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ABSTRACT

The historical global ‘‘best track’’ records of tropical cyclones extend back to the mid-nineteenth century

in some regions, but formal analysis of these records is encumbered by temporal heterogeneities in the data.

This is particularly problematic when attempting to detect trends in tropical cyclone metrics that may be

attributable to climate change. Here the authors apply a state-of-the-art automated algorithm to a globally

homogenized satellite data record to create a more temporally consistent record of tropical cyclone intensity

within the period 1982–2009, and utilize this record to investigate the robustness of trends found in the best-

track data. In particular, the lifetimemaximum intensity (LMI) achieved by each reported storm is calculated

and the frequency distribution of LMI is tested for changes over this period.

To address the unique issues in regions around the Indian Ocean, which result from a discontinuity in-

troduced into the satellite data in 1998, a direct homogenization procedure is applied in which post-1998 data

are degraded to pre-1998 standards. This additional homogenization step is found to measurably reduce LMI

trends, but the global trends in the LMI of the strongest storms remain positive, with amplitudes of around

11m s21 decade21 and p value 5 0.1. Regional trends, in m s21 decade21, vary from 22 (p 5 0.03) in the

western North Pacific,11.7 (p5 0.06) in the south Indian Ocean,12.5 (p5 0.09) in the South Pacific, to18

(p , 0.001) in the North Atlantic.

1. Introduction

Data describing past tropical cyclone frequency, track,

and intensity have been collected using methods of

paleotempestology (e.g., Frappier et al. 2007) and

through investigation of historical written records (e.g.,

Chenoweth and Divine 2008), but the majority of data

collected globally over the past 150 years constitute

what is known as the ‘‘best track’’ (Knapp et al. 2010).

These data were, and are, generally collected in an

operational forecasting setting and represent the best

technology and analysis protocols of the time (e.g.,

Hagen et al. 2012). Because the technology and analysis

protocols have progressively changed over time, the data

naturally contain temporal heterogeneities. For example,

prior to the meteorological satellite era, which began in

the 1960s, tropical cyclones that never approached land

or encountered a ship had a greater chance of non-

detection, and consequently the record of storm fre-

quency may contain unphysical upward trends because

more storms have been detected during the satellite era

(e.g., Vecchi and Knutson 2011).

As with frequency, estimates of tropical cyclone in-

tensity in the best track are also heterogeneous (Kossin

et al. 2007; Hagen and Landsea 2012). For example,

regular in situ intensity measurements from aircraft re-

connaissance into tropical cyclones began around 1948

but were terminated in the western North Pacific in

1987, which introduced a discontinuity into intensity

data in the regional best track (Martin and Gray 1993).
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Similarly, methods of intensity estimation using satellite

data evolved considerably during the 1970s and 1980s

owing to the introduction of, and subsequent improve-

ments to, the Dvorak technique (Dvorak 1973, 1984).

This technique will be discussed in greater depth in

section 2.

In addition to heterogeneity in the best-track in-

tensities from each tropical cyclone region, there are

interregion heterogeneities that can become problematic

when combining regional best tracks for global

analyses.1 For example, some regions report intensity

as sustained 10-min winds while others report these as

1-min sustained winds, and converting between the two

retrospectively is not straightforward (Harper et al. 2008).

Additionally, some regions benefit from regular aircraft

reconnaissance, while others do not. As noted above,

reconnaissance data were utilized in constructing the

western North Pacific best track from 1948 to 1987,

while the North Atlantic best track has benefited from

regular aircraft data from 1948 to present. Aircraft mea-

surements of near-surface winds are often indirectly de-

rived frommeasurements of minimum sea level pressure,

but the methods for performing the pressure-to-wind

conversion are not consistently applied in the best track

(e.g., Knaff and Zehr 2007). Sporadic increases in the

amount and quality of available data, including aircraft

data, can occur during field experiments in any ocean

basin. Different regions are also viewed from different

geostationary satellites, and these satellites can differ

in the spatial and temporal resolution of their instru-

ments and in their position relative to the regions of

high tropical cyclone activity. Satellite instrument reso-

lution changes have also occurred at differing times in

each region as technology has improved. All of these

changes can affect the quality of tropical cyclone inten-

sity estimates produced from application of the Dvorak

technique using geostationary satellite data (e.g., Velden

et al. 2006). These estimates make up the primary input

into best-track data in regions without active aircraft

reconnaissance.

The data issues briefly described here (which by no

means comprise a complete list) introduce uncertainty

and reduce confidence in analyses of the data and thus

complicate the detection of tropical-cyclone-related

trends attributed to climate change (Knutson et al. 2010;

Seneviratne et al. 2012; Lee et al. 2012). There is an

expectation that global warming forced by CO2 will

increase the mean state of tropical cyclone potential

intensity in the tropics (Emanuel 1987; Henderson-

Sellers et al. 1998; Bister and Emanuel 2002), and con-

sequently the relative frequency distribution of tropical

cyclone intensity is expected to shift toward greater in-

tensities (Emanuel 2000; Wing et al. 2007; Elsner et al.

2008).2 But the uncertainty in the best-track data has

led to a situation where any trends identified in the

best-track record of intensity, whether global or re-

gional, are suspect and debated (e.g., Webster et al. 2005;

Landsea et al. 2006). When comparing CO2 warming

scenarios with nonwarming control simulations, numeri-

cal and statistical models generally project increases of

mean tropical cyclone intensity (Knutson et al. 2010).

But the associated emergence time scales, which de-

scribe the time needed for the signal of a trend to be-

come identifiable above the noise of natural variability

at some prespecified level of confidence (usually 90%–

95%), can be long [multidecadal or more, e.g., Knutson

and Tuleya (2004)]. If this is indeed the case, then the

best-track data should, at a bare minimum, be tempo-

rally homogeneous on a similar time scale in order for

greenhouse-gas-induced trends to be detectable with an

acceptable level of confidence. On the other hand, there

is mounting evidence that regional aerosol forcing, both

natural and anthropogenic, can introduce detectable

changes on shorter time scales than the more globally

uniform forcing from well-mixed greenhouse gas (e.g.,

Baines and Folland 2007; Mann and Emanuel 2006;

Evan et al. 2009; Booth et al. 2012; Evan et al. 2012;

Villarini and Vecchi 2013; Dunstone et al. 2013). In this

case, there is the potential for detectable trends that are

attributable to anthropogenic forcing on shorter (multi-

decadal or less) time scales but are more region specific.

Here we attempt to mitigate a number of the data

issues summarized above by applying a state-of-the-art

objective intensity estimation model to a homogenized

global record of satellite data and then perform trend

analyses with these new data, globally and within in-

dividual regions. In section 2, we will describe the data

and the algorithm used to estimate intensity, and our

method for removing a known discontinuity in the sat-

ellite data in the region of the IndianOcean. In section 3,

we will show and discuss the results of the global and

regional trend analyses and perform a heuristic exercise

in which observed global trends in tropical cyclone po-

tential intensity are used to create synthetic time series

of tropical cyclone lifetime maximum intensity (LMI)

that are then subjected to trend analysis. The purpose

1These regions are typically separated into North Atlantic,

eastern North Pacific, western North Pacific, South Pacific, north

Indian, and south Indian Oceans.

2 Potential intensity describes the maximum intensity that a tropi-

cal cyclone can attain, as determined by the thermodynamic state of

the local environment (Bister and Emanuel 1998).
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of this exercise is to better establish what global trends

in tropical cyclone intensity might be theoretically ex-

pected given the observed changes in tropical climate.

We make no attempt to formally establish attribution

for any observed changes found in the new data, but in

section 4 we will discuss potential connections to both

the expected long-term trends caused by increasing CO2

emissions and the shorter-term variability expected to

be associated with regional aerosol forcing.

2. Data and method

The global best-track data comprise 6-hourly esti-

mates of the location (latitude and longitude) and in-

tensity (usually measured as a wind speed) of every

recorded tropical cyclone (e.g., Knapp et al. 2010) dur-

ing varying periods of record in each region. As men-

tioned in the previous section, a substantial proportion

of intensity estimates in the global best-track data are

strongly influenced by estimates provided operation-

ally by the Dvorak technique (Dvorak 1973, 1984). A

thorough review of this technique and its strengths and

weaknesses is found in Velden et al. (2006) and Knaff

et al. (2010). In the hands of a trained specialist, the

Dvorak enhanced infrared (EIR) technique (Dvorak

1984) is widely considered the ‘‘gold standard’’ for es-

timating tropical cyclone intensity from infrared sat-

ellite imagery. However, the technique relies in part on

subjective decision making and is not always consis-

tently applied from one specialist to the next, or one

forecast office to the next, or one tropical cyclone season

to the next. To remove the subjective decision making

from the technique, the advanced Dvorak technique

(ADT) was introduced (Velden et al. 1998), and this is

the algorithm that we will apply here. A thorough de-

scription of the ADT and its error characteristics is

found in Olander and Velden (2007). Briefly, the ADT

operates in a similar way to the original Dvorak EIR

technique, using infrared satellite imagery to identify

a ‘‘scene type’’ (such as ‘‘curved band’’ or ‘‘eye’’ scenes)

and then applying different statistical/empirical-based

models according to scene type. For example, if an eye

scene is identified, then a model is applied that relates

storm intensity to the infrared brightness temperature

of the eye and the cold cloud tops of the surrounding

eye wall. If a curved-band scene is identified, then a

model is applied that fits a log spiral to the bands and

relates intensity to this fit. All scene identification and

intensity estimation is fully automated in the ADT.

The Dvorak EIR technique and the ADT can be ap-

plied to infrared data from polar orbiting or geosta-

tionary satellites. However, to achieve regular temporal

consistency, geostationary data are almost exclusively

used. As noted in the previous section, there have been

a number of changes in geostationary satellite instru-

mentation and their orbital positions since their in-

troduction as weather satellites in the 1970s. To create

a more homogeneous record of tropical cyclone in-

tensity using the ADT, a homogenized satellite data

record is needed. Here we use the Hurricane Satellite

(HURSAT)-B1 data (Knapp and Kossin 2007; Kossin

et al. 2007; Knapp et al. 2011), which is a global con-

glomeration of available geostationary satellite imagery

since the late 1970s. The data are parsed from Inter-

national Satellite CloudClimatology Project (ISCCP)-B1

data (Knapp and Kossin 2007; Knapp 2008a,b) and are

centered on the storms recorded in the global best track.

Figure 1 shows the evolution of the available satellite data

in the ISCCP-B1 record.

The HURSAT-B1 data (hereafter referred to simply

as HURSAT data) have been reprocessed and recali-

brated, and later data have been subsampled both spa-

tially and temporally to be homogeneous with earlier

data (;8 km spatial and 3 h temporal resolution). Al-

though the HURSAT record begins in 1978, there are

missing storms in the first few years of the record owing

to limited geostationary data availability (Fig. 2), and

our period of analysis is constrained to the 28-yr period

1982–2009when imagery from all regions/basins became

routinely available. Within this period, there can still be

occasional data gaps within individual storms that ex-

ceed the normal 3-hourly resolution of the HURSAT

data (e.g., during satellite eclipse periods), but the fre-

quency and duration of these gaps exhibit no trends in

time (not shown) and should not substantially affect the

trend analyses in the next section.

Previous studies by Kossin et al. (2007) and Elsner et al.

(2008) formed intensity estimates from the HURSAT

record using standard linear regression models. These

models were relatively simple to implement and allowed

for temporal consistency, but with the understanding

that there would often be large errors in individual

estimates. In other words, accuracy was sacrificed for

consistency and model simplicity. Another issue with

these previous estimates is introduced by a known dis-

continuity in the quality of satellite data in the region

of the north and south Indian Oceans in 1998. Prior to

1998, satellite views of Indian Ocean tropical cyclones

were highly oblique. In 1998 a satellite was repositioned

over the Indian Ocean, and the satellite view angle,

hence the quality of the imagery, was greatly improved

(Fig. 1, see also Knapp et al. 2011). This discontinuity

was introduced as a caveat but not addressed in Kossin

et al. (2007). In Elsner et al. (2008), the discontinuity was

addressed retroactively by removing a constant mean

bias in the pre-1998 satellite-based predictors of the
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regression model (see their supplementary information).

Here we mitigate this discontinuity proactively by dis-

allowing all imagery from the post-1998 satellites that are

positioned over the Indian Ocean. Specifically, we re-

moved allMeteosat-5 data after 1 July 1998, allMeteosat-7

data after 17 July 2006, and all Feng Yun (FY)-2 data

from the HURSAT record. This essentially degrades the

post-1998 data to pre-1998 standards, removing the dis-

continuity in a direct proactive manner rather an indirect

retroactive manner. To quantify the effect that this ad-

ditional homogenization step has on the trend analyses

in the next section, we will repeat many of our analyses

without this step so that the trends can be compared.

As mentioned earlier, the satellite imagery in the

HURSAT record relies on prior knowledge of the

tracks of the storms, and this information is taken from

the global best track. Thus, there is no new information

to be provided here regarding potential heterogeneity

in the record of storm frequency, and we will concen-

trate solely on providing a more homogeneous record

of storm intensity, which will be treat as an intensive

(bulk) property independent of frequency. For each

3-hourly image for each storm in the HURSAT record,

we apply the fully automated ADT to estimate intensity

in terms of wind speed. This record will be referred to as

the ADT-HURSAT record. Then for each storm in the

ADT-HURSAT record, we identify the lifetime maxi-

mum intensity achieved. We also calculate the LMI from

the best track. Some storms have multiple best-track

entries because there is overlap among the agencies that

contribute to the global best track. When this occurs, we

simply choose the greatest of the reported LMI values.

The global frequency distributions of LMI calcu-

lated from the best track and the new ADT-HURSAT

estimates are shown in Fig. 3. One feature that is im-

mediately apparent is a high degree of kurtosis in

the ADT-HURSAT LMI distribution, with a peak at

55–65kt (1kt 5 0.514ms21) that has no obvious counter-

part in the best-track LMI distribution. This is attributed

to a known issue with the ADT (Olander and Velden

2012): as an incipient tropical cyclone develops and in-

tensifies, a ‘‘cirrus shield’’ is typically maintained over

the central convective region of the system. This shield

is opaque in infrared satellite imagery, which precludes

the ADT scene-typing algorithm from accurately iden-

tifying increases in convective organization that are

FIG. 1. Global ISCCP-B1 geostationary satellite coverage over

the past ;40 years. A gap in coverage centered over the region of

the Indian Ocean (608–1208E) was mitigated in 1998 with the in-

troduction of Meteosat-5 into the region.

FIG. 2. Counts, by season, of storms that are recorded in the

combined global best track but do not have associated satellite

imagery in the HURSAT record. Also shown are the storm cate-

gories of the missing storms. The total height of the bars show the

total missing count, and the colored sections of the bars show the

contribution from the different intensity categories.
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associated with an intensifying storm. As a storm in-

tensifies toward Category-1 hurricane strength (i.e., 65kt

on the Saffir–Simpson scale3), an eye typically begins to

develop, but this often takes place gradually while ob-

scured under the cirrus shield. In this case, the ADT can

‘‘get stuck’’ at a steady intensity just below hurricane

strength. If the eye that has been forming below the

cirrus shield becomes apparent in the infrared imagery,

it often occurs suddenly as the cirrus above the eye

quickly dissipates via local subsidence. The ADT will

interpret this as a rapid change in the scene type and

will rapidly intensify the storm. However, if an eye

never appears in the infrared imagery, then the LMI is

recorded below hurricane strength, which is often er-

roneously weak. This process is likely a major con-

tributor to the artificially high kurtosis seen in Fig. 3,

although there may be other contributing factors that

have not been identified yet.

A new experimental version of the ADT has addressed

this issue by incorporating passive microwave satellite

imagery into the algorithm (Olander andVelden 2012).

Passive microwave sensors can ‘‘see through’’ the cir-

rus shield and provide information related to convec-

tive organization, allowing the ADT to provide a more

uniform evolution of intensity prior to eye formation in

hurricanes. However, for our purposes, reliance on mi-

crowave imagery introduces severe limitations on the

homogenization process as well as substantially reduc-

ing the time span of our available data. To mitigate the

spurious kurtosis in our ADT-HURSAT LMI sample,

here we will only consider storms that reached or ex-

ceeded 65-kt intensity in their lifetimes. This choice

provides additional benefit in that the Dvorak-based

satellite methods, including the ADT, are substantially

more accurate in developed hurricanes than develop-

ing tropical storms (Olander and Velden 2007). For our

period 1982–2009, 1105 of the 2513 recorded storms

reached hurricane strength in the ADT-HURSAT and,

since we are primarily interested in identifying changes

in the most intense storms, constraining our analyses to

this subsample should not introduce any significant in-

terpretive limitations.

Before proceeding with formal trend analyses of the

newADT-HURSAT record, an additional homogeneity

test is provided here. As discussed above, the Dvorak

EIR type of intensity estimation methods, such as the

ADT, rely on statistical/empirical models that relate

intensity to features in infrared satellite imagery. For

example, when an ‘‘eye scene’’ is identified, warmer in-

frared brightness temperatures in the eye region and

colder temperatures above the convective eye wall re-

gion both correlate statistically to greater wind speeds.

But there is no guarantee that these relationships are

stationary under a changing climate. If these relation-

ships are not stationary, then there is no guarantee that

an identified trend in the ADT-HURSAT estimates is

capturing a physical trend in intensity. To test this, we

use best-track data that are within 3 h of a low-level

aircraft reconnaissance ‘‘fix’’ as ground truth and cal-

culate the error in the ADT-HURSAT data for each

year (Fig. 4). We find no trends in the central tendency

of the errors. A reduction in the interquartile range is

evident in Fig. 4 (blue lines), but these trends are not

significant, nor are the trends at the higher and lower

quantiles (red lines). We also analyzed errors in opera-

tional intensity estimates provided by both the NOAA

Tropical Analysis and Forecast Branch (TAFB) and the

Satellite Analysis Branch (SAB) and found no signifi-

cant trends (not shown). Thus, within the limitations of

the available data, there is no evidence to suggest non-

stationarity in the statistical relationships that either

the ADT or the Dvorak EIR technique is based on.

3. Trend analysis

Following Elsner et al. (2008), we will apply the

method of quantile regression (Koenker and Bassett

1978; Koenker and Hallock 2001; Koenker 2005; Jagger

FIG. 3. Frequency distribution of lifetime maximum intensity

(LMI) in the best-track and ADT-HURDAT records in the 28-yr

period 1982–2009. In this time period, there are roughly 2500 re-

corded storms (units of knots are more natural here because the

best tracks are discretized into 5-kt increments).

3 For simplicity, we use the 65-kt threshold to denote hurricane

strength winds, although these winds and their related thresholds

are measured differently in the best-track data from different re-

gions. We will also refer to these storms collectively as ‘‘hurri-

canes’’ regardless of geographic region.
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and Elsner 2009; Koenker 2011) to the LMI samples

from the best-track and ADT-HURSAT records to es-

timate the median and other quantiles of the response

variable LMI conditional on the covariate time (given

by year). In our application, quantile regression pro-

vides information on how the frequency distribution of

hurricane lifetime maximum intensity is changing over

our time period of analysis. The analysis will be applied

to the global data and then to the data from each region.

In our 28-yr time period of analysis, there are only 39

storms that reached hurricane intensity (LMI$ 65 kt) in

the north Indian Ocean best track, and 38 in the ADT-

HURSAT data in that region. We found that this was

insufficient for regional trend analysis, and here we will

necessarily limit our discussion to trends in the remaining

regions.

Before introducing the more rigorous statistical anal-

ysis provided by quantile regression, it is useful to con-

sider simplified time series that can provide a visual sense

of the 28-yr trend signals in the ADT-HURSAT LMI

values relative to their interannual variability. The re-

mainder of this section will then be devoted to a more

formal quantification of the amplitudes and levels of

confidence of the trends. For each region, we calculated

the median and higher quantiles of LMI from each year

in our period of data. The LMI values are from the

ADT-HURSAT with the additional homogenization cor-

rection to account for the discontinuity in the HURSAT

data over the Indian Ocean region. The results are shown

in Fig. 5. Increasing, but weak, trends are found in the

global ADT-HURSAT data, indicating a subtle shift of

LMI toward stronger storms. The different trend am-

plitudes seen at the different quantiles indicate that the

shift is not uniform across the frequency distribution,

and the trend is greatest at around the 0.6 quantile of the

distribution (;60ms21) and vanishes at the 0.9 quantile

(;73ms21). In the North Atlantic, very strong positive

trends are found, while negative trends are found in the

LMI from the eastern Pacific region. No clear positive

trends are seen in the western Pacific, although there is

a weak negative trend at the 0.9 quantile. Contrarily, the

LMI from both the South Pacific and south Indian Ocean

exhibit positive trends at most quantiles. As noted, these

simple time series are based on a reduction of each

year’s data to single values representing the various

quantiles for that year, and the trend line is based on an

ordinary least squares fit to these 28 single values. This

is useful for providing a visual sense of the trends and

variability, but the analyses in the following sections

using quantile regression represents a more rigorous

treatment of the trends and their levels of confidence.

a. Global trends

Global trends deduced using quantile regression are

shown in Fig. 6. In the best track, the trend in the mean

LMI is about12m s21 decade21 (solid red line in Fig. 6)

and is statistically significant (dashed red lines). The

mean LMI trends in the ADT-HURSAT, both with and

without the additional homogenization correction, are

substantially smaller and are not significant. At higher

quantiles, however, the trends increase in both the

best-track and ADT-HURSAT data, in agreement with

Elsner et al. (2008). Maximum trends in the best track

are ;13.3 [60.7 standard error (se)] m s21 decade21.

Trends in the ADT-HURSAT with the additional ho-

mogenization correction are almost exclusively positive

above the 0.4 quantile of LMI (52ms21), and achieve

a maximum of ;11.1 (60.6 se) m s21 decade21 near the

median LMI (57m s21). The trends in ADT-HURSAT

LMI shown in Fig. 6 are not significant at the 95% (two

sided) confidence level, except near the median LMI,

where they are marginally significant. In comparison, the

analysis of the regression-based intensity estimates of

Elsner et al. (2008) identified significant global trends

as large as 3.0 (60.9 se) m s21 decade21, but those trends

FIG. 4. Time series boxplot of intensity errors in the ADT-

HURSAT record for the period 1988–2006. Error is calculated

using best-track data within 3h of a low-level aircraft reconnaissance

fix as ground truth. The boxes show the interquartile range of errors

for each year, and the median annual error is shown by the short

horizontal black lines in the boxes. Red diamonds show the mean

annual errors. The whiskers span about 99% of the error range for

each year and the red lines show the trend in this range. The blue

lines show the trend in the interquartile range and the black line

shows the trend in the median error. There are 2003 data points in

the total period. The box widths are proportional to the square root

of the number of data in that year.
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were based on the changes in quantiles calculated from

a different LMI frequency distribution that included

tropical storms (with a lower bound of 17ms21), whereas

here we are only considering hurricanes (with a lower

bound of 33ms21). The behavior of the part of the

samplewithLMI between 17 and 33ms21 affects how the

higher quantiles change, making direct comparisons dif-

ficult. As a side note for comparison, the median LMI in

our global sample of hurricanes is roughly equal to the

0.9 quantile of LMI in the Elsner et al. (2008) study that

included storms weaker than hurricane strength.

The intensity estimates provided by theDvorak-based

models are not continuous (they provide values from

a discretized set of ‘‘current intensity numbers’’ that are

then converted to a wind speed), and the best-track in-

tensity data are generally provided in 5-kt increments.

A common procedure before analyzing such discretized

data is the addition of random noise to the data points.

In particular, when considering quantiles, the random

noise serves as a ‘‘tie breaker’’ when multiple discrete

points have the same value. In Elsner et al. (2008), ran-

dom noise sampled from a uniform distribution on the

interval 65 kt (62.6m s21) was added to the intensity

estimates prior to applying quantile regression. Here we

document how this noise can affect the trend and confi-

dence bounds in the quantile regression. In our case,

where the significance of the global trends in the ho-

mogenized ADT-HURSAT data is marginal, this be-

comes especially important for accurate interpretation.

We considered quantiles above the median LMI from

the global ADT-HURSAT record, both with and with-

out the additional homogenization step, and added

random noise sampled from a uniform distribution on

the interval 61.0m s21. Figure 7a shows the trend co-

efficients from quantile regression applied to the ADT-

HURSAT LMI data with the additional homogenization

step, repeated 1000 times with different random noise

added each time. The sensitivity of the trend and its

confidence level to the addition of random noise is

evident in Fig. 7a. The trend ranges from 11.6 to

10.6m s21 decade21, with a mean and standard devia-

tion of 11 and 0.15m s21 decade21, respectively. The

associated p values range from 0.014 to 0.219, with a

mean of 0.096.

To better identify the effect of the final homogeniza-

tion step that we applied to remove the discontinuity

in the satellite data in the region of the Indian Ocean,

Fig. 7b repeats the exercise above with the uncorrected

ADT-HURSAT LMI data. The discontinuity in the sat-

ellite data is seen to measurably inflate the trends and

their level of statistical significance, which suggests that

the ADT applied at more oblique satellite view angles is

FIG. 5. Time series of LMI quantiles from the homogenized ADT-HURSAT record. The various quantiles, from the median to the 0.9

quantile, are calculated from the data from each year and from each region. Ordinary least squares linear fits for each time series are also

shown.
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more likely to underestimate intensity in hurricanes.

This can be caused by the resulting differences in the

measured infrared brightness temperatures that the

ADT uses as input or by a reduced ability of the ADT

scene-typing algorithm to accurately recognize the pres-

ence of a warm eye. This will be explored further in

section 3c.

b. Comparison of observed LMI changes to
theoretical expectations based on observed climate
trends and variability: A heuristic exercise

When interpreting the global trend analysis above, it

is instructive to consider the changes in the LMI fre-

quency distribution that might be theoretically expected

given an increasing trend in potential intensity (PI) in

the tropics.We explore this here as an idealized heuristic

exercise: we assume that the mean tropical cyclone–

season PI in the tropics is described by an autoregressive

AR(1) process with autocorrelation coefficient a, annual

mean m, standard deviation s, and an increasing trend d

calculated over N years. Mean annual global hurricane

frequency in the best track since 1982 is about 49 per

year with a standard deviation of about 7 storms, con-

sistent with the expectations of a Poisson process, and

we assume that the global number of hurricanes per year

is described by a Poisson process with rate parameter l.

Then we assume that any storm that has reached hurri-

cane intensity has a uniform probability of achieving any

LMI between hurricane intensity and its potential in-

tensity (Emanuel 2000). This allows us to form synthetic

time series of annual mean PI and annual samples of

LMI (described more formally in the appendix).

The parameters used to create the synthetic time

series are based on observed annual mean PI in the

Modern-Era Retrospective Analysis for Research and

Applications (MERRA) (Rienecker et al. 2011), span-

ning the 32-yr period 1979–2010 (Fig. 8). The Northern

Hemisphere values are based onAugust–October (ASO)

means, and the Southern Hemisphere values are based

on January–March (JFM) means. As estimated from the

global tropical values shown in Fig. 8, we use a5 0.4,m5
75m s21, s 5 3ms21, and d 5 1.5m s21 decade21. As

noted above, the annual rate of global hurricanes in the

global best track record is l 5 49. With these values

fixed, we can form time series of any length N (see the

appendix) and test them for the presence of significant

trends.

We formed 1000 time series of PI based on Eqs. (A1)

and (A2) and then used these to calculate 1000 time

series of LMI based on Eq. (A3). We then tested each

time series for linear trends. The PI time series were

tested for trends in the mean using ordinary least squares

regression and the LMI time series were tested using

quantile regression applied to the 0.5 and 0.9 quantiles.

We choose N 5 28yr, which is the length of the time

series in the ADT-HURSAT record analyzed above.

Figure 9 shows the results of the experiment. For the

mean PI time series, the trend coefficients are distrib-

uted normally about 1.5m s21 decade21, as expected,

and range from about 21.8 to 14.8m s21 decade21.

FIG. 6. Global trends in the quantiles of LMI limited to storms that achieved hurricane strength (LMI $ 33m s21) in the period 1982–

2009: (left) trends in the best track, (middle) trends in the ADT-HURSAT record without the additional homogenization step to account

for a discontinuity in the satellite data, and (right) trends for the ADT-HURSAT record with the additional homogenization correction.

The black dots represent the trends in the quantiles of the LMI distribution from 0.05 to 0.95 in steps of 0.025. Shading represents

pointwise 95% confidence (two tailed). The red solid line shows the (constant value) trend in the mean as measured by ordinary least

squares regression, and the red dashed lines show the confidence interval. Values along the top axis show the LMI values associated with

the quantiles shown along the bottom axis.
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About half of the PI time series do not show positive

trends that are significant at the 95% confidence level.

For the median of the LMI time series, the trend coeffi-

cients are distributed normally about 0.7m s21 decade21

and range from about 22.4 to 13.3m s21 decade21.

Roughly 80% of the median LMI time series do not show

significant positive trends at the 95% confidence level. For

the 0.9 quantile of LMI time series, the trend coefficients

are distributed normally about ;1.3m s21 decade21 and

range from about 22.1 to 15.3m s21 decade21. About

40% of the time series do not show significant positive

trends at the 95% confidence level. That is, based on the

observed global seasonal variability and trend in PI

over the past 32 years, and assuming that PI and LMI

behave approximately according to Eqs. (A1)–(A3),

there is about 60% probability of the emergence of a

detectable trend at the 0.9 quantile of LMI in a 28-yr

time series. In particular, the observed positive trends

of ;1ms21 decade21 and uncertainty bounds calculated

from the ADT-HURSAT record with the additional

homogenization step (Fig. 7a) could be quite plausibly

argued to have come from any of a large number of

these synthetic time series in which the trend signal has

not yet emerged above the observed natural variability.

There are a number of highly simplifying assumptions

being made in this exercise, but it illustrates the present

limitations of homogenized tropical cyclone intensity

data constrained to the modern satellite era. As the

HURSAT record is continually appended in the future,

it is expected to be of increasing utility, but at present

the time series analyses presented here should be con-

sidered in this context.

c. Regional trends

When narrowing the focus of our analysis from global

to regional scales, there is generally an expectation of

greater uncertainty in the quantification of natural var-

iability, which makes formal detection of trends more

difficult (e.g., Knutson et al. 2010). A further cautionary

note was provided by Callaghan and Power (2010), who

showed that a collection of individual 30-yr trends in

severe tropical cyclone landfall frequency in eastern

Australia parsed from the period 1872–2010 exhibited

no consistency in either amplitude or sign (their Fig. 4),

although they found a decreasing trend over the entire

period (their Fig. 1). With these tempering points in

mind, here we will document the regional trends in the

hurricane LMI frequency distributions from the North

Atlantic, eastern North Pacific, western North Pacific,

South Pacific, and south Indian Oceans as calculated

from the ADT-HURSAT data. The results are sum-

marized in Table 1. Trends in the North Atlantic, east-

ern and western North Pacific, and South Pacific Oceans

are shown in Fig. 10 and described below. Trends in the

south Indian Ocean are then discussed separately.

1) NORTH ATLANTIC OCEAN

As expected from previous studies (e.g., Kossin et al.

2007; Elsner et al. 2008), the trends in the homogenized

North Atlantic data are positive and significant, exhibit-

ing large amplitudes (Fig. 10). The mean LMI (shown by

the constant-value red line) is increasing at a statistically

significant rate of about 14ms21 decade21, while trends

as large as 18m s21 decade21 are found at LMI quan-

tiles above 50m s21. In comparison, the North Atlantic

best-track data show similar, but somewhat weaker,

FIG. 7. Trend coefficients from repeated (N 5 1000) application

of quantile regression applied to the upper quantiles (LMI *

60m s21) of the global record of ADT-HURSAT LMI, with ran-

dom noise added to the discrete LMI values of the (a) record with

the additional homogenization correction and (b) the LMI values

without the additional homogenization step to account for the

discontinuity in the satellite data. The coefficient values (black

dots) have been sorted from their smallest to largest p values. The

95% confidence interval for each coefficient is shown by the

whiskers.
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trends on average. The smaller (but still positive and

significant) trends at the uppermost quantiles of the

ADT-HURSAT LMI gives an indication of how the

shape of the North Atlantic LMI frequency distribution

has been changing. In this case there is not a uniform

shift toward stronger hurricanes, and the quantiles near

the median hurricane LMI (;50ms21) have been shift-

ing most rapidly.

FIG. 8. Climatology of potential intensity (PI) calculated fromMERRA data in the period 1979–2010. Northern

(Southern) Hemisphere values are based on ASO (JFM) means. Bold contours on the map of trends enclose

regions with p # 0.05. Standard deviation is shown for comparison, but the value applied to Eq. (A2) is estimated

from the detrended standard deviation.
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2) EASTERN AND WESTERN NORTH PACIFIC

AND SOUTH PACIFIC OCEANS

In the eastern North Pacific best-track data, there is

no trend found in the mean hurricane LMI, but sig-

nificant positive trends are found at the very highest

quantiles (Fig. 10). However, this is not supported by

the ADT-HURSAT data, in which there are no signifi-

cant trends found at any of the quantiles. In the western

North Pacific best-track data, significant positive trends

are found in the mean LMI and in a range of quan-

tiles, but again this is not well supported by the ADT-

HURSAT data and, in fact, the highest quantiles of

the ADT-HURSAT LMI exhibit marginally significant

negative trends. In the South Pacific, the trends in the

best track are similar to those found in the North At-

lantic best track. The mean trend is positive and sig-

nificant, and trends at the higher quantiles as large as

17m s21 decade21 are found. In the ADT-HURSAT

data, the trends are substantially smaller in amplitude but

remain positive and marginally significant at the highest

quantiles. As with the marginally significant global trends

in the ADT-HURSAT shown in Fig. 6, we tested the

trends in the western North Pacific and South Pacific

ADT-HURSAT data for robustness when subjected to

the repeated addition of random noise to the LMI

values (as described in section 2a above). When we do

this, we find that the mean trend at the highest quan-

tiles in the western North Pacific is 22m s21 decade21

with a mean p value of 0.03, and in the South Pacific

12.5ms21 decade21 with a mean p value of 0.09 (Table 1).

3) INDIAN OCEAN

As discussed in section 2, the Indian Ocean region

poses a unique challenge in our analysis owing to the

introduction of the Meteosat-5 geostationary satellite

into the region in 1998 (Fig. 1). Prior to this, geosta-

tionary satellite views of tropical cyclones in the north

FIG. 9. Results of the idealized heuristic exercise using 1000 synthetic time series of PI and LMI as given by Eqs. (A1)–(A3). Histograms

(upper panels) show the distribution of the linear trend regression coefficients of the time series. Lower panels show the coefficients

(sorted from minimum to maximum) as black dots. The whiskers show the 95% confidence interval for each coefficient.

TABLE 1. Summary of trends, by region, in the ADT-HURSAT

LMI distribution of hurricanes (LMI $ 65 kt) as identified using

quantile regression. The trends represent mean maximum values

at the highest quantiles of LMI, after repeated addition of random

noise. The mean associated p values are also shown.

Region Trend (m s21 decade21) p

Global 11 0.1

North Atlantic 18 ,0.01

Eastern North Pacific no trends

Western North Pacific 22 0.03

North Indian insufficient data

South Pacific 12.5 0.09

South Indian 11.7 0.06
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and south Indian Oceans were often highly oblique, af-

fecting the estimates provided by satellite-based inten-

sity models such as the Dvorak technique and ADT, or

the regression-based models of Kossin et al. (2007) and

Elsner et al. (2008). It was shown in section 3a and Fig. 7

that the discontinuity introduced into the satellite data

can act to inflate trends and associated confidence levels

in the uncorrected ADT-HURSATLMI estimates. Here

we will look more carefully at the Indian Ocean and

analyze trends both with and without the additional

homogenization correction. As noted earlier, there is

insufficient data in the north Indian Ocean for trend

analysis, and here we limit our discussion to trends in

the south Indian Ocean.

The trends in the south Indian Ocean are shown for

ADT-HURDAT data, both with and without the addi-

tional homogenization correction, and for the best track

in the region (Fig. 11). In the best track, the trend in the

mean LMI is about 12.5m s21 decade21 (solid red line

in Fig. 11) and is statistically significant (dashed red lines).

The mean LMI trend in the ADT-HURSAT without

the additional homogenization correction is roughly the

same as found in the best track. In the ADT-HURSAT

with the additional homogenization correction, the am-

plitude of the mean trend remains positive but smaller,

and it is not significant. At higher quantiles, the trends are

generally higher in the best track but are consistently

positive in the ADT-HURSAT (with and without the

correction). The trends at the uppermost quantiles in

the ADT-HURSAT with the additional homogeniza-

tion correction are marginally significant, so here again

we repeat the analyses performed for the global ADT-

HURSAT to test the trends for robustness. The analysis

shown earlier in Fig. 7 is repeated and shown in Fig. 12.

Similar to what we found in the global data, the trends in

the south Indian Ocean are reduced in amplitude and

associated confidence levels when the final correction is

made to account for the discontinuity in the regional

satellite data. The mean trend for the uppermost quan-

tiles in the ADT-HURSAT LMI with the additional

homogenization correction is11.7m s21 decade21 with

a mean associated p value of 0.06.

Some specific examples of how the additional ho-

mogenization correction can affect the ADT-HURSAT

intensity estimates in Indian Ocean cyclones are shown

in Fig. 13. Cyclone Gonu (2007) is an example of how

the more oblique satellite view angles associated with

the HURSAT data with the additional homogenization

correction can impede the ability of the ADT to accu-

rately identify the development of an eye scene. In the

FIG. 10. As in Fig. 6 but for regional trends in the quantiles of the hurricane LMI in the North Atlantic, eastern and western North

Pacific, and South Pacific Oceans in the homogenized (top) ADT-HURSAT and (bottom) best-track records. Note that the scale on the

ordinate is different than Fig. 6.
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uncorrected data, which is based on satellite imagery

with a view angle of 208–308 from nadir, an eye scene was

identified earlier than the homogenized data, which was

based on much more oblique angles of 708–808 from

nadir. This resulted in an earlier rapid intensification

stage, which ultimately resulted in a greater LMI. This

is, arguably, what would be expected when comparing

the behavior of a Dvorak-type algorithm, as the accu-

racy of the method would be expected to be compro-

mised at more oblique satellite view angles. However,

this is not always the case, as seen in Cyclone Sidr in the

same year. In Sidr, the ADT applied to the HURSAT

data with the additional homogenization correction ac-

tually provided a higher LMI than the uncorrected data.

The identification of an eye scene occurred roughly con-

currently, but the infrared brightness temperatures dif-

fered at the different view angles in such a way that the

intensity was greater at the more oblique angles. Note

that, in addition to the view angles as an absolute mea-

sure of obliqueness, different satellites view the storms

from very different directions, which also affects the

measured brightness temperatures.

South Indian Ocean Cyclones Bindu (2001) and Pancho

(2008) are also shown in Fig. 13 to illustrate more ex-

treme examples of how the different view angles of the

corrected HURDAT data versus the uncorrected data

can affect the intensity estimates provided by the ADT.

Again, we find that the more oblique satellite view can

provide either greater or lesser LMI, and these differ-

ences can be large. As noted above, this is a somewhat

unexpected result and emphasizes the variability in the

relationship between satellite view and the intensity

estimates provided by Dvorak-type algorithms. This is

also seen in Fig. 14, which shows the differences in LMI

estimated by the ADT applied to the corrected versus

the uncorrectedHURSATdata.When all named storms

(LMI $ 35 kt) in the Indian Ocean during the period

1998–2009 are analyzed, the mean difference is about

zero but the range of differences spans 265 to 165 kt,

FIG. 11. As in Fig. 6 but for the south Indian Ocean. Note that the scale on the ordinate is different than Fig. 6.

FIG. 12. As in Fig. 7 but for the south Indian Ocean.
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which underscores some of the complexity in the re-

lationship between the ADT estimates and the various

satellite images that the ADT is applied to. The more

simple retroactive bias correction applied by Elsner

et al. (2008), while very easy to implement and reason-

ably supported by the data, would be less likely to rep-

resent this variability well.

Another point that Figs. 13 and 14 bring out is that the

ADT is remarkably robust even when presented with

highly oblique view angle situations. It is clear from our

analyses that the correction for the 1998 discontinuity

in the HURSAT data is important for trend analyses,

but this robustness provides additional confidence that

ADT applied to the HURSAT data with the additional

homogenization correction is still doing a reasonable

job of capturing LMI, and hence LMI trends, in the

Indian Ocean.

4. Concluding remarks

Our analyses using a new homogenized record of

tropical cyclone intensity suggest that the stronger trop-

ical cyclones, globally, have become more intense at a

rate of about 11ms21 decade21 during the 28-yr period

1982–2009, but the statistical significance of this trend is

marginal. Dramatic changes in the frequency distribu-

tion of lifetime maximum intensity (LMI) have occurred

in the North Atlantic, while smaller changes are evident

in the South Pacific and South Indian Oceans, and the

stronger hurricanes in all of these regions have become

more intense. There are no significant changes noted in

the easternNorth Pacific, and negative changes are found

in the western North Pacific, that is, the strongest hurri-

canes have become weaker. There are insufficient data

to determine trends in the distribution of LMI in north

Indian Ocean hurricanes.

The 28-yr length of the new homogenized record

places strong constraints on the interpretation of the

observed trends, and a heuristic exercise suggests that

trends in the LMI of the strongest storms caused by

observed trends in tropical cyclone potential intensity

could easily be obscured by random variability within

FIG. 13. (top) Satellite view angles and (bottom) intensity estimates throughout the lifetimes of Indian Ocean Cyclones Gonu, Sidr,

Bindu, and Pancho. View angles and intensity estimates are shown for the homogenized ADT-HURSAT data (solid lines), which correct

for the discontinuity in the regional satellite data, and the uncorrected ADT-HURSAT data (dashed lines). Intensity estimates from

the regional best-track data are also shown in the bottom panels (gray lines). The squares and triangles show where the ADT identified

an eye scene in the HURSAT data both with and without the additional homogenization correction, respectively.

FIG. 14. Difference in LMI estimated by the ADT applied to the

HURSAT data with and without the additional homogenization

correction. Positive (negative) values denote estimates where the

uncorrected LMI is greater (smaller) than the homogenized LMI.

There are 306 analyzed named storms (LMI $ 35 kt) taken from

the North and South Indian Oceans during the period 1998–2009.
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this time period. Interpretation is further challenged

by the fact that observed regional climate variability

comprises a number of factors, both natural and an-

thropogenic, and the response of tropical cyclones to

each factor is not yet well understood. Long-term trends

in tropical climate due to increasing greenhouse gas can

be regionally dominated by shorter-term decadal vari-

ability forced by both internal and external factors

such as changes in natural and anthropogenic aerosol

concentrations. For example, pollution aerosols can

affect regional sea surface temperature and SST gradi-

ents (Chung and Ramanathan 2006; Mann and Emanuel

2006; Baines and Folland 2007; Evan et al. 2009; Ting

et al. 2009; Zhang and Delworth 2009; Chang et al. 2011;

Solomon et al. 2011; Booth et al. 2012; Villarini and

Vecchi 2013; Zhang et al. 2013) and can affect regional

circulation patterns (e.g., Meehl et al. 2008; Evan et al.

2011b). Similarly, mineral aerosols (dust) and volcanic

aerosols can affect regional SST in the tropics, as well as

upper-level conditions, on interannual to decadal time

scales (Thompson and Solomon 2009; Evan et al. 2011a;

Evan 2012; Evan et al. 2012; Emanuel et al. 2013). In

concert with these natural and anthropogenic external

forcings, internal variability can play a substantial, and

possibly dominant, role in regional decadal variability

(e.g., Ting et al. 2009; Zhang et al. 2013). Thus, when

interpreting the global and regional changes in tropical

cyclone intensity shown in the present work, it is clear

that framing the changes only in terms of linear trends

forced by increasing well-mixed greenhouse gasses is

most likely not adequate to provide a complete picture

of the potential anthropogenic contributions to the ob-

served changes.

At present, detection and attribution of changes and

trends in tropical cyclone activity remains a significant

challenge, but increases in our physical understanding

of the causes of regional climate variability and its effect

on tropical cyclones, particularly on decadal time scales,

together with attempts to homogenize the historical

tropical cyclone records provide a way forward.

Acknowledgments. The continued development of

the Advanced Dvorak Technique has been supported

by the Naval Research Lab inMonterey, California, and

the Office of Naval Research, with additional support

from NOAA/NESDIS. Quantile regressions were per-

formed using the software environment R (http://www.

r-project.org) and the quantile regression package

quantreg: Quantile regression (Koenker 2011). We

thank Kerry Emanuel for providing us the potential

intensity data used in Fig. 8 and Chris Velden for his

input and support of the application of the Advanced

Dvorak Technique to the HURSAT-B1 data.

APPENDIX

Synthetic Time Series

We describe an AR(1), or red noise, process as

x(t)5 ax(t2Dt)1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 a2

p
«(t) , (A1)

where x is a standardized variable with zero mean and

standard deviation of unity, a is the lag-1 (Dt) autocor-
relation, and « is a random number drawn from a normal

distribution at each time step (white noise). We then

form synthetic time series of potential intensity as

PI(t)5m1sx(t)1 d(t) , (A2)

where m and s are the specified constant annual mean

and standard deviation, respectively, of PI, and d(t) 5
m(t 2 t0) is a specified linear trend with slope m.

Assuming that any storm that has reached hurricane in-

tensity has a uniformprobability of achieving any lifetime

maximum intensity (LMI) between hurricane intensity

and its potential intensity (Emanuel 2000), we can form

synthetic time series of annual LMI samples as

LMI(t, g(t))5LMImin1 [PI(t)2LMImin]g(t) , (A3)

where LMImin 5 33m s21 (minimal hurricane intensity)

and g(t) is a collection of random numbers drawn from

a uniform distribution on the interval (0, 1). For each

year t, the number of values in g(t) is a random number

drawn from a Poisson distribution with specified rate

parameter l.
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