-drought and unusually
moist with big non-photosynthetically-active vegetation area (out of
season category in the figure) (Fig. 4c). In 2011, all drought products
identified extended/severe drought conditions in the central SGP
(Fig. 4e–h). The four indices were different in their depictions of the
2012 drought conditions (Fig. 4i-l), with LSWI-based drought, ESI, and
USDM showing extensive and severe drought for KS and OK, while
VegDRI mostly indicating pre-drought to moderate drought. The in-
creasing drought gradient from east to west in the LSWI-based drought
map was not apparent in other drought indices except for VegDRI in
2011 (Fig. 4g).

In general, the patterns of LSWI-based summer drought maps are
similar with those in the ESI and USDM for most of the areas (Fig. 4).
However, the VegDRI tends to show less intense drought conditions
than other drought products for the same year. One possible reason is
that VegDRI uses long-term climate variables such as 36-week SPI
which responds more slowly than LSWI and ESI. Similar findings were
identified in a study by Otkin et al. (Otkin et al., 2016).

LSWI, ESI, and VegDRI over the SGP tallgrass prairie regions were
also compared quantitatively. Fig. 5 compares ESI values from the 3-
month composite ending at the last week of August with LSWI-based
drought duration for 2012, which is the period with severe summer
drought. A clear trend of increasing ESI stress severity is identified with
increasing length of drought conditions as identified by the LSWI. The
dynamic range of ESI decreased along with the increasing summer
drought duration (Fig. 5), indicating that LSWI-based drought and ESI
agree better for severe drought than moderate or pre-drought condi-
tions. The relationship between LSWI and VegDRI showed a stronger
trend than did the relationship between NDVI and VegDRI (Fig. S5).

Fig. S5. LSWI and NDVI vs. VegDRI for the last week of August in
2012. Only pixels classified as tallgrass prairie were plotted.

LSWI values are compared to the USDM drought severity classifi-
cations from the last week of August in 2012 in Fig. 6. Most areas de-
picted as experiencing severe drought according to the USDM (D3 and
D4) also have very low LSWI values (Fig. 6b inset) such as western KS

and southern TX (Fig. 6a). As two key indicators in the USDM are
usually available only at the climate division scale, the USDM does not
show much variability in drought severity within a climate division. In
contrast, LSWI shows large heterogeneity at the sub-climate division
scale due to the relative high spatial resolution of the remotely sensed
inputs.

3.2. LSWI-based drought duration patterns in the SGP

Fig. 7 shows the dynamics of summer drought duration diagnosed
by LSWI in three states (KS, OK, and TX) for 2000–2013. The summer
drought pattern was highly variable among years in all three states. TX
was affected by summer drought more often than KS and OK. 2012 was
the most severe summer drought year in OK, with relatively small area
affected by short periods of drought and large areas affected by longer
periods of drought (Fig. 7b). The frequent occurrence of summer
drought indicates the susceptibility of the SGP to agricultural drought.
Fig. 8 shows the areas affected by WGSD across the region for
2000–2013. The pattern of WGSD in OK and TX were similar with 2011
as the most severe WGSD year, while it was 2002 in the case of KS. In
the most severe WGSD years, the area affected by WGSD was more than
double of the mean value.

Fig. 9 shows the mean of summer drought duration, standard de-
viation of summer drought duration, and frequency of the occurrence of
WGSD for 2000–2013. As expected, both summer drought duration and
occurrence of WGSD increased from east to west, along the gradient of
decreasing precipitation. Mean summer drought duration can be as long
as one and a half months (six 8-day periods) (Fig. 9a) and WGSD oc-
curred in six years (Fig. 9c) in the west of the study area. The variability
in summer drought duration was largest in the central part (Fig. 9b).

3.3. Relationship between LSWI-based drought duration and precipitation

To quantify the contribution of precipitation deficits to drought
development, we examined the relationship between precipitation and
drought duration during the summer period and the entire year. The
variation of the summer drought duration (indicated by error bar) was
equally large for all precipitation ranges (Fig. 10), suggesting that
summer precipitation is not the only factor determining summer
drought duration. The cumulative summer precipitation (indicated by
the relative frequency of precipitation) in 2010 (Fig. 10a) was slightly
higher than in 2012 (Fig. 10c), whereas the summer drought duration
was quite different, with much longer summer drought duration in
2012. More than 60% percent of the pixels had less than 100 mm of
cumulative summer precipitation in 2011 and long periods of summer
drought. (Fig. 10b).

The LSWI anomalies were strongly correlated with summer pre-
cipitation anomalies (r2 = 0.64) for the drought years (2006, 2011, and

Fig. 5. LSWI-based summer drought duration vs. 3-month composite ESI (JJA) in 2012.
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2012) over 113 Mesonet stations across Oklahoma (Fig. 11a). The in-
creasing summer precipitation anomalies resulted in bigger magnitude
of anomalies in LSWI at most Mesonet stations. The drought intensity
indicated by USDM was not highly correlated with the summer pre-
cipitation anomalies (Fig. 11b).

Areas affected by WGSD increased from north to south in the SGP in
2011 (Fig. 12a). This trend correlates well with the annual precipitation
deviation to the mean in 2011 (Fig. 12b). The mean value of the annual
precipitation deficit in 2011 was 300 mm (Fig. 12b inset and Fig. S6)
which is about one third of the long term mean annual precipitation
(Fig. 2). Precipitation deviation from the mean (annual anomaly in

2011) in central and southern TX was as high as 400 mm or more. The
increasing temperature gradient from north to south might also have
exacerbated drought in the southern region.

To investigate the relationship between the WGSD affected area and
annual precipitation anomalies, we plotted the ratio of WGSD affected
areas to total state area against annual precipitation anomalies for all
three states during 2000–2013 (Fig. 13). Overall, larger anomalies in
annual precipitation resulted in larger areas affected by WGSD. The
point in the upper right corner is associated with large annual pre-
cipitation anomaly in 2011, demonstrating the severity of 2011 Texas
drought.

Fig. 6. LSWI vs. USDM for the last week of August in 2012. The climate division boundaries are indicated by black polygons. Only pixels classified as tallgrass prairie were plotted. The
inset in (b) showed the mean LSWI values in each category (D0, D1, D2, D3, and D4).

Fig. 7. Annual summer drought dynamics in three states (KS, OK, and TX) of the SGP for 2000–2013.

Y. Zhou et al. Agricultural and Forest Meteorology 246 (2017) 111–122

117



3.4. Validation of LSWI-based drought against forage production

Fig. 14 show the relationships between areas affected by drought
(summer drought and WGSD) and hay production in each state during
2000–2013. The hay production showed a significant negative re-
lationship with areas affected by drought. The lowest hay production
year was 2011 in KS and TX and 2012 in OK. This is consistent with our
results that 2011 and 2012 were the most severe drought years.

4. Discussion

4.1. Comparison of the LSWI-based drought algorithm with other drought
products

The LSWI-based drought algorithm uses LSWI values less than zero
during the growing season to identify agricultural drought conditions
based on the findings of previous studies at individual sites (Bajgain
et al., 2015; Wagle et al., 2014). The SWIR band in LSWI is more sen-
sitive to the canopy water content (high absorption by liquid water)
than the red band used in NDVI (Gu et al., 2007; Gu et al., 2008;
Jackson et al., 2004). Thus, the LSWI-based algorithm complements
well with other NDVI-based drought products, as they together assess
the impacts of drought on vegetation canopy from a loss of water to a
loss of green leaves (Fig. 1). Furthermore, previous study showed that
LSWI provided an earlier signal of declining soil moisture than did

NDVI and EVI (Bajgain et al., 2015) which might be useful for drought
early warning. This study expanded the LSWI-based drought algorithm
to include three conditions: no drought, summer drought, and WGSD,
and then applied the algorithm at the regional scale (tallgrass prairie
region in the SGP) to report agricultural drought conditions.

Similar spatial patterns of LSWI-based summer drought maps with
ESI and USDM (Fig. 4), and strong relationships of low LSWI values
with ESI (Fig. 5) and USDM categories (Fig. 6) during the severe
drought indicate that LSWI can be used as a complementary drought
index. The significant negative relationship between drought affected
areas and hay yield further validated the reliability of the LSWI-based
drought mapping. Using LSWI along with other commonly used vege-
tation indices such as NDVI and EVI can help improve the performance
of current drought products. The LSWI-based drought algorithm com-
pletely depends on MODIS data and is easy to apply. It could be a
complementary method for assessing agricultural drought in the tall-
grass prairie at the regional scale with a spatial resolution of 500 m.

4.2. Importance of precipitation amount and distribution in the year

As expected, our results show that precipitation is a major factor for
the occurrence of severe agricultural drought in tallgrass prairie since
the regional agricultural drought pattern (Fig. 9a and c) was highly
correlated with the decreasing precipitation gradient from east to west.
Central SGP had long summer drought durations and large standard
deviations (Fig. 9a and b) because of large summer precipitation var-
iations (Fig. S7). The orthogonal nature of the temperature and pre-
cipitation gradients (east-west oriented precipitation gradient and
north-south oriented temperature gradient) (Basara et al., 2013) could
also generate this pattern in the central part of the SGP where the re-
lative importance of temperature and precipitation varies in different
years.

The total amount of precipitation in a year is important for vege-
tation. Large annual precipitation deficits in 2011 (Fig. 12) caused the
occurrence of extensive WGSD in the SGP (Fig. 4e). The temporal dis-
tribution of precipitation is also equally important. The cumulative
summer precipitation in 2012 was only a little bit lower than 2010
(Fig. 10), however, the drought condition in 2012 was much more se-
vere (Fig. 4). The precipitation in early spring (March) was well dis-
tributed in 2012 (Fig. 15a). The ample precipitation in March 2012
(Fig. S3f and Fig. 15a) increased soil moisture and facilitated vegetation
growth in spring (the anomaly of high NDVI is presented in Fig. S8).
Summer rainfall was much less than the enhanced ET demand from
abundant green vegetation, resulted in rapid depletion of soil moisture
and severe summer drought in 2012. This result indicated that it was
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Fig. 8. Areal percentage of the total tallgrass prairie area affected by the whole growing
season drought (WGSD) in three states (KS, OK, and TX) of the SGP for 2000–2013.

Fig. 9. Summer drought and WGSD patterns in the SGP for 2000–2013. (a) Mean of summer drought duration for 2000–2013, (b) Standard deviation of summer drought duration, (c)
Occurrence of WGSD for 2000–2013. The insert panel shows the frequency distribution of values.
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the joint control of precipitation and vegetation that generated the se-
vere summer drought in 2012. It suggests the important role of vege-
tation itself for the occurrence of agricultural drought in addition to
total amount of precipitation. This phenomenon has been reported by
other studies (Otkin et al., 2013; Otkin et al., 2014; Otkin et al., 2016)

and referred as “flash drought” in which vegetation health rapidly de-
teriorates because the plants quickly exhaust soil moisture. Thus, LSWI-
based drought does not only reflect precipitation anomalies to the
historical mean as SPI does but is also sensitive to abnormal pre-
cipitation distribution in the year.

Fig. 10. LSWI-based summer drought duration vs. summer precipitation in (a) 2010, (b) 2011, and (c) 2012. Relative frequency in the legend indicates the ratio of pixels with certain
summer precipitation to the total pixels.

Fig. 11. Comparison of summer precipitation anomalies and LSWI anomalies (a) and USDM (b) in drought years (2006, 2011, and 2012) at 113 Mesonet stations across OK. The USDM
drought intensity classes 0, D0, D1, D2, D3, and D4 are set to 0, 1, 2, 3, 4, and 5, respectively.

Fig. 12. WGSD vs. annual precipitation in 2011. (a) Distribution of WGSD in 2011, (b) Annual precipitation deviation from the mean (annual anomaly in 2011). The inset in (b) shows the
frequency distribution of precipitation deviation.
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4.3. Future work and challenges

The LSWI-based drought algorithm, which only uses MODIS data as
input, is easy to apply and has a higher spatial resolution (∼500 m)
than current operational versions of ESI, VegDRI, and USDM. Like most
visible and thermal remote sensing algorithms, the LSWI-based drought
algorithm has limitations during cloudy days when the land surface is
not visible to the satellite sensor (Jensen 2009). Combinations of mul-
tiple satellite sensors and development of an appropriate gap-filling
algorithm are needed to create a continuous dataset (Jin et al., 2013),
thereby reducing the effect of bad observations (e.g., cloud cover).
Another concern is the threshold values used in the algorithm. We used
LSWI< 0 during the growing season as the indicator of severe agri-
cultural drought in tallgrass prairie based on the findings of site level
studies (Bajgain et al., 2015; Wagle et al., 2014). The LSWI threshold
for other land cover types and regions might be different, which needs
to be further explored. The identification of agricultural drought in
sparse vegetation area (e.g. arid region) using LSWI is challenging as
soil background can contribute more to the satellite observations and
reduce LSWI values. In these cases, the lower threshold of relative
change of LSWI values might be better. Also LSWI is related to vege-
tation water content, it is not able to depict drought during the non-
growing season. Additional studies are needed to develop a LSWI-based
drought severity scheme based on plant phenology and anomalies. In
this study, we evaluated and reported agricultural drought in terms of
severe drought duration in the summer and entire growing season, and
drought severity at specific times was not included. Future studies need
to compare the LSWI-based drought severity scheme at specific times
(Bajgain et al., 2016; Bajgain et al., 2015) with ESI, USDM, and other
drought products. Human and natural disturbances (grazing, mowing,
and burning etc.) could also affect LSWI, which needs to be in-
corporated using land use and land management data.

The relationship between precipitation and drought needs to be
further investigated as other studies indicated that high temperature
can also contribute to the quick onset of drought in the SGP (Basara

et al., 2013; Hoerling et al., 2014; Otkin et al., 2013; Otkin et al., 2016).
The importance of vegetation in agricultural drought assessment needs
to be emphasized in the future as precipitation does not always provide
accurate drought assessment without considering the high ET demand
by vegetation and available soil moisture in summer. Plant health can
deteriorate rapidly during the summer through rapid loss of water be-
cause of their high ET. The ESI, an indicator of ET anomaly, is a good
indicator to reflect the role of vegetation in agricultural drought de-
velopment (Anderson et al., 2011; Anderson et al., 2007; Otkin et al.,
2016). The importance of vegetation in drought development also
emphasizes the necessity of investigating drought from the ecosystem
perspective (AghaKouchak et al., 2015).

The duration of summer drought, summer drought variation, and
number of years with WGSD present the pattern of agricultural drought
in tallgrass prairie in the SGP (Fig. 9). The LSWI-based drought algo-
rithm can be used to assess the vulnerability to agricultural drought,
and it has the potential to use for several applications such as vegeta-
tion production assessment, water demand/supply analysis, and bird
migration and breeding (Brown and Brown 2014; Goddard et al., 2003;
Wilhite 2005). The agricultural drought of tallgrass prairie in the SGP
reduces hay production (Fig. 14), an important feed source for beef
cattle production, especially in winter and early spring, which can
threaten the beef cattle industry. A follow-up study will use the LSWI-
based drought product to investigate the impacts of different drought

Fig. 13. Relationship between the WGSD affected area and annual precipitation anomaly.

Fig. 14. Relationship between areas affected by drought and hay production in each state.
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types (e.g., summer drought and WGSD) and spatial patterns on hay
and beef cattle production in the SGP.

5. Conclusion

Based on the findings of previous studies about the ability of LSWI
to track drought-impacted vegetation in tallgrass prairie, this study
expanded and applied a LSWI-based drought algorithm to map agri-
cultural drought of tallgrass prairie in the SGP. The results are com-
parable to other widely used drought products (ESI, VegDRI, and
USDM) in normal, WGSD, and summer drought years. The frequent
occurrence of summer drought and WGSD indicates the susceptibility of
the SGP to agricultural drought. The spatial pattern of drought duration
was highly correlated with the decreasing precipitation gradient from
east to west. TX was affected by summer drought more often than KS
and OK. In the most severe WGSD years, the area affected by WGSD was
more than double of the mean value. LSWI-based drought depictions
are sensitive to both precipitation anomalies from the historical mean
and abnormal seasonal precipitation distributions. The importance of
vegetation in drought assessment needs to be emphasized in future
drought studies. Incorporating LSWI other than NDVI into other
drought products can help improve their performance. The LSWI-based
drought algorithm, completely depending on MODIS data and with a
spatial resolution of 500 m, can be a complement for other drought
products for assessment of agricultural drought in the tallgrass prairie
region. Future studies need to explore LSWI thresholds to identify
agricultural drought and develop LSWI-based drought severity schemes
for other land cover types.
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