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ABSTRACT

Annular hurricanes are a subset of intense tropical cyclones that have been shown in previous work to be
significantly stronger, to maintain their peak intensities longer, and to weaken more slowly than average
tropical cyclones. Because of these characteristics, they represent a significant forecasting challenge. This
paper updates the list of annular hurricanes to encompass the years 1995–2006 in both the North Atlantic
and eastern–central North Pacific tropical cyclone basins. Because annular hurricanes have a unique ap-
pearance in infrared satellite imagery, and form in a specific set of environmental conditions, an objective
real-time method of identifying these hurricanes is developed. However, since the occurrence of annular
hurricanes is rare (�4% of all hurricanes), a special algorithm to detect annular hurricanes is developed that
employs two steps to identify the candidates: 1) prescreening the data and 2) applying a linear discriminant
analysis. This algorithm is trained using a dependent dataset (1995–2003) that includes 11 annular hurri-
canes. The resulting algorithm is then independently tested using datasets from the years 2004–06, which
contained an additional three annular hurricanes. Results indicate that the algorithm is able to discriminate
annular hurricanes from tropical cyclones with intensities greater than 84 kt (43.2 m s�1). The probability
of detection or hit rate produced by this scheme is shown to be �96% with a false alarm rate of �6%, based
on 1363 six-hour time periods with a tropical cyclone with an intensity greater than 84 kt (1995–2006).

1. Introduction

A subset of tropical cyclones, referred to as annular
hurricanes, were introduced and diagnosed in an obser-
vational study (Knaff et al. 2003, hereafter K03). An

annular hurricane (AH), as observed in infrared (IR)
imagery, has a larger-than-average size eye, symmetri-
cally distributed cold brightness temperatures associ-
ated with eyewall convection, and few or no rainband
features. K03 used these features to subjectively iden-
tify six AHs in the Atlantic and eastern–central North
Pacific tropical cyclone basins. Findings of K03 show
that AH formation was systematic, resulting from what
appeared to be asymmetric mixing of eye and eyewall
components of the storms that involved one or two
possible mesovortices—a contention supported by lim-
ited aircraft reconnaissance data and satellite imagery.
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The AHs were also shown to exist and develop in spe-
cific environmental conditions that are characterized by
1) relatively weak easterly or southeasterly vertical
wind shear, 2) easterly winds and colder-than-average
temperatures at 200 hPa, 3) a specific range (25.4°–
28.5°C) of sea surface temperatures (SSTs) with small
variations along the storm track, and 4) a lack of 200-
hPa relative eddy flux convergence due to interactions
with the environmental flow. Weak easterly shear is
hypothesized to promote the symmetric nature of AHs
by canceling the effect of vertical wind shear induced by
the vortex interacting with gradients of planetary vor-
ticity. With respect to maximum wind speed, AHs were
significantly stronger, maintained their peak intensities
longer, and weakened more slowly, than the average
tropical cyclone in these basins (see Fig. 3 in K03). As
a result, average official forecast intensity errors for
these types of tropical cyclones were 10%–30% larger
than the 5-yr (1995–99) mean official errors during the
same period with pronounced negative biases (e.g.,
�17.1 kt for the 48-h forecast).

Since the formal documentation of AHs, also re-
ferred to as “truck tire” or “doughnut” tropical cy-
clones by some forecasters, there have been a few ide-
alized numerical modeling studies that examine the
combined effect of environmental and beta-vortex-
induced shear or “beta shear.” The beta shear results
from the differential advection of planetary vorticity
within the tropical cyclone with height and weakening
of the beta gyres (Chan and Williams 1987; Fiorino and
Elsberry 1989) as a result of the cyclone’s warm core
structure (Wang and Holland 1996a,b,c; Bender 1997;
Peng et al. 1999; Wu and Braun 2004; Ritchie and Frank
2007). The majority of previous idealized numerical
studies of tropical cyclones were conducted on an f
plane, primarily to keep the influence of planetary vor-
ticity and its influences on motion and vertical wind
shear separate from other processes of interest. In gen-
eral, f-plane simulations result in quite symmetric simu-
lated tropical cyclones in the absence of vertical wind
shear, but the occurrence or development of AH-type
structures (i.e., symmetric with a large, temporally in-
variant radius of maximum winds) to our knowledge
has not been explicitly reported or examined. However,
it has been established that rather small magnitudes
(��3 m s�1) of vertical wind shear lead to convective
asymmetries and corresponding weakening of the vor-
tex in such simulations (e.g., Ritchie and Frank 2007).

Recently, there has been renewed interest in the ef-
fect of the advection of planetary vorticity on the evo-
lution of tropical cyclone structure. The inclusion of
these effects, in an environment at rest, has also pro-
duced a more asymmetric and slightly larger tropical

cyclone that intensifies slightly slower than its f-plane
counterpart in terms of minimum sea level pressure
(MSLP) (Ritchie and Frank 2007). Wu and Braun
(2004) produced similar results in tropical cyclone
simulations where the inclusion of beta shear results in
more asymmetries and a weaker tropical cyclone. In
another study, Kwok and Chan (2005) found that uni-
form westerly steering flow in variable-f simulations
partially cancels the beta shear, while easterly uniform
steering flow enhances it—findings that confirm earlier
results presented in Peng et al. (1999). The greater
asymmetry in tropical cyclone (TC) structure in these
TC simulations is in a large part due to the vertical wind
shear variations that result from the inclusion of the
planetary vorticity advection. Simulations of tropical
cyclones using environmental conditions similar to
those documented in K03 have also been shown to re-
sult in a more axisymmetric tropical cyclone (Ritchie
2004). One can interpret these results as implying that
beta shear in these simulations produces greater TC
asymmetries, and if the environmental wind shear op-
poses the beta shear, these asymmetries are reduced.
Furthermore, if the environmental conditions nearly
cancel the beta shear, the TC can be axisymmetric,
which supports the suggestions made in K03 that annu-
lar hurricanes form in environments where the environ-
mental vertical wind shear nearly cancels the beta shear
and further intensification is limited by less than ideal
thermodynamic conditions (i.e., atypically low SSTs
conditions).

AHs are intense tropical cyclones with average in-
tensities greater than 100 kt (or 51 m s�1)—major hur-
ricanes, and, despite their less-than-optimal thermody-
namic conditions (i.e., SSTs � �28.5°C), they maintain
intensities close to their maximum potential intensity
with respect to SST (e.g., DeMaria and Kaplan 1994b).
Because of this intensity change behavior, intensities of
past AHs have been consistently underforecast. The
mean intensity of AHs makes them potentially high-
impact events when they affect coastal areas. Objective
identification of AHs in an operational setting could
help forecasters better predict future intensity changes
for these tropical cyclones, and likely reduce the overall
intensity forecast errors. This could be accomplished by
subjectively forecasting slower weakening or no weak-
ening while AH conditions exist. K03 recognized the
need for better identification of AHs and suggested
methods that used environmental conditions and IR
imagery separately to identify, in a dependent manner,
the six AHs that occurred in the Atlantic and eastern–
central North Pacific during 1995–99. This paper ex-
pands on those ideas and the results of recent modeling
studies to create a method to objectively identify AHs.
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This objective method, which uses information about
the storm’s environmental conditions, intensity, and ap-
pearance in IR satellite imagery, is described in the
following sections.

2. Data and approach

In K03 the developmental data for the Statistical
Hurricane Intensity Prediction Scheme (SHIPS; De-
Maria and Kaplan 1994a, 1999; DeMaria et al. 2005)
were used to determine the environmental conditions
associated with AHs. Following the logic of K03, the
SHIPS developmental data (SDD) are used in a similar
way in this study, but the calculations used to create the
SDD have continued to evolve. The largest changes to
the SDD involve how vertical wind shear was calcu-
lated. The vertical shear calculation used in K03 was
averaged in a circular area within a radius of 600 km
following a Laplacian filtering procedure that was used
to remove the effects of the TC vortex as described in
DeMaria and Kaplan (1999). In the current version of
SDD, no attempt is made to remove the storm vortex
and an annular average (200–800 km) is used to esti-
mate the environmental vertical wind shear. The cur-
rent SDD also uses the National Centers for Environ-
mental Prediction–National Center for Atmospheric
Research (NCEP–NCAR) reanalyses (Kalnay et al.
1996) prior to 2001 and the NCEP Global Forecast Sys-
tem (GFS; Lord 1993) analyses thereafter. SST esti-
mates are still estimated from Reynolds’s (1988) weekly
SST fields. The position of the tropical cyclone and its
intensity come from the National Hurricane Center
(NHC) best track (Jarvinen et al. 1984). Note that be-
cause tropical cyclone intensity is reported and ar-
chived in units of knots (kt; 1 kt � 0.51 m s�1), this unit
will be used for intensity throughout this manuscript.
Because of these changes, the latest version of the SDD
(see DeMaria et al. 2005) at 6-h intervals for 1995–2006
is used for this study, where the period 1995–2003 is
used as a dependent dataset and 2004–06 are retained
for independent testing.

In addition to the SDD, Geostationary Operational
Environmental Satellite (GOES) IR imagery with
wavelengths centered near 10.7 �m is used in the form
of 4-km Mercator projections during the period 1995–
2006. The GOES IR imagery is taken from the Coop-
erative Institute for Research in the Atmosphere
(CIRA) Tropical Cyclone IR Archive (Mueller et al.
2006; Kossin et al. 2007). Individual images were
renavigated to storm-centric coordinates using cubic-
spline interpolated best-track positions (Kossin 2002).
The time interval between images is generally 30 min,
with the exception of the satellite “eclipse” periods oc-

curring within approximately a month of the autumnal
equinox and the last 1–3 h. In this study IR brightness
temperature (TB) is azimuthally averaged about the
storm center and time averaged over a 6-h time period,
corresponding to the 6 h prior to the analysis time. This
time interval corresponds to the times in the NHC best
track and the times in SDD. Figure 1 shows an IR
image of eastern North Pacific Hurricane Daniel on 27
July 2001 at 2200 UTC, and the corresponding radial
profiles azimuthal mean and standard deviation of TB.
Some of the characteristics of annular hurricanes can be
quantified directly from these data (e.g., the existence
of large warm eye features or the relative lack of rain-
band activity).

Changes in how environmental conditions have been
derived in the updated SDD require that the statistics
of the environmental conditions associated with the
original six AHs be recalculated. Using the most recent
SDD and the IR image archive, statistics of key envi-
ronmental conditions and IR imagery characteristics as-
sociated with the six AHs described in K03 are shown
in Table 1. Thirty-six 6-h time periods make up each
average. The average quantities calculated from the IR
imagery and shown in Table 1 include the radius of
coldest azimuthally averaged TB (Rc) as illustrated in
Fig. 1, the azimuthal standard deviation at Rc (�c) also
shown in Fig. 1, the variance of the azimuthally aver-
aged temperatures from the TC center to 600 km
(VAR), and the maximum difference between TB at
Rc and any azimuthally averaged TB at smaller radii
(�Teye). Table 1 also includes the statistics associated
with the SSTs interpolated to the TC center (SST), the
magnitude of the 200–850-hPa wind shear vector
(SHRD), the magnitude of the 500–850-hPa wind shear
(SHRS) vector, the zonal wind component at 200 hPa
(U200), the temperature at 200 hPa (T200), the relative
eddy flux convergence (REFC; see K03), and the best-
track value of maximum wind speed (Vmax). The
SHRD, SHRS, U200, and T200 parameters were calcu-
lated in a 200–800-km annulus centered on the TC and
the REFC was calculated within 600 km of the TC cen-
ter as described in DeMaria et al. (2005). These statis-
tics are consistent with the environmental and visual
characteristics of annular hurricanes (i.e., K03, their
Table 3 and Fig. 7). Small differences do occur due to
the differences in how the SDD parameters are calcu-
lated, and the use of 6-h versus the 12-h time-averaging
periods used in K03. These new statistics are used as a
starting point to develop an objective identification
technique discussed in the next section.

Since the publication of K03, a few more annular
cases have occurred in the Atlantic and eastern North
Pacific. There has also been an opportunity to examine
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some IR imagery prior to 1997 in the eastern Pacific.
The expanded list of subjectively identified AHs for the
period 1995–2006 is shown in Table 2. Eight cases, sev-
eral short lived (i.e., Erin in 2001, Kate in 2003, and
Frances in 2004 in the Atlantic, and Daniel in 2000 and
Bud in 2006 in the eastern Pacific) were added to the
list. However, since 2000, there have been a couple of
exceptional AH cases. Hurricanes Isabel (2003) and
Daniel (2006) were both spectacular examples of AHs.
Hurricane Isabel had four distinct periods with AH
characteristics, each following a rearrangement of the
eye, and Hurricane Daniel (2006) exhibited classic AH
formation with eye-to-eyewall mixing, indicated by one
or more mesovortices seen in the IR imagery, followed
by the formation of a large warm eye and diminished
rainband activity that lasted over 30 h.

The GOES IR satellite imagery associated with these
14 subjectively identified AH cases for 1995–2006 (Fig.
2) shows a large variety of sizes. The Atlantic AHs
(yellow text), in general, appear larger than the east-
ern–central North Pacific AHs (cyan text). In fact, the

average 34-kt wind radius is 109 n mi (202 km) and 135
n mi (250 km) for the eastern–central North Pacific and
Atlantic cases, respectively. These results are consistent
with the tropical cyclone size climatology of these ba-
sins (Knaff et al. 2007) and cyclone sizes reported in
Knaff and Zehr (2007), where 25 n mi (46 km) separate
the average 34-kt wind radius between the East Pacific
and Atlantic basins. One could speculate that environ-
mental conditions in the eastern–central North Pacific
are less conducive for TC growth because upper-level
trough interaction, and extratropical transition, both re-
lated to TC growth (Maclay 2006; Maclay et al. 2007,
manuscript submitted to Mon. Wea. Rev.), occur less
frequently in that basin. The average AH intensity is
110 kt (56.6 m s�1) and ranged from a low of 90 kt (46
m s�1) to a high of 140 kt (72 m s�1). From the subjec-
tively determined time periods in Table 2, the average
duration of an AH is approximately 18 h with a maxi-
mum of 57 h associated with Hurricane Howard in
1999. There also appears to be a preferred climatologi-
cal time for formation. Eastern–central North Pacific

FIG. 1. (left) Storm-centered IR image of east Pacific Hurricane Daniel at 2200 UTC 27 Jul 2000 and (top right) the corresponding
radial profiles of azimuthally averaged brightness temperatures with an arrow pointing to the radius of coldest average brightness
temperature indicated as Rc and (bottom right) the azimuthal std devs with an arrow pointing to the value of the std dev at Rc and
identified as �c. The yellow circle centered within the image has a radius of 300 km for reference.
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AHs tend to form from mid-July to late August
whereas Atlantic AH occurrence seems to be from mid-
August to mid-October. Figure 3 shows the tracks as-
sociated with the 14 AHs listed in Table 2. These
storms are not typically a threat to the U.S. mainland,
but rather may be more of a concern for the Windward,
Leeward, and Hawaiian Islands. There appears to be a

preferred location near 15°N and 125°W in the eastern
North Pacific while Atlantic AHs show greater variabil-
ity in their locations. It is also important to note that the
inclusion of the new cases does not change the findings
of K03 related to AH intensity behavior. The AHs were
still found to be significantly stronger, maintained their
peak intensities longer, and weakened more slowly
than the average of all hurricanes.

3. Algorithm development

As described in K03, AHs occur in specific environ-
mental conditions, characterized by a combination of
weak easterly or southeasterly vertical wind shear in
deep-layer mean easterlies and relatively cold tempera-
tures at 200 hPa, moderate SST, and relatively small
200-hPa relative eddy flux convergence (REFC) due to
environmental interactions. The AHs also appear dis-
tinctly more axisymmetric in IR satellite imagery with
large circular eyes surrounded by a nearly uniform ring
of convection and a relative lack of deep convective
features, including rainbands outside that ring. From
results presented in K03, it also appears that the envi-
ronmental conditions can be combined with the IR sat-
ellite imagery–derived characteristics of AHs to sepa-
rate the population of annular hurricanes from the
larger population of nonannular hurricanes. At first
glance, this process would seem straightforward, but
AHs are also rare events that occur in less than 4% of
all hurricane cases, which makes many standard statis-
tical identification algorithms impractical.

TABLE 2. List of the 14 AH cases identified in the Atlantic and east Pacific Hurricane basins (1995–2006). Listed are the storm, basin,
the times associated with the AH phase, the number of hours that each AH phase lasted, and the intensity range associated with the
storm.

Storm Basin Annular period Duration (h) Intensity range (kt)

Luis 1995 Atlantic 1800 UTC 3 Sep–0400 UTC 4 Sep 10 120–125
Edouard 1996 Atlantic 0000 UTC 25 Aug–0000 UTC 26 Aug 24 120–125
Erin 2001 Atlantic 0400 UTC 10 Sep–0900 UTC 10 Sep 6 100–105
Isabel 2003 Atlantic 0700 UTC 11 Sep–2100 UTC 11 Sep 14 135–145

1000 UTC 12 Sep–2200 UTC 12 Sep 12 140
1400 UTC 13 Sep–0200 UTC 14 Sep 12 135–140
0700 UTC 14 Sep–2000 UTC 14 Sep 14 135–140

Kate 2003 Atlantic 1700 UTC 03 Oct–0000 UTC 4 Oct 5 100
0400 UTC 04 Oct–1300 UTC 4 Oct 10 100–105

Frances 2004 Atlantic 2100 UTC 28 Aug–0200 UTC 29 Aug 6 115
Barbara 1995 East Pacific 0500 UTC 14 Jul–1400 UTC 14 Jul 10 115–120
Darby 1998 East Pacific 1200 UTC 26 Jul–1800 UTC 27 Jul 30 90–100
Howard 1998 East Pacific 1800 UTC 24 Aug–0300 UTC 27 Aug 57 115–85
Beatriz 1999 East Pacific 1800 UTC 12 Jul–1800 UTC 13 July 24 100–105
Dora 1999 East Pacific 1800 UTC 10 Aug–0300 UTC 12 Aug 33 115–120

0300 UTC 15 Aug–0300 UTC 16 Aug 24 90–95
Daniel 2000 East Pacific 2000 UTC 27 Jul–0400 UTC 28 Jul 9 95
Bud 2006 East Pacific 0700 UTC 13 Jul–1300 UTC 13 Jul 6 100
Daniel 2006 East Pacific 1400 UTC 21 Jul–2200 UTC 22 Jul 33 120–130

TABLE 1. Statistics of the important environmental conditions
and IR imagery–derived characteristics related to AHs. Statistics
are shown for the radius of coldest azimuthally averaged TB (Rc),
the azimuthal standard deviation at Rc (�c), the variance of the
azimuthally averaged temperatures from the TC center to 600 km
(VAR), the maximum difference between Rc and any azimuthally
averaged TB at smaller radii (�Teye), the SSTs interpolated to
the TC center (SST), the magnitude of the 200–850-hPa wind
shear vector (SHRD), the magnitude of the 500–850-hPa wind
shear (SHRS) vector, the zonal wind component at 200 hPa
(U200), the temperature at 200 hPa (T200), the relative eddy flux
convergence (REFC), and the best-track value of maximum wind
speed (Vmax).

Quantity (units) Mean Std dev Min Max

Rc (km) 80.9 19.7 62.0 128.0
�c (°C) 3.0 1.1 1.5 5.8
VAR (°C2) 712.1 141.3 391.2 978.6
�Teye (°C) 69.3 13.5 19.6 79.9
SST (°C) 26.7 0.7 25.4 28.4
SHRD (m s�1) 4.0 1.5 1.2 8.1
SHRS (m s�1) 3.2 1.2 0.7 6.0
U200 (m s�1) �4.8 2.3 �7.2 0
T200 (°C) �52.2 0.9 �53.4 �50.1
REFC (m s�1 day�1) 0.2 1.2 �4.0 4.0
Vmax (kt) 107.2 12.8 85.0 125.0

FEBRUARY 2008 K N A F F E T A L . 21



To find the relatively rare occurrences of AHs in the
combined Atlantic and eastern–central North Pacific
TC sample, a two-step algorithm is developed. The first
step is to prescreen the SDD and IR satellite data for
cases when the environmental conditions and IR satel-
lite TB distribution are unfavorable for AHs. The sec-
ond step is to apply a statistical technique called linear

discriminant analysis (LDA; see Wilks 2006) to the
SSD and IR satellite dataset that remains after the
screening step. LDA is a formal technique that dis-
criminates between two or more populations using lin-
ear combinations of a set of discriminators. To test the
ability of this two-step algorithm to discriminate events
from nonevents, we use the hit rate and the false alarm

FIG. 2. Color-enhanced GOES IR satellite imagery of the 14 annular hurricane cases at or near peak visual annular characteristics.
Storm names, dates, and times are given at the bottom of each individual image panel. In addition, storm names and years are listed
in the upper left of each image panel with North Atlantic and eastern–central North Pacific storm names indicated by yellow and cyan
text, respectively.

FIG. 3. Map of the tracks of the 14 annular hurricane cases used in this study. The time periods when these
hurricanes were subjectively identified to be annular hurricanes are indicated by the thick black portion of the
track.
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rate (Mason and Graham 1999). The hit rate is the
number of correctly identified AH cases divided by the
number of AHs observed and the false alarm rate is
the number of incorrectly identified AH cases divided
by the total number of nonannular hurricane (NAH)
cases observed, which for this study includes all
storms that passed the screening and were not AHs.
One caveat to this study is that the subjectively identi-
fied AH cases are used to develop and then indepen-
dently test this objective technique, which is far from
ideal and will likely degrade the final algorithm (sec-
tion 4).

For the screening step, a set of “selection” rules are
determined to eliminate cases where AHs are very un-
likely to occur given the environmental conditions and
IR characteristics. These criteria are listed in Table 3.
To be as inclusive as possible, the environmental dis-
criminators were set to values that capture the 54 six-
hour time periods associated with the 11 AHs that oc-
curred during 1995–2003. The thresholds for storm in-
tensity, �Teye and Rc, which are far from normally
distributed, are set to values slightly less than the
minima of the AH sample. The SST is used as another
criterion to eliminate NAH cases since AHs are ob-
served to occur in a distinct range of SST values. The
SST thresholds are based on the mean �3 standard
deviations of the annular group sample. The selection
rules were applied to the original data sample (1995–
2003) that contained 976 six-hour tropical cyclone cases
with intensities greater than 84 kt. After the selection
rules were applied, there were 241 remaining 6-h cases,
of which 53 were objectively identified and subjectively
confirmed as being AHs (1 case was missing quality IR
satellite imagery). Thus, the prescreening of the depen-
dent dataset had a 100% hit rate, but a false alarm rate
of 19%, given the 972 cases that passed the screening.
Using LDA, we hope to improve the false alarm rate.

LDA is then used to take advantage of differences
between the AH and NAH samples. From the 1995–
2003 cases, the environmental factors that had signifi-
cant annular versus nonannular differences were used

as discriminators in the LDA. Results show that an
environment characterized by lower SSTs and easterly
zonal 200-hPa winds and IR imagery depicting warm
eyes, a radius of the coldest pixel (i.e., inner-core con-
vection) with little azimuthal variability, and a less vari-
able radial profile of brightness temperatures (i.e.,
fewer rainbands) form the basis for discriminating AHs
from NAHs in the screened sample. The environmental
discriminators therefore are 1) SST and 2) U200. Simi-
larly, the IR-based discriminators used are 1) �c, 2)
VAR, and 3) �Teye. All of the above discriminators
were chosen based on their statistical significance (i.e.,
exceeding the 95% significance level using a two-tailed
Student’s t test) between the sample data means of the
AH and NAH cases that passed the prescreening pro-
cess. The storm cases chosen to belong to the group of
AHs in the LDA development are the 11 cases with 53
six-hour periods subjectively determined to be AHs
listed in Table 1 for the period 1995–2003.

The prescreened data have been normalized prior to
carrying out the LDA by subtracting the sample mean
and then dividing by the sample standard deviation for
each discriminator. Standardizing the input data allows
one to estimate the relative importance of each param-
eter in the LDA. LDA then provides the normalized
weights for the linear combination of the input vari-
ables that best differentiates between AH and NAH
cases. Table 4 shows the normalized discriminant
weights produced by the LDA. Also shown in Table 4
are the means and standard deviations associated with
the parameter calculated from the 241 prescreened
cases, which are used for parameter normalization.
When the discriminant vector is applied, positive values
are indicative of AHs. Noting that the prescreening re-
quires a large eye and a low vertical shear environment,
Table 4 indicates that the largest contribution to the
discrimination comes from the factors associated with
SST, and VAR (i.e., variance of the radial profile of
azimuthal mean brightness temperatures), which is a
measure of significant rainband activity.

TABLE 3. Summary of selection rules used to prescreen the in-
put data and remove cases when an AH event is unlikely. Vari-
ables as in Table 1.

Parameter Source Prescreening criterion

Rc IR satellite imagery �50 km
�Teye IR satellite imagery �15°C
SHRD NCEP–NCAR analysis 	11.3 m s�1

U200 NCEP–NCAR analysis ��11.8 or 	1.5 m s�1

REFC NCEP–NCAR analysis ��9 or 	11 m s�1 day�1

SST Reynolds SST �24.3 or 	29.1°C
Intensity NHC best track �85 kt

TABLE 4. Normalized coefficients of the AH discriminant vec-
tor based upon the 1995–2002 AH cases. Variables as in Table 1.
Note the discriminant divider is a unitless number that causes the
discriminant function values to be centered about a zero value.

Discriminator Mean Std dev
Normalized
coefficient

�c 4.21 2.56 �0.40
VAR 552.73 215.10 0.79
�Teye 59.67 20.99 0.50
U200 �3.72 2.88 �0.11
SST 27.58 1.08 �0.61
Discriminant divider 0.53
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The linear combination of the normalized discrimi-
nant weights and the standardized input variables for
both AH and NAH cases are then calculated to deter-
mine the value of the discriminant function at each
analysis time. Although the LDA is designed to pro-
duce a yes–no answer, the range of values of the dis-
criminant function performed on the dependent data
sample allows us to assign a normalized annular hurri-
cane index value to each case. The relative magnitude
of the discriminant value is an indicator of how “annu-
lar” a particular case is.

The results from the linear discriminant function,
however, are not perfect and misidentified 56 of 188
NAH cases as being annular and 7 of the 53 AH cases
as being NAH. Using the dependent sample and com-
bining the two steps (i.e., prescreening and LDA)
shows that the algorithm identified 46 of the 53 six-hour
periods when AH existed and had a hit rate of 87%,
while only falsely identifying 56 cases as AH out of 923
eighty-four-kt or greater 6-h NAH cases resulting in a
false alarm rate of �6%. The seven false negatives oc-
curred with 1) short-lived annular hurricanes (Luis in
1995, Erin in 2001, and Kate in 2003), which accounted
for four cases, and 2) cases associated the first 6-h pe-
riod in the annular phase. These false negative cases
had an average discriminant value of 0.39 and only one
case (Beatriz) had a value greater than 1.25, which was
due to the rapid evolution of Beatriz and the time av-
eraging applied to the IR TB data. Most of the false
positives were associated with AHs but at times before

or after their subjectively determined annular phase(s).
The average of the discriminant value for these 56 cases
was �0.76. Other false positives that were never AHs
include the east Pacific Hurricanes Felicia (1997),
Guillermo (1997), Georgette (1998), Adolf (2001), Her-
nan (2002), and Jimena (2003) with two, one, three,
one, two, and two 6-hourly time periods misidentified,
respectively. Similarly Atlantic Hurricanes Georges
(1998), Alberto (2000), Isidore (2000), and Fabian
(2003) had two, one, one, and one 6-h time periods that
were misidentified, respectively. Figure 4 shows the cu-
mulative probability diagrams for the AH and NAH
cases as a function of the discriminant value, which
shows the LDA properly discriminating the majority of
the cases with a larger probability of false identification
than of false alarm rate. For the final algorithm (section
4), it will be desirable to maximize the hit rate while
minimizing the false alarms through scaling of the dis-
criminant function values using information in such dia-
grams.

It is interesting to examine what the LDA is actually
discriminating. To briefly show what the LDA algo-
rithm determines as an AH case versus a NAH case,
four time periods of Hurricane Isabel with varying de-
grees of AH characteristics are examined. Figure 5
shows IR imagery of Hurricane Isabel and correspond-
ing discriminant value at 0345 UTC 11 September, 1145
UTC 12 September, 0345 UTC 14 September, and 1145
UTC 18 September. The 0345 UTC time is the last
image used for the annular index estimation at 0600

FIG. 4. The cumulative probability distributions associated with the dependent data (1995–
2003) as a function of binned discriminant function values created by the LDA. The dashed
line is for the NAH cases and the solid line is for the AH cases.
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UTC due to satellite eclipse times.1 Notice that as Isa-
bel changes from an asymmetric hurricane on 11 Sep-
tember to an AH on 12 September, the discriminant
value goes from negative to positive. On 14 September

at 0345 UTC, following a separate annular period on 13
September through early on 14 September (not shown),
the storm displays a distinct banding structure in the
enhanced temperatures that wraps around the storm,
instead of a more continuous ring of nearly constant
temperatures, and thus is a NAH. The image on 18
September shows an example of an extreme NAH case.
For these four images the environment is also varying,
which also contributes to the estimate of the discrimi-

1 Note that some recently launched operational geostationary
satellites (i.e., GOES-13, Meteosat-8, and Meteosat-9) operate
through the eclipse periods.

FIG. 5. Examples of GOES IR satellite imagery from Hurricane Isabel (2003) and corresponding discriminant
function values (dv) shown in the upper center of each panel. Results are based upon dependent data and negative
values of dv discriminate AH cases. Imagery times are (top left) 0345 UTC 11 Sep, (top right) 1145 UTC 12 Sep,
(bottom left) 0345 UTC 14 Sep, and (bottom right) 1145 UTC 18 Sep, and are also shown at the bottom of each
panel.
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nant value. The 200-hPa zonal winds were �6.7, �3.0,
0.7, and �1.5 m s�1 and the SSTs were 28.4, 28.2, 28.4,
and 27.5°C, in these images, respectively. During the
period between 11 and 18 September, the algorithm
properly (improperly) identified 8 (8) of the AH peri-
ods and 12 (0) of the NAH periods as Isabel went
through four separate 12–14-h subjectively identified
AH periods.

In summary, an algorithm to detect AHs is created
using a two-step process. The first step is to prescreen
the data using known environmental and storm-scale
factors that are indicative of AHs. This step reduces the
sample from 976 hurricane 6-h cases that have intensi-
ties greater than or equal to 85 kt to 241 cases that
could be AHs. The second step is to create an LDA
algorithm to identify AHs using the period 1995–2003,
incorporating those remaining 241 six-hour cases. The
output of the LDA, the discriminator function, is an
objective measure of whether a storm is or is not an AH
and how “annular” a particular case is. This two-step
algorithm is illustrated schematically in Fig. 6 and is
applied to independent data and tested in the next sec-
tion.

4. Independent testing and final algorithm

The algorithm discussed in the previous section is
tested using independent datasets collected during
2004–06. This involves applying the LDA coefficients
shown in Table 4 to the SDD and IR satellite imagery
results during those seasons, to objectively identify the
AH periods shown in Table 2. During the years 2004–
06 there were 2424 total 6-h cases of which 387 had
intensities greater than 84 kt and 82 passed the pre-
screening process. Of these remaining 82 cases, 21 cases
were objectively identified as AHs and 61 cases were
identified as NAHs. Of the objectively identified AH
cases, seven were associated with times listed in Table
2. Of the subjectively identified times 7 out 7 were
properly identified, leaving 14 false positive cases. Of
the 14 false positive 6-h cases, only 3 were associated
with Hurricane Jova of 2005, which never became an
AH. The result of the 3-yr independent test is that the
two-step objective AH identification scheme identified
100% of the AH cases with a false alarm rate of �4%,
noting that there were 380 NAHs.

The results of the independent and dependent testing
of the two-step objective AH identification scheme
show that AHs can be identified objectively and in a
real-time manner. With a goal of creating a real-time
AH identification index, the next step is to use the
entire dataset to estimate a final set of LDA coeffi-
cients. There were 1363 six-hour cases that had inten-
sities greater than 84 kt, and screening produced 323
cases for the LDA. Table 5 shows the normalized pa-
rameter weights determined by the LDA, and the
means and standard deviations of the 323 screened
cases in the 12-yr sample (1995–2006). Comparing
Tables 4 and 5, the addition of the 2004–06 cases has
changed the weights in such a way that all of the vari-
ables except VAR have a larger influence on the dis-
criminant function.

To more easily interpret the discriminant function,
the discriminant values for annular hurricanes are

FIG. 6. Schematic of the two-step procedure used to objectively
identify AHs.

TABLE 5. Normalized coefficients of the AH discriminant vec-
tor based upon the 1995–2006 AH cases. Variables as in Table 1.
Note the discriminant divider is a unitless number that causes the
discriminant function values to be centered about a zero value.

Discriminator Mean Std dev
Normalized
coefficient

�c 4.23 2.45 �0.44
VAR 558.21 218.52 0.61
�Teye 56.73 21.61 0.81
U200 �4.55 2.89 �0.15
SST 27.68 1.04 �0.80
Discriminant divider 0.76
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scaled from 0 to 100 so that a value of 0 indicates the
answer “not an AH,” a value of 1 indicates the possi-
bility of a AH with the least likelihood, and a value of
100 indicates an AH with the greatest likelihood. Dis-
criminant values of �0.3 and 2.3 correspond to scaled
index values of 1 and 100, respectively, and scaled index
values are also set to 0 and to 100 for discriminant
function values less than (greater than) than �0.3 and
2.3, respectively. These values represent an objective
degree of AH characteristics that are satisfied and
should not be attributed to a probability. These thresh-
old values were chosen to maximize the hit rate and
minimize the false alarm rate based on information
contained in the cumulative probability distributions of
the dependent discriminant function values for the
years 1995–2006. These values correspond to a �96%
hit rate and a �6% false alarm rate in the developmen-
tal data, considering there are 1363 possible cases.
Many (�47%) of the false alarm cases were associated
with storms that either were becoming AHs or had re-
cently been AHs.

5. Summary and future plans

Annular hurricanes (AHs) are intense tropical cy-
clones with average intensities of approximately 110 kt
and are potentially high-impact events when affecting
coastal areas. With respect to intensity, AHs also are
significantly stronger, maintain their peak intensities
longer, and weaken more slowly than the average tropi-
cal cyclone. As a result, average official forecast inten-
sity errors for these types of tropical cyclones were
10%–30% larger than the 5-yr (1995–99) mean official
errors during the same period. While forecast errors
associated with AHs have improved since 1999, under-
forecasting the intensity (i.e., too rapidly forecasting
weakening) of these systems is still common. For these
reasons, the identification of AHs in an operational
setting could help improve tropical cyclone intensity
forecasts by alerting forecasters that slower-than-aver-
age weakening of the current TC is likely to occur,
especially if environmental conditions are forecast to
remain fairly constant. Fortunately, the climatological
distribution of AHs suggests that they are more likely
in the tropics and well away from the U.S. mainland
and may be more of a threat to the Windward, Lee-
ward, and Hawaiian Islands; however, there is evidence
that one case that is not included in this study, Hurri-
cane Hugo, which made landfall near Charleston, South
Carolina, in 1989, may have been an AH just before it
went inland. Datasets to examine the Hurricane Hugo
(1989) case are currently being collected.

This paper uses the information contained within

Knaff et al. (2003) and new knowledge about the struc-
ture of AHs gained from both idealized numerical
simulations and new observations of tropical cyclones,
to create an objective method of identifying AHs. The
objective method uses information about the storm’s
environmental conditions, intensity, and appearance in
IR satellite imagery via a two-step algorithm (see Fig.
6). The first step, prescreening, removes all cases that
do not have the intensity and environmental character-
istics associated with tropical cyclones. If the case
passes the prescreening, it is then passed to a linear
discriminant function, which uses five factors to esti-
mate the degree to which a specific case is annular. To
go one step further, the resulting linear discriminant
value is then scaled from 0 to 100, where 0 indicates
“not an annular hurricane” and values 1 to 100 indicate
that the case is likely an AH, with larger values indi-
cating greater confidence.

The algorithm described here was tested in a real-
time operational setting at the National Hurricane Cen-
ter during the 2007 hurricane season. Since then this
algorithm has been operationally implemented within
the SHIPS model framework and the AH index is pro-
vided as part of the text output of that model.

Although this algorithm is now available to hurricane
forecasters, there are several research and product de-
velopment studies that remain. Using past AH hurri-
cane cases, an objective correction to the SHIPS and
Statistical Typhoon Intensity Prediction Scheme (Knaff
et al. 2005) intensity forecast models can be developed.
Also, since AHs do exist in other basins [e.g., Typhoon
Jelawat (2000) and Typhoon Saomai (2006) in the west-
ern North Pacific and Tropical Cyclone Dora (2007) in
the South Indian Ocean], IR satellite imagery of tropi-
cal cyclones (e.g., Knapp and Kossin 2007) and high-
quality reanalysis datasets could be used to objectively
identify and document the climatology of AHs globally.
Finally, since the environmental conditions of AHs,
save the SST conditions, are also conducive for very
strong tropical cyclones, research could be pursued to
identify not only AHs but also those tropical cyclones
that are likely to form secondary eyewalls, which is also
a forecast problem. Secondary eyewall formation will
more heavily utilize microwave imagery from low earth
orbiting satellites to identify those time periods and
storms that experience such events. This research has
begun and results will be reported in due course.
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