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ABSTRACT

Hurricanes, and particularly major hurricanes, will often organize a secondary eyewall at some distance

around the primary eyewall. These events have been associated with marked changes in the intensity and

structure of the inner core, such as large and rapid deviations of the maximum wind and significant broad-

ening of the surface wind field. While the consequences of rapidly fluctuating peak wind speeds are of great

importance, the broadening of the overall wind field also has particularly dangerous consequences in terms of

increased storm surge and wind damage extent during landfall events. Despite the importance of secondary

eyewall formation in hurricane forecasting, there is presently no objective guidance to diagnose or forecast

these events. Here a new empirical model is introduced that will provide forecasters with a probability of

imminent secondary eyewall formation. The model is based on environmental and geostationary satellite

features applied to a naı̈ve Bayes probabilistic model and classification scheme. In independent testing, the

algorithm performs skillfully against a defined climatology.

1. Introduction

The formation of a secondary eyewall in a tropical cy-

clone was described more than 50 years ago by Fortner

(1958) for the case of Typhoon Sarah (1956). Secondary

eyewalls are generally identified as quasi-circular rings

of convective cloud at some distance outward from,

and roughly concentric with, the primary eyewall of a

hurricane (Fig. 1). Secondary wind maxima are often, but

not always, collocated with the convective ring (Samsury

and Zipser 1995), analogous to the collocation of the

peak winds in a hurricane and the convection in the

primary eyewall. The seminal work by Willoughby et al.

(1982) explored the axisymmetric physics of secondary

eyewall formation and the replacement of the primary

eyewall by a contraction of the secondary eyewall that

often follows its formation. The process of secondary

eyewall formation and contraction, and the replacement

of the primary eyewall by the secondary eyewall is

typically referred to as an eyewall replacement cycle or

a concentric eyewall cycle. Observational, theoretical,

and numerical modeling studies have uncovered details

of the dynamics associated with the presence of a pri-

mary and secondary eyewall and the ‘‘moat’’ region

between them (Shapiro and Willoughby 1982; Black

and Willoughby 1992; Dodge et al. 1999; Kossin et al.

2000; Camp and Montgomery 2001; Zhu et al. 2004; Wu

et al. 2006; Terwey and Montgomery 2006; Rozoff et al.

2006, 2008; Houze et al. 2007; Wang 2008). With steady

improvements to tropical cyclone monitoring, particu-

larly with satellite-based microwave imagers, it has be-

come clear that the formation of secondary eyewalls is

not at all uncommon (e.g., Hawkins et al. 2006).

The motivation to understand and ultimately predict

secondary eyewall formation and eyewall replacement

events is high, as these events can have very serious

consequences, particularly when they occur just prior to

landfall. At great cost to life and property, Hurricane

Andrew (1992) unexpectedly strengthened to a Saffir–

Simpson category 5 hurricane while making landfall

in southeastern Florida immediately following an eye-

wall replacement event (Willoughby and Black 1996;

Landsea et al. 2004). Less immediately tangible, but

perhaps more minatory, is the effect that secondary

eyewall formation occurring away from land can have

on the extent of the hurricane wind field. The local outer

wind maxima often associated with the secondary eye-

wall can cause a rapid broadening of the overall

wind field, and this can have profound effects on the
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magnitude of the storm surge due to increased wind

fetch. One of the most damaging direct effects of

Hurricane Katrina (2005) was the storm surge resulting

from the unusually broad region of significant winds

surrounding the eye. For comparison, the storm surge

associated with the landfall of very small and compact

Hurricane Charley (2004) was much less damaging de-

spite having much greater peak winds than Katrina at

landfall.

A complete description of the physics responsible for

initiating secondary eyewall formation has not yet been

established. Internal dynamics in the form of outward

propagating vortex Rossby waves may play a role

(Montgomery and Kallenbach 1997), and asymmetries

in the environment may also contribute to secondary

eyewall formation through axisymmetrization processes

(Kuo et al. 2004). Nong and Emanuel (2003) argue that

secondary eyewall formation requires some external

forcing from the ambient environment of the storm, and

that once initiated, the survival of the nascent outer

eyewall further depends on the ambient environmental

conditions. Molinari and Vollaro (1989) suggest that

secondary eyewall formation in Hurricane Elena (1984)

might have been forced by interactions with upper-level

momentum sources in the environment that the storm

was moving into. Terwey and Montgomery (2006) argue

that secondary eyewall formation can be initiated in a

steady and homogeneous environment in the absence of

a coherent external forcing. In this case, the environ-

ment may still modulate secondary eyewall formation,

but without the presence of asymmetries, and without

the occurrence of temporal changes.

Here, we will consider the observed environmental

conditions that are associated with the formation of

secondary eyewalls, and we will utilize this information

to construct a diagnostic/predictive algorithm based on

a Bayesian probabilistic model. We assume that internal

dynamics such as Rossby wave forcing and axisymmet-

rization processes occur quasi-uniformly via convective

forcing in the primary eyewall, and the ambient hurri-

cane environment then modulates whether this forcing

is realized in the initiation of a secondary eyewall. We

will utilize the environmental parameters of the Statis-

tical Hurricane Intensity Prediction Scheme (SHIPS;

DeMaria and Kaplan 1994, 1999), which generally de-

scribe the mean axisymmetric environmental conditions

centered on each hurricane, and we will consider addi-

tional information extracted from geostationary infra-

red satellite signatures around hurricanes. Our results

suggest that these mean conditions do contain measur-

ably useful information for diagnosing secondary eye-

wall formation.

2. Data and method

The first step for this project was the construction of

a secondary eyewall formation database through a vi-

sual analysis of over 4500 microwave satellite images

FIG. 1. Satellite microwave images of (a) Hurricane Frances on 30 Sep 2004, and (b) Hurricane Katrina on 28 Aug 2005. At the time of

the image, convection in the primary eyewall (marked PE) is weakening while convection in the secondary eyewall (marked SE)

strengthens, which is indicative that an ‘‘eyewall replacement’’ is underway. The warm (blue) ring between the primary and secondary

eyewalls identifies the moat, which is associated with warm and dry subsiding air. In this case, the secondary eyewall continued to contract

and ultimately replaced the primary eyewall. For comparison, Hurricane Katrina exhibits a single (primary) eyewall at the time of the

image.
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covering the period 1997–2006 in all Northern Hemi-

sphere tropical cyclone basins (available at the Web

site of the Naval Research Laboratory in Monterey,

California). Microwave instruments are able to see

through the upper-level cirrus cloud that masks the

presence of secondary convective rings in infrared images

of hurricanes. The microwave imagery was used to ex-

amine nearly 175 tropical cyclones. Whenever possible,

additional information from official forecast discus-

sions, aircraft reconnaissance data and ‘‘vortex mes-

sages,’’ and both airborne and land-based radar data

were also utilized.

There is presently no formal objective definition of

what constitutes a secondary eyewall formation event.

When a secondary eyewall was not explicitly identified

in an aircraft vortex message or in a forecast statement,

our identification of these events was based on a sub-

jective assessment, using satellite microwave or radar

imagery, of how circularly symmetric the outer con-

vective features were. For example, a quasi-circular

outer ring of convection that was clearly separated from

the primary eyewall was required. This ring was also

required to be roughly ‘‘closed,’’ that is, the convection

had to form at least 75% of a complete circle. Addi-

tionally, we looked for cases where the moat region

outside of the primary eyewall was clear of cloud and

was evolving toward warmer microwave brightness

temperatures. This warming in the moat signals an in-

crease in local subsidence (Black and Willoughby 1992;

Dodge et al. 1999; Houze et al. 2007) that is likely

caused by an increase in inertial stability associated with

the formation of a secondary wind maximum, which

radially constrains the upper-level outflow from the

primary eyewall (Rozoff et al. 2008). A typical signature

in the microwave imagery of a hurricane with a primary

and secondary eyewall and a well-defined moat is shown

in Fig. 1a. It should be noted that the subjectivity in-

herent in the procedure described here introduces po-

tential for misclassification errors in the new database.

That is, a case where no secondary eyewall formed may

mistakenly be classified as a secondary eyewall event,

and vice versa. These errors can affect the interpreta-

tion of measures of model skill (Briggs et al. 2005), but

it is beyond the scope of this paper to attempt to quan-

tify this. We will assume that our database repre-

sents ground truth, although this is almost certainly not

the case.

Because secondary eyewall formation has never been

observed in a tropical storm or over land, we only con-

sider hurricanes centered over water in this study (cf.

Hawkins and Helveston 2004; Hawkins et al. 2006).

Given the highly variable temporal sampling of satellite

microwave and aircraft data, and the absence of any

formal objective definition of what specifically consti-

tutes a secondary eyewall formation event, determining

the exact time of secondary eyewall formation is not a

realistic expectation. Here we have simply attempted to

identify when these events are ‘‘imminent,’’ which in

our case means that a secondary eyewall formed at

some time in the following 12 h. In addition to identi-

fying secondary eyewall formation, it was also necessary

to identify cases where secondary eyewall formation did

not occur, defined as cases where no secondary eyewall

formed in the following 12 h. There is one exception to

this dichotomous event definition: cases within 12 h

subsequent to secondary eyewall formation are not

counted. This is based on the observation that second-

ary eyewall formation can occur repeatedly, but we

found no instances where these events occurred within

less than 12 h of each other (see, also, Willoughby et al.

1982).

Our secondary eyewall formation database includes

tropical cyclones from all ocean basins in the Northern

Hemisphere, but here we limit our attention to North

Atlantic and central and eastern North Pacific hurri-

canes. This allows us to exploit the existing develop-

mental dataset constructed for the Statistical Hurricane

Intensity Prediction Scheme (DeMaria and Kaplan

1994, 1999). The SHIPS dataset contains information

about the environment surrounding tropical cyclones in

the North Atlantic and central and eastern North Pa-

cific. Additionally, the SHIPS dataset contains infor-

mation about the infrared satellite presentation of the

storms deduced from Geostationary Operational Envi-

ronmental Satellites (GOES; DeMaria et al. 2005). The

SHIPS features are available every 6 h during the life-

time of each storm. Because of the marked differences

in the environments and storm behaviors between the

North Atlantic and central and eastern North Pacific

basins, we will construct a separate algorithm for each.

The secondary eyewall formation database con-

structed for the North Atlantic contains 135 six-hourly

data points (often referred to as ‘‘fixes’’) in which sec-

ondary eyewall formation occurred at some time in the

following 12 h. There were 45 unique secondary eyewall

events observed in the 10-yr period, and each event was

estimated to occur within a period comprising three

fixes at times t , t 1 6 h, and t 1 12 h. Similarly, there

were 1010 fixes at hurricane intensity and over water,

but no secondary eyewall formed in the following 12 h.

In the central and eastern North Pacific, there are

42 fixes (14 unique events) in which secondary eyewall

formation occurred at some time in the following 12 h,

and 849 fixes at hurricane intensity and over water,

but no secondary eyewall formed in the following

12 h. A much more detailed discussion of the general
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climatology of secondary eyewall formation follows in

section 3.

The new algorithm is based on application of the

SHIPS features using a ‘‘naı̈ve Bayes’’ probabilistic

model and classifier (Zhang 2006; Domingos and Pazzani

1997). The model provides a conditional probability of

class membership that depends on a set of measurable

features. In our case, we have two classes representing

the occurrence or absence of secondary eyewall for-

mation. We denote these two classes as Cyes and Cno,

respectively. The set of features is expressed as a vector

F of length N (i.e., N is the number of features in the

set). Using Bayes’ theorem,1 the probability of sec-

ondary eyewall formation conditional on the features F

(or, equivalently, the probability of secondary eyewall

formation when a particular set of features F is ob-

served) can be described by

P(Cyes Fj ) 5
P(Cyes)P(F Cyes

�
� )

P(F)
. (1)

The output of the model, P(Cyes | F), is typically referred

to as the ‘‘posterior probability.’’ The ‘‘prior probabil-

ity’’ P(Cyes) is the probability that would be assigned if

we had no measurements of the features. We define this

as our climatology, and base it on the number of Cyes

and Cno cases in a sample. Specifically, P(Cyes) is simply

the number of Cyes cases divided by the total number of

cases (Cyes 1 Cno). As an example, we find that P(Cyes)

’ 0.12 in the North Atlantic. If we had no other infor-

mation, we would simply always assign a 12% proba-

bility that secondary eyewall formation will occur in the

next 12 h whenever a hurricane is over water. In a pure

‘‘yes or no’’ classification scheme, a forecaster would

then never predict secondary eyewall formation in the

North Atlantic since the probability is always less than

50%. It is this defined climatology that our algorithm

must out-perform in order to be skillful.

The likelihood of observing the feature set F when

secondary eyewall formation is imminent is described

by the factor P(F | Cyes) in Eq. (1). This is referred to as

a ‘‘class-conditional probability.’’ For comparison, the

factor P(F) in Eq. (1) gives the probability of observing

the set of features F regardless of class membership.

Formulating the probability density functions that will

provide values for the class-conditional probability

P(F |Cyes) and the analogous expression P(F | Cno) con-

stitutes the ‘‘supervised learning’’ (training or model

fitting) part of the algorithm construction. Following

standard notation, we denote these probability density

functions in lower case as p(F | Cyes) and p(F | Cno). It

should be noted that in addition to likely misclassifica-

tion error, our database represents only a small sample,

and this introduces uncertainty into the prior probabil-

ities and class-conditional probabilities deduced from it.

In this respect, our application of Eq. (1) more formally

constitutes an empirical Bayes model.

The feature set F can be described as points in an

N-dimensional space (e.g., a scatterplot when N 5 2),

and the probability density functions p(F | Cyes) and

p(F | Cno) that need to be constructed are thus also N

dimensional. Determining likelihoods of the points in

this N-dimensional space can be performed using a va-

riety of methods (e.g., K-nearest neighbor) but can be-

come very computationally expensive, even when N is

fairly small. For example, if the probability density

function for each of the N features was resolved into 100

bins, then p(F | Cyes) and p(F | Cno) would each require

100N bins. For a set of only six features, sampling each

of the two probability density functions would then re-

quire 8 terabytes of computer memory if stored using

double-precision values. This has been referred to as

‘‘the curse of dimensionality’’ (Bellman 1957).

An assumption that considerably reduces the di-

mensionality of the problem is that the features are in-

dependent within each class, so that P(F jCyes) 5

PN
i51P(Fi

jCyes) where Fi represents a single feature of

the set F. In this case, Eq. (1) can be written as

P(Cyes Fj ) 5
P(Cyes)P

N
i51P(Fi Cyes

�
� )

P(F)
. (2)

Noting that P(Cyes | F) 1 P(Cno | F) 5 1, the denom-

inator of (2) can be written as

P(F) 5 P(Cyes)P
N
i51P(Fi Cyes

�
� )1P(Cno)PN

i51P(Fi Cnoj ).

(3)

Equations (2) and (3) reduce the model described by

Eq. (1) from an N-dimensional feature space to two

sets of N one-dimensional probability density functions

p(Fi | Cyes) and p(Fi | Cno). Now, if the probability

density functions were resolved into 100 bins, then

p(Fi | Cyes) and p(Fi | Cno) would each require 100N bins,

versus 100N bins. Revisiting the six-feature example

above, the memory requirement for storing and sam-

pling the probability density functions is reduced from

8 terabytes to 4.8 kilobytes.

The Bayes model is also easily reduced to a classifier

by applying a decision rule to the model output. One

simple decision rule is to assign the class with the

greatest posterior probability given by the model. In our

1 Further detail on Bayes’ theorem and a meteorological appli-

cation can be found in Wilks (2006). There is also an excellent

discussion in Bishop (1995) using an example of text classification.
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binary ‘‘yes or no’’ classification problem, we would

then simply choose the class with a probability greater

than 50%. A slightly more complex procedure is to

enforce some optimal decision threshold based on

analysis of a receiver operating characteristic (ROC)

diagram (see, e.g., Wilks 2006), but it is not always clear

how to define an optimal threshold and will generally

depend on the priorities of the model users. This will be

discussed further in section 4.

The assumption that the features can be treated in-

dependently within each class constitutes the ‘‘naı̈ve’’

aspect of the naı̈ve Bayes classifier defined by Eqs. (2)

and (3) combined with a decision rule. Despite this

markedly simplifying assumption, the naı̈ve Bayes

classifier has been shown to perform as well and in some

cases better than more sophisticated models in a variety

of applications, even when the independence assump-

tion is strongly violated (Domingos and Pazzani 1997;

Hand and Yu 2001; Zhang 2006).

The features applied to the probabilistic model are

chosen from the SHIPS dataset based on the following

criteria: The feature must be significantly different, at

greater than the 95% confidence level, between the

secondary eyewall formation cases and the cases where

no secondary eyewall formed. This was determined

using a two-sided Student’s t test. There were a number

of features in the SHIPS dataset that satisfied this cri-

terion, and these were then reduced to a final feature

set. The final choice of features was based on the per-

formance of the naı̈ve Bayes model using a ‘‘leave-one-

season-out’’ cross-validation technique. Since model

performance metrics will typically exhibit significant

interannual variability, this type of cross-validation

provides a more robust indication of the expected long-

term future performance of the model than validating

on only one or two years. For each of the 10 years (1997–

2006), we removed all data from that year, formed the

prior probabilities [P(Cyes) and P(Cno)] and the class-

conditional probability density functions for each of the

features [p(Fi | Cyes) and p(Fi | Cno)] with the data from

the remaining years, and then estimated posterior

probabilities of secondary eyewall formation, using Eqs.

(2) and (3), for the year that was removed. This was

repeated for each year, and the probabilities for each

year were subjoined to ultimately include all 10 years.

The class-conditional probability density functions,

p(Fi | Cyes) and p(Fi | Cno), were constructed from the

data for each feature using kernel-based estimation with

a normal kernel function and a window parameter that

results in a feature-sampling size of 100 bins. There was

little sensitivity in cross-validated model performance

when the number of bins was increased or decreased.

The prior probabilities P(Cyes) and P(Cno) were also

subjoined in the cross-validation procedure to be used

later when the model is tested against climatology. The

values remain constant through each year but change

between years because they are based on the event

counts of the remaining years in the leave-one-out pro-

cess. In the North Atlantic the prior probabilities range

from 9%–13% (the lowest occurs when the 2004 season

is removed), and their mean is 12%. In the central and

eastern North Pacific, they range from 4% to 6%, with a

mean of 5%.

It should be noted that the class-conditional feature

sets do exhibit serial correlation, which has the potential

to inflate t test scores. The serial correlation results from

having sequential 6-hourly SHIPS features within the

12-h window we use to define an imminent event, and

from multiple sequential periods during nonevents.

Formal correction for serial correlation is often prob-

lematic in statistical hurricane studies because individ-

ual hurricane time series are autoregressive but also

independent of the other hurricane time series in the

larger sample. Here, we note this caveat and consider

our cross-validation of the algorithm to present an ac-

curate representation of expected model performance.

It is also somewhat reassuring that the separation of

each feature applied to the North Atlantic and central

and eastern North Pacific is significant at 99.9% confi-

dence. Following the cross-validation criteria outlined

in Elsner and Schmertmann (1994), the t tests for sig-

nificant separation of the features by class were then

repeated with each year omitted from the data. This was

done to be sure that the choice of features was inde-

pendent of data in the omitted year. We found no in-

stances where significance fell below the 95% confidence

threshold (none fell below the 99% threshold in the

North Atlantic), and the set of features was accordingly

held fixed in the cross-validation.

The cross-validated performance of the model was

measured using a variety of metrics, which are outlined

here. To assess the probabilistic model, we used the

Brier skill score and the attributes diagram. The Brier

skill score is defined as 1 – B/B ref, where

B 5
1

k
�

k

i51
[P(Cyes Fj )i � O(i)]2,

Bref 5
1

k
�

k

i51
[P(Cyes)�O(i)]2,

and O(i) 5 1 or 0 for cases of secondary eyewall formation

or no formation, respectively. Here, k is the number of

cases the algorithm is applied to, and P(Cyes | F)i is the

posterior probability estimate deduced from Eq. (2) for

a specific individual time. To assess the binary (yes/no)
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classification algorithm we considered metrics based on

2 3 2 contingency tables: the Peirce skill score, the

‘‘probability of detection’’ (or ‘‘hit rate’’), and the ‘‘false

alarm rate.’’ The area under the Receiver Operating

Characteristic curve was also used as an additional

measure of the model’s overall ability to distinguish

secondary eyewall formation events from nonevents. All

of these tools are described further in Wilks (2006).

One additional skill score (Briggs and Ruppert 2005)

based on 2 3 2 contingency tables was also applied to

assess model performance against climatology. The

optimal yes/no predictions based naı̈vely on climatology

would always indicate that no secondary eyewall for-

mation is expected to occur. This would, for example,

result in 88% correct predictions in the North Atlantic,

and the model should improve on this in order to be

considered skillful if the error (or loss) is considered to

be symmetric. Here, symmetric loss indicates equal

penalty for a false negative (miss) and false positive

(false alarm). Note that this is markedly different from

the Peirce skill score, which weakly penalizes false

alarms and provides a measure of confidence to fore-

casters who must predict the occurrence of rare events.

The Briggs and Ruppert skill score under the assump-

tion of symmetric loss is given by

K̂ 5
n11 � n01

n11 1 n10
,

TABLE 1. Number of North Atlantic (boldface) and Central and Eastern North Pacific hurricanes, major hurricanes, hurricanes that

exhibited at least one secondary eyewall during their lifetime, and number of individual secondary eyewall formation (SEF) events from

1997 to 2006.

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Total

Hurricanes 3 10 8 8 9 4 7 9 15 5 78

9 9 6 6 8 8 7 6 7 11 77

Major Hurricanes 1 3 5 3 4 2 3 6 7 2 36
7 6 2 2 2 6 0 3 2 6 36

SEF Hurricanes 2 3 2 1 3 2 2 5 5 1 26

2 2 0 0 2 2 0 0 0 4 12

SEF Events 3 3 3 1 3 2 4 16 9 1 45
2 2 0 0 2 2 0 0 0 6 14

FIG. 2. Locations of secondary eyewall formation events in the (a) North Atlantic and (b)

central and eastern North Pacific Oceans.
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where n11, n01, and n10 are the number of correct posi-

tive classifications (hits), false positive classifications

(false alarms), and false negative classifications (misses),

respectively. This skill score can be extended to account

for asymmetric loss (e.g., situations where overprediction

may be more or less costly than underprediction) and, as

mentioned briefly above, for misclassification error

(Briggs et al. 2005).

The SHIPS features used in the algorithm are a

combination of storm-based variables such as current

intensity and latitude, environmental variables such as

vertical wind shear and middle- to upper-level relative

humidity, and geostationary satellite infrared-based

variables. In addition to the satellite-based features

contained in the SHIPS dataset, we also considered

satellite-based features constructed from a principal

component analysis of storm-centered azimuthally av-

eraged infrared brightness temperature profiles derived

from the hurricane satellite (HURSAT) dataset avail-

able at the National Oceanic and Atmospheric Ad-

ministration (NOAA) National Climatic Data Center

(Knapp and Kossin 2007; Kossin et al. 2007a,b). The

eigenmodes of the analysis describe varying radial

structures of the average storm-centered brightness

temperature, and the expansion coefficients associated

with the eigenmodes were considered as potential fea-

tures. We found that the expansion coefficient associ-

ated with the radial structure described by the fourth

leading eigenmode was most useful in separating be-

tween our two classes. This was the case in both the

North Atlantic and central and eastern North Pacific.

This eigenmode explains only 2% of the azimuthally

averaged brightness temperature variation (also true

for both basins) but was found to consistently improve

model performance in both ocean basins. The radial

structure of this eigenmode (not shown) has a local

amplitude maximum beyond ;100 km from hurricane

center and may be capturing anomalous subsidence

warming of the upper-level cirrus shield in this region.

This may be related to increased inertial stability caused

by local acceleration of the tangential wind often asso-

ciated with a secondary eyewall (Rozoff et al. 2008), but

this relationship between brightness temperature and

storm dynamics is uncertain.

3. Secondary eyewall formation climatology

a. North Atlantic climatology

For this study, a total of 45 secondary eyewall for-

mation events were documented in 26 North Atlantic

hurricanes2 during the 10-yr period 1997–2006. Here, an

event is described by the occurrence of secondary eye-

wall formation, but there is no guarantee that these

events are always followed by a complete concentric

eyewall cycle. The period 1997–2006 was chosen based

on the availability of satellite microwave imagery. Since

the goal of the study is to identify unique or anomalous

characteristics associated with secondary eyewall for-

mation events relative to the larger sample of non-

events, it was important to not just identify secondary

eyewall formation, but also to correctly identify when

formation did not occur. To make such assessments, a

more comprehensive coverage is required but is not

provided by infrared satellite instruments, which cannot

identify convective structures beneath the ubiquitous

cirrus cloud over hurricanes, or sparse in situ measure-

ments.

The occurrence of secondary eyewall formation events

by year is shown in Table 1. At least one event was

observed during each year in the period, and one-third

FIG. 3. Percent of total secondary eyewall formation events by

month. Numbers indicate the number of secondary eyewall for-

mation events per month. The shaded bars denote the North At-

lantic and the unshaded bars denote the central and eastern North

Pacific.

FIG. 4. Ratio (%) of the number of hurricanes, per month, that

formed secondary eyewalls divided by the number of hurricanes

per month. Numbers indicate the number of hurricanes per month.

Hurricanes that cross from one month to another are counted in

both months.

2 The climatology for the central and eastern North Pacific re-

gion will be discussed in section 3b.
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of all hurricanes developed a secondary eyewall at least

once during their lifetime. Comparatively, 70% of ma-

jor hurricanes (Saffir–Simpson category 3–5) were ob-

served to form secondary eyewalls at least once during

their lifetimes. The high number of individual events in

2004 is largely due to the multiple-formation events

observed in Hurricanes Ivan and Frances, both of which

were long-lived Cape Verde systems (six unique events

were observed in Hurricane Ivan and four events were

observed in Hurricane Frances). All secondary eyewall

formation events were observed to occur in a region

bounded by 128–318N, 398–958W (Fig. 2), which includes

the Caribbean Sea and Gulf of Mexico. Secondary

eyewall formation is observed to occur over open water

and near large and small landmasses.

In the period 1997–2006, secondary eyewalls were

observed to form during each month of the hurricane

season except June, while more than 60% of the total

number were observed during September (Fig. 3). When

the number of hurricanes per month that formed sec-

ondary eyewalls is normalized by the number of hurri-

canes per month, the percentage of hurricanes that form

secondary eyewalls ranges from about 20% in Novem-

ber to about 43% in July and 38% in September (Fig. 4).

That is, a hurricane is apparently more likely to form a

secondary eyewall in July or September than in other

months. If the maximum intensity that each hurricane

achieves in its lifetime is considered by month, we find

that the mean of these maximum lifetime intensities is

lower in July (;89 kt, 46 m s21) than in August, Sep-

tember, and October (;100 kt, 51 m s21), which is

suggestive that the environmental conditions in July are

more favorable for secondary eyewall formation but not

necessarily for achieving high intensities relative to

other months. The small sample size in July (only seven

hurricanes and three that formed a secondary eyewall

over the 10-yr period), however, may not be represen-

tative of the larger population that we are sampling

from, and the meaning of the relatively high percentage

of hurricanes that form secondary eyewalls in July

should be considered with caution.

FIG. 5. Frequency of secondary eyewall formation events binned by mean current in-

tensity during the time period of the event. There are a total of 45 observed events in the

North Atlantic and 14 in the central and eastern North Pacific.

FIG. 6. Climatological probability, based on counts, of secondary

eyewall formation as a function of current intensity (grouped by

Saffir–Simpson category). The values reflect the climatological

probability, for any time that a hurricane is over water, that sec-

ondary eyewall formation is imminent.
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Secondary eyewalls were observed to form within a

broad range of hurricane intensities (Fig. 5). The aver-

age intensity during an event was 109 kt (56 m s21),

which denotes a strong Saffir–Simpson category 3 hurri-

cane. It is generally understood that the current intensity

of a hurricane is a controlling factor in the probability of

secondary eyewall formation, with higher probability

associated with stronger hurricanes. Figure 6 provides a

rough quantification of this relationship within the

limitations of our data sample. Here we considered

the probability that a secondary eyewall will form in the

following 12 h, so that the values in Fig. 6 are equivalent

to recasting the prior probability [denoted P(Cyes) in

section 2] as a function of hurricane intensity. We find

that the probability of imminent secondary eyewall

formation at any time during category 5 status is about

60%, so that it is more likely than not that an event is

about to occur (if an event is not already underway).

This probability is reduced to about 30% for category 4

hurricanes, 20% for category 3 hurricanes, 10% for

category 2 hurricanes, and is less than 5% for category

1 hurricanes.

Another essential factor in the climatology of sec-

ondary eyewall formation is the description of the char-

acteristics of intensity change associated with these

events. Willoughby et al. (1982) documented intensity

evolution for a few case studies, and the present para-

digm describes a weakening associated with secondary

eyewall formation, often followed by a reintensification

as the secondary eyewall contracts. These intensity de-

viations are generally observed to be transient and oc-

cur on intradaily time scales. Consequently, the archival

records of hurricane intensity comprising the 6-hourly

‘‘best track’’ fixes are not particularly well suited for the

task since the best track is a temporally smoothed re-

cord by design. This was corroborated with our sec-

ondary eyewall formation database, as we found that

the statistics of best-track intensity change associated

with secondary eyewall formation were not distin-

guishable from the larger sample of hurricanes. This

result remained robust when we only considered best-

track fixes that were contemporaneous with aircraft

reconnaissance measurements. There is a need, then,

for a future study that exploits the present large archive

of raw high temporal resolution aircraft reconnaissance

data to form a more exhaustive and modern climatology

of intensity evolution associated with secondary eyewall

formation, but this is not attempted here.

TABLE 2. SHIPS features applied to the Bayes probabilistic model in the North Atlantic.

SHIPS feature Description Preference for secondary eyewall formation

VMX Current intensity Stronger

LAT Latitude Further south

D26C Climatological depth of 268C ocean isotherm Deeper

U200 200-hPa zonal wind (200–800 km from center) Weaker (near zero), very narrow range

RHHI 500–300-hPa relative humidity Moister

TWAC 0–600-km average symmetric tangential wind

at 850 hPa from NCEP analysis

Stronger

PENC Azimuthally averaged surface pressure at outer

edge of vortex

Lower

SHRD 850–200-hPa shear magnitude Weaker, narrow range

VMPI Maximum potential intensity Higher, very narrow range

IR00–05 Standard deviation (from axisymmetry) of GOES infrared

brightness temperature between 100 and 300 km

Smaller (more axisymmetric)

IR00–16 Average GOES infrared brightness temperature

between 20 and 120 km

Colder, narrow range

TABLE 3. Four 2 3 2 contingency tables for classification of

secondary eyewall formation events in the North Atlantic. The top

2 3 2 table is based on the climatological probability of secondary

eyewall formation. The next table is based on the probability es-

timated from our new algorithm using current intensity as the sole

feature. The next table shows how the inclusion of the SHIPS

environmental features improves the algorithm performance. The

bottom table is based on the addition of the GOES satellite-

derived features. All values are based on cross-validation of the

model.

Forecast

Observed

Yes No

Climatology Yes 0 (hits) 0 (false alarms)

No 129 (misses) 936 (correct

negatives)

Current intensity only Yes 17 15

No 112 921

Current intensity plus

SHIPS environmental

Yes 29 20

No 100 916

Current intensity plus

SHIPS environmental

plus GOES

Yes 39 21

No 90 915
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b. Central and eastern North Pacific climatology

A total of 14 secondary eyewall formation events

were observed in 12 hurricanes from 1997 to 2006, or

roughly one-third of the events observed in the North

Atlantic (Table 1). The number of hurricanes and major

hurricanes is roughly the same in both basins during this

period. About 16% of the hurricanes and 33% of the

major hurricanes were observed to form a secondary

eyewall at some time. The majority of formation events

occurred near the west coast of Mexico, east of 1258W

longitude (Fig. 2), which is within the region of highest

track density in the broader climatology of eastern

North Pacific hurricanes. Hurricane Ioke (2006) was the

only hurricane observed to form a secondary eyewall in

the central North Pacific. More secondary eyewall

events (43%) occur during August than other months

(Fig. 3). Although no events were observed in June,

there was a single event observed in May in Hurricane

Adolph (2001). When the number of secondary eyewall

formation events per month is normalized by the total

number of hurricanes per month, the percentage of hur-

ricanes that form secondary eyewalls is lower or roughly

equivalent compared to the North Atlantic during the

more active months (Fig. 4). The percentage of hurri-

canes that formed secondary eyewalls in the central and

eastern North Pacific is roughly equivalent during May,

July, and August, but it is not clear whether the high

percentage in May is physical or due to sampling issues

in our limited dataset (only four hurricanes were ob-

served). The average intensity around the time of sec-

ondary eyewall formation was 117 kt (60 m s21), which

describes a category 4 hurricane (Fig. 5).

4. Application and performance characteristics of
the probabilistic model

a. Application to the North Atlantic

The feature set applied in the North Atlantic comprises

nine storm/environmental features and two satellite-

based features from the SHIPS dataset (described in

Table 2) plus the additional satellite-derived feature

derived from the principal component analysis de-

scribed at the end of section 2. We find that secondary

eyewall formation is associated with higher maximum

potential intensity3 (VMPI), lower vertical wind shear

(SHRD), weaker upper-level zonal winds (U200), a deep

layer of underlying warm water (D26C), and higher

middle- to upper-level relative humidity (RHHI). The

relationship with higher relative humidity agrees well

with the numerical findings of Nong and Emanuel (2003),

and with the basic idea that organized convection in the

tropics is sensitive to humidity and dry air entrainment

above the boundary layer (e.g., Ooyama 1969). The

higher MPI suggests that secondary eyewall formation

is favored in an environment that is more thermody-

namically supportive of persistent deep convection. In

typical tangential wind fields in hurricanes, the radial

gradient of angular velocity will inherently tend to or-

ganize asymmetric convection into a circular ring. The

sensitivity of secondary eyewall formation to shear may

be an indication that the shear disrupts this symmetri-

zation process, although the relationship between con-

vection and shear is significantly more complicated

(e.g., Kwon and Frank 2008). The class-separation of

the 200-hPa zonal wind suggests that secondary eyewall

formation prefers quiescent upper levels. The upper-

level wind is correlated with the shear (r 5 0.7), but it is

included because it contains additional independent

information specifically about the upper levels and was

found to lower the false alarm rate of the model. The

colder and more axisymmetric GOES brightness tem-

perature fields are also reconcilable with the preference

for stronger storms in a low-shear environment to form

secondary eyewalls. The physical mechanisms underly-

ing the statistical relationships uncovered here are of

great interest, and are presently being explored in

theoretical and numerical modeling frameworks, but

our purpose here is to exploit these relationships to

TABLE 4. Performance metrics of the model applied to the North Atlantic.

Brier skill score Peirce skill score

Briggs and Ruppert

skill score

Probability of

detection

False alarm

rate

Area under

ROC curve

Climatology 0% 0% 0% 0% 0% 0.50

Current intensity only 12% 12% 2% 13% 2% 0.77

Current intensity plus

SHIPS environmental

18% 20% 7% 22% 2% 0.86

Current intensity plus SHIPS

environmental plus GOES

21% 28% 14% 30% 2% 0.86

3 In the SHIPS developmental dataset, maximum potential

intensity is calculated as described in Bister and Emanuel

(1998).
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construct an algorithm that may be usefully applied

operationally.

An important point to emphasize is that we use current

intensity (VMX in Table 2) as a feature in the Bayes

probabilistic model, which represents a strong violation

of the assumption of feature independence required for

the ‘‘naı̈ve approximation’’ of the model. For example,

it is well known that current intensity is closely related

to ambient vertical wind shear. As noted in section 2,

the model has been shown to typically perform very well

regardless of this violation, but the inclusion of current

intensity makes it more difficult to explicitly separate

the effect of storm intensity versus storm environment

on secondary eyewall formation. To mitigate this, we

will compare model performance for three cases: 1) using

current intensity as the only feature, 2) using current

intensity and the SHIPS environmental features, and

3) using current intensity, SHIPS environmental fea-

tures, and satellite-derived features.

Utilizing the subjoined sets of prior and posterior

probabilities formed with the cross-validation method

described in section 2, the performance of the proba-

bilistic model and classifier applied to the North At-

lantic is shown in Tables 3 and 4.4 In this case, the

classifier is based on the maximum posterior probability

decision rule; that is, we choose whichever class, Cyes or

Cno, is assigned a probability greater than 50%. Since

the prior probabilities (i.e., the climatological expecta-

tion based on counts) are always much smaller than

50%, there would never be a prediction of imminent

secondary eyewall formation based on climatology. This

is reflected in the 2 3 2 contingency table at the top of

Table 3 and in the metrics in the top row of Table 4.

When the current intensity is used as the sole feature in

our model, we see a measurable increase in the proba-

bility of detection and in the skill as measured using the

Brier and Peirce skill scores, but only a marginal in-

crease in the Briggs and Ruppert skill score. The area

under the ROC curve, which provides an overall mea-

sure of the model’s ability to distinguish between classes,

is 0.77. This value can range from 0.5 to 1.0 where

0.5 is the expectation based on climatology. In general,

0.5–0.6 is considered a failure of the model, 0.6–0.7 is

poor, 0.7–0.8 is fair, 0.8–0.9 is good, and 0.9–1.0 is ex-

cellent, so here the model does a fair job of distinguishing

between classes when current intensity is the sole input

feature.

The attributes diagram for the model is shown in Fig. 7.

The 458 diagonal line represents perfect reliability across

the range of possible probabilities. Points that lie within

the shaded region contribute to increasing model skill

and points outside the region decrease skill [see Wilks

(2006) for more detail if needed]. When current inten-

sity is the sole feature, the model does a reasonable job

of correctly assigning lower probabilities, as seen by the

proximity of some of the points to the perfect reliability

diagonal, but the model completely fails to correctly

assign higher probabilities. When the SHIPS environ-

mental features are included, the model improves

markedly. This is seen clearly in the attributes diagram,

which shows overall improvement with particularly

good improvement in correctly assigning high proba-

bilities of secondary eyewall formation. The Brier and

Peirce and Briggs and Ruppert skill scores, probability

of detection, and the area under the ROC curve all in-

crease, while the false alarm rate remains relatively

constant (Tables 3 and 4). When the GOES satellite-

based features are added to the model, we see consistent

improvement across the full range of probability esti-

FIG. 7. Attributes diagram for the Bayes probabilistic model for

three different choices of features: current intensity only (VMX),

current intensity plus SHIPS environmental features (VMX plus

ENV), and current intensity plus SHIPS environmental features

plus infrared-based features (VMX plus ENV plus IR). SEF is

shorthand for secondary eyewall formation. The posterior proba-

bilities given by the model were placed in six bins of varying ranges

with each point plotted at the bin center. The bin ranges were

chosen ad hoc to reduce sampling fluctuations. The counts within

each bin, from least to greatest probability, are {585, 242, 206, 29, 1,

2} for VMX only, {883, 78, 55, 26, 11, 12} for VMX plus ENV, and

{904, 57, 44, 29, 11, 20} for VMX plus ENV plus IR.

4 The numbers of 6-hourly fixes reflected in Table 3 (and

also in Table 8 in section 4b) are slightly reduced from the

numbers listed in section 2 because of missing fixes in the SHIPS

dataset.

886 M O N T H L Y W E A T H E R R E V I E W VOLUME 137



mates, that is, all points move closer to perfect-reliability

diagonal. The number of hits increases from 29 to 39,

increasing the probability of detection from 20% to

28%, while the number of false alarms only slightly in-

creases, from 20 to 21. Inclusion of the three GOES

features increases the Brier and Peirce and Briggs and

Ruppert skill scores from 18% to 21%, 20% to 28%,

and 7% to 14%, respectively, and the area under the

ROC curve suggests that the model is good at dis-

tinguishing between classes.

Figure 8 shows the cumulative distributions of the

probabilities of secondary eyewall formation assigned

by the model when separated by the observed class.

When current intensity (VMX) alone is used (Fig. 8a),

roughly 65% of the observed ‘‘no-formation cases’’

were assigned a probability of formation of less than

10%, while 80% of the observed formation cases were

assigned a probability of more than 10%. Only about

12% of the formation cases were assigned a probability

greater than 50% using VMX as the sole feature. When

the SHIPS environmental features are added to the

model (Fig. 8b), there is a large increase in the number

of cases that are assigned a near-zero probability of

secondary eyewall formation. Roughly 75% of the

FIG. 8. Cumulative probability of the model-estimated proba-

bility of imminent SEF using (a) VMX as the sole feature, (b)

VMX plus the SHIPS environmental features, and (c) with the

final addition of the infrared satellite-based features. Solid curves

represent probability of secondary eyewall formation assigned to

cases that were observed to form secondary eyewalls. Dashed

curves represent probability of secondary eyewall formation as-

signed to storms that were not observed to form secondary eye-

walls.
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assigned probabilities were near zero for the cases of no

observed formation, and about 20% of the observed

formation cases were assigned a probability greater

than 50%. When the GOES-based features are added

(Fig. 8c), about 30% of the observed formation cases

were assigned a probability greater than 50%, while

about 25% were assigned a probability of formation

near zero.

The contingency tables and the metrics derived from

those tables—the probability of detection, false alarm

rate, and Peirce and Briggs and Ruppert skill scores—

shown in Tables 3 and 4 are based on a decision

threshold of 50% probability. As discussed in section 2,

this may not be an optimal threshold, but the choice

of what should define optimal is generally situation-

dependent. For example, in some situations, keeping

the false alarm rate low may be a priority, while in

others, maximizing the probability of detection may be

of greater importance. The Bayes probabilistic model

provides posterior probabilities, which can then be

subjected to any decision rule to form a classification as-

signment. In an operational hurricane-forecasting envi-

ronment, the model would most likely be used in the same

manner that other models—empirical or numerical—

are used. That is, the forecaster can assess the evolution

of the probability of secondary eyewall formation in real

time, and form an expert judgment based on a variety of

available information and a working knowledge of the

traits and behaviors of the models being considered. In

this case, there is no need to reduce the information

provided by the model by reducing it to a binary classifier,

and the Peirce and Briggs and Ruppert skill scores

based on the 2 3 2 contingency tables may be less rel-

evant to the expected operational model performance

than the Brier skill score, which is based on the actual

continuum of probabilities produced by the model.

Nonetheless, it is instructive to consider the perfor-

mance of the classifier based on various decision rules, if

for no other reason than to scrutinize the model char-

acteristics as deeply as possible.

Here we consider two additional decision thresholds,

given by the prior (climatological) probabilities and by

an analysis of the ROC curve. For the latter, we chose

the threshold defined by the point on the curve closest

to the point (0, 1), which represents a perfect model in

the ROC diagram and maximizes the Peirce skill score.

Because of the large number of probabilities that are

near zero, as discussed above, this threshold value is in

fact very small (;2%). Table 5 shows the 2 3 2 con-

tingency tables, based on the model using all features

[VMX plus environmental (ENV) and infrared (IR)-

based features], for the two different thresholds, and

Table 6 shows the performance metrics based on the

contingency tables. When the threshold is lowered,

there is a marked increase in the probability of detec-

tion as well as skill, as measured by the Peirce skill

score, but there is a commensurately large increase in

the false alarm rate. The increase in false alarms results

in a complete loss of skill as measured by the Briggs and

Ruppert skill score. When the optimal threshold based

on the ROC curve analysis is used, the number of false

alarms increases by a factor of about 9 compared to

Table 3, while the number of hits increases by a factor of

about 2.5. The Peirce skill score increases to 55% while

the Briggs and Ruppert skill score shows considerably

less skill than climatology. This reemphasizes the chal-

lenge of objectively defining an optimal classifier; maxi-

mizing a particular skill score may not provide the best

tool if low false alarm rates are as important as high prob-

abilities of detection.

To provide a sense of the model characteristics when

applied to individual hurricanes, Fig. 9 shows the evo-

lution of the model-assigned probabilities of secondary

eyewall formation in four North Atlantic hurricanes.

The relationship between hurricane intensity and the

probability of secondary eyewall formation is broadly

evident, but it is also evident that other factors are

TABLE 5. The 2 3 2 contingency tables for two different decision

rules applied to the North Atlantic.

Forecast

Observed

Yes No

Decision rule: Posterior probability

greater than prior probability

Yes 69 83

No 60 853

Decision rule: Posterior probability

greater than ‘‘optimal’’ threshold

Yes 97 186

No 32 750

TABLE 6. Performance metrics of the model under two decision rules.

Peirce skill

score

Briggs and

Ruppert

skill score

Probability of

detection

False alarm

rate

Decision rule: Posterior probability greater than prior probability 45% 211% 53% 9%

Decision rule: Posterior probability greater than ‘‘optimal’’ threshold 55% 270% 75% 20%
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significantly controlling the probabilities assigned by the

model. For example, the probability in Hurricane Floyd

(1999) remained fairly constant and close to zero during

a prolonged intensification period and again for a period

after maximum intensity but while the intensity was still

high. Near-zero probabilities are also seen while Hurricane

Karl (2004) was a major hurricane but was moving

northward into an environment that was unfavorable

for secondary eyewall formation.

b. Application to the central and eastern
North Pacific

All procedures performed using the North Atlantic

data were repeated for the central and eastern North

Pacific. In general, secondary eyewall formation is less

probable than in the North Atlantic, and consequently

our sample size is smaller. Analogous to the procedure

performed with the North Atlantic sample, the choice of

FIG. 9. Evolution of current intensity (solid black line, left axis) and model-estimated probability of secondary eyewall formation (stem

plot, right axis) in Hurricanes Floyd (1999), Karl (2004), Katrina (2005), and Rita (2005). Each gray shaded region denotes a period that

a secondary eyewall formation event was observed within. The model does not assign a probability when intensity is less than 65 kt (33

m s21) or when the storm center is over land.

TABLE 7. SHIPS features applied to the Bayes probabilistic model in the central and eastern North Pacific.

SHIPS feature Description Preference

VMX Current intensity Stronger

TWXC 0–600-km maximum symmetric tangential wind at 850 hPa from NCEP analysis Stronger

SHRD 850–200-hPa shear magnitude Weaker

VMPI Maximum potential intensity Narrower, higher

IR00–10 Percent area between 50 and 200 km with GOES infrared brightness

temperature colder than 2508C

Narrower range, colder
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features here was based on statistically significant sepa-

ration by class, and performance of the model in cross-

validation. In this case, the feature set applied in the

central and eastern North Pacific comprises four storm/

environmental features and one satellite-based feature

from the SHIPS dataset (described in Table 7) plus the

additional satellite-derived feature derived from the

principal component analysis described in section 2.

Similar to the results in the North Atlantic, secondary

eyewall formation is associated with higher maximum

potential intensity (VMPI) and lower vertical wind

shear (SHRD), but the relationship with upper-level

zonal wind and middle- to upper-level relative humidity

is no longer evident. The differences in how the features

contribute to the model skill in the central and eastern

North Pacific compared to the North Atlantic are sug-

gestive that the environmental control of secondary eye-

wall formation has different sensitivities in each basin.

The cross-validated model skill, as indicated by the

Brier and Peirce skill scores, increases markedly with

the inclusion of the environmental and satellite-derived

features, although the model is less skillful than in the

North Atlantic (Tables 8 and 9). When the Briggs and

Ruppert skill score is considered, the model is found to

have no skill in diagnosing secondary eyewall formation

in the central and eastern North Pacific. Again, this

emphasizes that skill scores with different sensitivities

can vary greatly. In this case, the differences in skill

scores are a likely indication that the model is com-

paratively not as robust when applied to central and

eastern North Pacific hurricanes.

5. Summary

The purpose of this study was to assess the environ-

mental conditions associated with secondary eyewall

formation in hurricanes and to apply this information,

combined with satellite-derived information, to the con-

struction of an objective tool to provide probabilities of

secondary eyewall formation in an operational setting.

We formed a large database of secondary eyewall for-

mation events in the North Atlantic and central and

eastern North Pacific Oceans, and documented a clima-

tology of secondary eyewall formation. We constructed

composites of the ambient storm-centered environ-

mental and satellite-derived fields for cases when a sec-

ondary eyewall formed in the following 12 h and for cases

when no secondary eyewall formed in the following 12 h,

and found significant differences between them. Some of

these differences were due to differences in hurricane

intensity, but we found that the environment plays a

significant additional role in modulating secondary eye-

wall formation. We then exploited these differences us-

ing a naı̈ve Bayes probabilistic model that provides an

estimate of the probability of imminent secondary eye-

wall formation. In leave-one-year-out cross-validation

over a 10-yr period, the model was shown to be skillful

when measured against a climatology defined by event

counts, although varying measures of model skill in the

central and eastern Pacific were not as consistent as the

North Atlantic. The methodology applied in this study to

North Atlantic and central and eastern Pacific secondary

eyewall formation is presently being repeated for west-

ern North Pacific tropical cyclones.

It is expected that the model described here will be

combined with the annular hurricane index described

by Knaff et al. (2003, 2008) to form a general objective

tool that diagnoses imminent structure changes in hur-

ricanes. Annular hurricanes describe a class of hurri-

canes that tend to have a single eyewall that is larger

and more circularly symmetric than average. It is

TABLE 8. Same as Table 3 but for the central and eastern

North Pacific.

Forecast

Observed

Yes No

Climatology Yes 0 0

No 41 706

Current intensity only Yes 0 2

No 41 704

Current intensity plus

SHIPS environmental

Yes 5 6

No 36 700

Current intensity plus

SHIPS environmental plus GOES

Yes 10 10

No 31 696

TABLE 9. Performance metrics of the algorithm applied to the central and eastern North Pacific (cf. with Table 4 for the North Atlantic).

Brier skill

score

Peirce skill

score

Briggs and Ruppert

skill score

Probability of

detection

False alarm

rate

Area under

ROC curve

Climatology 0% 0% 0% 0% 0% 0.50

Current intensity only 11% 0% 25% 0% 0% 0.80

Current intensity plus

SHIPS environmental

10% 11% 22% 12% 1% 0.88

Current intensity plus SHIPS

environmental plus GOES

13% 23% 0% 24% 1% 0.87
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hypothesized that the precursor to annular hurricane

formation is the formation of a secondary eyewall that

does not contract to the size of the primary eyewall it

surrounds, but instead reaches a quasi–steady state at a

larger radius. Thus annular hurricane formation and

eyewall replacement cycles might be viewed as similar

phenomena that both begin with the formation of a

secondary eyewall, but evolve somewhat differently after

that. In this respect, secondary eyewall formation events

form a crucial pathway to a broad range of hurricane

structure changes, which directly modulate the threat

to coastal communities and marine interests. This pro-

vides a strong motivation to increase both our physical

understanding of these events and our ability to accu-

rately diagnose and forecast them in an operational

setting.
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