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ABSTRACT

The National Hurricane Center currently employs a skillful probabilistic rapid intensification index (RII)

based on linear discriminant analysis of the environmental and satellite-derived features from the Statistical

Hurricane Intensity Prediction Scheme (SHIPS) dataset. Probabilistic prediction of rapid intensity change

in tropical cyclones is revisited here using two additional models: one based on logistic regression and the

other on a naı̈ve Bayesian framework. Each model incorporates data from the SHIPS dataset over both the

North Atlantic and eastern North Pacific Ocean basins to provide the probability of exceeding the standard

rapid intensification thresholds [25, 30, and 35 kt (24 h)21] for 24 h into the future. The optimal SHIPS and

satellite-based predictors of rapid intensification differ slightly between each probabilistic model and ocean

basin, but each set of optimal predictors incorporates thermodynamic and dynamic aspects of the tropical

cyclone’s environment (such as vertical wind shear) and its structure (such as departure from convective

axisymmetry). Cross validation shows that both the logistic regression and Bayesian probabilistic models are

skillful relative to climatology. Dependent testing indicates both models exhibit forecast skill that generally

exceeds the skill of the present operational SHIPS-RII and a simple average of the probabilities provided by

the logistic regression, Bayesian, and SHIPS-RII models provides greater skill than any individual model. For

the rapid intensification threshold of 25 kt (24 h)21, the three-member ensemble mean improves the Brier skill

scores of the current operational SHIPS-RII by 33% in the North Atlantic and 52% in the eastern North

Pacific.

1. Introduction

Improving the prediction of rapid intensification (RI) in

tropical cyclones (TCs) continues to be a top priority of

the National Oceanic and Atmospheric Administration/

National Hurricane Center (NOAA/NHC) (Jiing et al.

2011) and is a central focus area for modeling efforts in

NOAA’s Hurricane Forecast Improvement Program

(HFIP) (Toepfer et al. 2010). RI is often defined as an

increase in the 1-min maximum sustained surface wind

speed beyond some predefined threshold (typically 25, 30,

or 35 kt; where 1 kt 5 0.514 m s21) over a 24-h period1

(e.g., Kaplan et al. 2010, hereafter KDK10). Skillful pre-

diction of RI remains one of the most challenging aspects

of TC forecasting, but it is vitally important, particularly

when storms are approaching land.

An incomplete physical understanding of the under-

lying processes of RI is part of the difficulty in accurate

prediction. Nonetheless, statistical and theoretical studies
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1 These specific intensification thresholds are motivated by their

representation of specific upper-level percentiles of climatological

24-h intensification rates. In KDK10, the threshold of 25, 30, and 35

kt (24 h)21 specifically represent the 90th (88th), 94th (92nd), and

97th (94th) percentiles of 24-h intensity changes of TCs in the At-

lantic (eastern Pacific) Ocean basin from 1989 to 2006. These per-

centiles are very similar to those resulting from our period of study.
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allow us to confidently state that RI can be facilitated by

both favorable environmental conditions and a TC’s in-

ternal dynamics. Climatological analysis of the environ-

ments surrounding TCs suggests that RI events are favored

in regions of higher sea surface temperatures (SSTs), ocean

heat content, and low-level relative humidity, as well as

lower vertical shear of the horizontal wind (e.g., Kaplan and

DeMaria 2003, hereafter KD03; KDK10; Hendricks et al.

2010). Unresolved aspects of the associated internal TC

dynamics complicate simple empirical relationships be-

tween RI and the environment. One likely internal mech-

anism for RI is the coupling of latent heating and enhanced

inertial stability (e.g., Schubert and Hack 1982; Nolan et al.

2007; Vigh and Schubert 2009; Pendergrass and Willoughby

2009; Molinari and Vollaro 2010; Rodgers 2010). Increasing

the inertial stability of an intensifying TC inner core allows

for increasingly efficient intensification of the TC from the

release of latent heat by precipitation processes occurring in

that region. This important coupling suggests that predictive

models should properly capture when a storm is acquiring

sufficient inner-core organization of its winds and pre-

cipitating clouds. Additional factors influencing RI may

include various asymmetric processes including rapid hori-

zontal transport of angular momentum by mesovortices

(e.g., Kossin and Schubert 2001; Eastin et al. 2005a,b;

Sitkowski and Barnes 2009; Reasor et al. 2009). Hence, the

most successful RI prediction schemes may require not only

an accurate depiction of a TC’s environment, but also some

representation of the TC’s system-scale and smaller-scale

dynamics. Extant empirical–statistical models for predicting

RI do not explicitly incorporate these dynamics, but limited

information regarding inner-core convective structure can

be deduced from infrared satellite data, and further progress

is presently being made using microwave satellite data

(Velden et al. 2010).

Statistical–empirical forecasting techniques have played

a significant role in recent advances in RI prediction.

The NHC utilizes an RI index (RII) derived from the

Statistical Hurricane Intensity Prediction Scheme (SHIPS;

DeMaria and Kaplan 1999) developmental dataset (known

as SHIPS-RII). The SHIPS-RII was originally described in

KD03 and recently improved in KDK10 to predict the

probability of a TC intensifying at least 25, 30, and 35 kt

(24 h)21. The SHIPS-RII is based on linear discriminant

analysis and uses a relatively small number of ocean-basin-

dependent predictors describing both a TC’s environment

and some aspects of its internal structure. When compared

to climatology, this operational model is skillful in both the

North Atlantic and eastern North Pacific Ocean basins

(hereafter abbreviated as the Atlantic and eastern Pacific,

respectively).

Building on the success of existing statistical RI fore-

casting models, this paper presents two new prediction

models for RI and evaluates their levels of skill with re-

spect to the present SHIPS-RII model. In addition, the

benefits of using an ensemble-mean forecast that com-

bines different statistical techniques are examined. The

probabilistic models and datasets are described in section

2, and section 3 provides a cross validation of these models.

Finally, the forecasting skill levels of these two models are

compared with the present SHIPS-RII model, and the value

of averaging all three forecasts is explored in section 4.

2. Data and methods

The two statistical models used to predict the proba-

bility of RI in this study are both trained on optimally

chosen environmental and satellite-based predictors. (The

method for optimizing the predictors will be described

below.) One model is based on logistic regression and the

other is an empirical Bayesian probability model based on

the naı̈ve Bayesian framework. The logistic regression

model is described in detail in Wilks (2006). Details of the

Bayesian model are presented in Kossin and Sitkowski

(2009) where the model is applied to forecasting second-

ary eyewalls in TCs. Although both the logistic regression

and Bayesian models use similar environmental and

satellite-based features, it will be shown below that each

model provides independent information and that a sim-

ple average of the output from these two models and the

SHIPS-RII yields superior forecast skill compared to any

individual model.

All data used to train and test the logistic regression and

Bayesian models are obtained directly or derived from the

NHC’s North Atlantic Hurricane Database (HURDAT;

Jarvinen et al. 1984) and the SHIPS developmental data-

set based on gridded operational global analyses data

(DeMaria et al. 2005). The SHIPS dataset provides fea-

tures describing the TC-ambient environmental condi-

tions. Weekly gridded SSTs from the NOAA/National

Climatic Data Center (Reynolds and Smith 1994, hereaf-

ter RS94; information online at http://www.ncdc.noaa.gov/

oa/climate/research/sst/weekly-sst.php) and the oceanic

heat content computed from the method of Mainelli et al.

(2008) are included in the SHIPS dataset as well. The

SHIPS dataset also provides measures of the 10.7-mm in-

frared (IR) satellite presentation of the storms [from Geo-

stationary Operational Environmental Satellite (GOES)

imagery]. These data are available at 0000 and 1200 UTC

each day prior to the year 2000 and at 0000, 0600, 1200, and

1800 UTC from 2000 to the present. Data from 1995 to

2009 are utilized in this study to train and evaluate the

probabilistic models over both the Atlantic and eastern

Pacific.

To carry out objective comparisons between the lo-

gistic regression, Bayesian, and operational SHIPS-RII
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(KDK10) models, the notation and predictor calcula-

tions follow KDK10 as closely as possible. As in KDK10,

an Atlantic potential intensity predictor is obtained us-

ing an adjustment to the RS94 SSTs following the al-

gorithm of Cione et al. (2010). This adjustment accounts

for the upwelling of cooler water underneath slower-

moving and/or higher-latitude TCs. On the other hand,

the eastern Pacific potential intensity predictor is com-

puted using unadjusted RS94 SSTs since the Cione et al.

algorithm was developed only for the Atlantic. For each

initial time (t 5 0) analyzed in this study, the values of

environmental predictors are averaged along the TC’s

track out to 24 h in the future, whereas satellite predictors

are based only on the t 5 0 h time.

To obtain the final training and testing dataset for the

development of the new models and for their comparison

to the SHIPS-RII, a small amount of data screening is

carried out. To conform with KD03 and KDK10, data are

only used when the center of the TC was not over land

between t 5 212 and 24 h. Also, any forecast time is

dispensed with if any of the optimal features used by the

logistic regression, Bayesian, or SHIPS-RII models are

missing at a given forecast time. Unlike KDK10, no ad-

ditional screening methods are employed, including the

exclusion of cases where the difference between a TC’s

potential intensity and its current intensity is less than the

RI threshold or where the environmental conditions are

outside of the range of climatology. Including these types

of screening techniques may improve the performance of

the new models introduced here but such modifications

are deferred to potential future refinements. When all of

the data have been processed, the resulting sample sizes

for the Atlantic and eastern Pacific are N 5 2572 and

2614, respectively.

For each ocean basin and for each probabilistic model,

optimal predictors must be chosen from the large number

of predictors available in the SHIPS dataset and the

variables derived from that data. In ordinary least squares

regression models, this is generally accomplished through

a forward or backward stepping procedure (e.g., DeMaria

and Kaplan 1994). To choose optimal predictors for the

logistic regression and Bayesian models, we employ

a similar technique. First, all predictors whose sample-

mean differences between RI and non-RI TCs are not

significantly different at the 95% confidence level ac-

cording to the two-sided Student’s t test are discarded.

The selection of optimal predictors for the logistic

regression model is accomplished via a stepwise algo-

rithm (e.g., Cheng et al. 2006) that sequentially selects

subsets of candidate predictors until the optimal pre-

dictors are found. In particular, optimal predictors are

those that minimize the deviance of the logistic fit. Fea-

tures are added to the set of optimal predictors as long as

the decrease in deviance per added feature is statistically

significant at the 95% level according to a x2 test.

Optimal predictors for the Bayesian model are chosen

using the same methodology of Kossin and Sitkowski

(2009), which is based on maximizing leave-one-year-out

cross-validated forecast skill as measured by the Brier

skill score (BSS). Here, the cross-validation period spans

the years 1995–2009. Also, the BSS is defined here and

throughout this paper with respect to the training data’s

baseline climatological probability of RI. An additional

important constraint that is used in determining the set of

optimal predictors for the Bayesian model is that signif-

icant cross correlation (r 5 0.7 or greater) is not permitted

between predictors. If such cross correlation is found

between two or more predictors, only the predictor that

contributes the most skill is kept.

The optimal predictors in the logistic regression and

Bayesian models vary slightly between the Atlantic and

the eastern Pacific but remain physically consistent with

each other. The Atlantic predictors for the logistic re-

gression model are summarized in Table 1.2 These pre-

dictors include the previous 12-h change in intensity at

t 5 0 h (PER), the RS94 SSTs (RSST), the 200-hPa

divergence averaged from 0- to 1000-km radius from the

TC’s center (D200), the 850–200-hPa vertical shear of

the horizontal wind area averaged over a 0–500-km ra-

dius from the TC center after removing the vortex cir-

culation (SHDC), the difference between the potential

intensity and current intensity (POT), the standard de-

viation (from axisymmetry) of IR cloud-top brightness

temperature over a 100–300-km radius from the TC

center (SDBT2), and the mean IR cloud-top brightness

temperature over a 0–30-km radius from the TC center

(BTAV). The predictors PER, D200, and POT are also

optimal Atlantic predictors in the Bayesian model, but

the Bayesian model also includes the ocean heat content

(OHC), the 850–700-hPa relative humidity averaged over

the annular region 200–800-km radius from the TC’s

center (RHLO), the 850–200-hPa vertical shear of the

horizontal wind averaged over a 200–800-km radius from

the TC center (SHRD), the standard deviation of in-

frared (IR) cloud-top brightness temperatures over a 50–

200-km radius from the TC center (SDBT1), and the

percentage of the area within a 50–200-km radius from the

TC center containing IR cloud-top brightness tempera-

tures at least as cold as 2308C (PX30).

The predictors of the logistic regression model vary

between the Atlantic and the eastern Pacific. The list of

2 Here, we have adopted the same notation as the SHIPS De-

velopmental Dataset to identify the predictors. Also, SHDC, as

defined here, is actually the variable SHRD in KDK10.
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optimal eastern Pacific predictors still includes PER,

SHDC, and POT, but it also now contains four other

predictors (Table 2). One of these four predictors,

known as ENSS in the SHIPS developmental dataset,

provides a measure of the moist convective inhibition.

It is specifically computed by considering a surface-

based parcel-lifted pseudo-adiabatically to its equilib-

rium layer and then computing the average of only the

negative differences between the equivalent potential

temperature of the parcel and the saturation equivalent

potential temperature of the environment with height.

The spatial average of this calculation over the annular

region of 200–800-km radius from the TC center yields

ENSS. The remaining three logistic regression pre-

dictors include IR cloud-top brightness temperatures

averaged over a 100–300-km radius from the TC center

(BTA), SDBT1, and the maximum IR cloud-top bright-

ness temperatures over a 0–30-km radius from the TC

center (BTMX). The optimal eastern Pacific predictors

for the Bayesian model are identical to those in the

Atlantic.

The composite mean values of the Atlantic predictors

for the RI and non-RI samples are summarized in Table 3

for RI thresholds of 25, 30, and 35 kt (24 h)21. These

composites are comparable with the composites de-

scribed in KDK10, in that PER, OHC, D200, RHLO,

POT, and PX30 are larger and the vertical wind shear and

SDBT are smaller for rapidly intensifying TCs. In-

terestingly, the mean inner-core cloud-top IR brightness

temperatures (i.e., BTA) are colder in TCs about to un-

dergo or continue RI. While one might expect a stronger

signature of warm-core development in RI TCs as com-

pared to non-RI TCs, vigorous convective activity with

cold cloud-top temperatures near the center of RI TCs is

evidently dominating the composite mean. A potential

reason may be that initial eye formation often occurs

underneath upper-level clouds and is therefore obscured

in the IR imagery.

TABLE 1. The predictors used for the Atlantic in the logistic regression (L) and Bayesian (B) models.

Predictor Model Definition

PER L, B Previous 12-h intensity change

RSST L Reynolds sea surface temperature

OHC B Ocean heat content

RHLO B 850–700-hPa relative humidity (r 5 200–800 km)

D200 L, B 200-hPa divergence (r 5 0–1000 km)

SHDC L 850–200-hPa vertical wind shear magnitude calculated with the vortex removed and

relative to the 850-hPa center (r 5 0–500 km)

SHRD B 850–200-hPa vertical wind shear magnitude (r 5 200–800 km)

POT L, B Departure from the tropical cyclone’s maximum potential intensity

SDBT1 B Std dev IR cloud-top brightness temperature (r 5 50–200 km)

SDBT2 L Std dev IR cloud-top brightness temperature (r 5100–300 km)

PX30 B Percent area covered by IR cloud-top brightness temperatures #2308C (r 5

50–200 km)

BTAV L Mean IR cloud-top brightness temperature (r 5 0–30 km)

TABLE 2. The predictors used for the eastern Pacific in the logistic regression (L) and Bayesian (B) models.

Predictor Model Definition

PER L, B Previous 12-h intensity change

OHC B Ocean heat content

ENSS L Vertical average of the negative differences between the equivalent potential

temperature of a parcel lifted from the surface and the environmental saturation

equivalent potential temperature (r 5 200–800 km)

RHLO B 850–700-hPa relative humidity (r 5 200–800 km)

D200 B 200-hPa divergence (r 5 0–1000 km)

SHDC L 850–200-hPa vertical wind shear magnitude calculated with the vortex removed and

relative to the 850-hPa center (r 5 0–500 km)

SHRD B 850–200-hPa vertical wind shear magnitude (r 5 200–800 km).

POT L, B Departure from the tropical cyclone’s maximum potential intensity

BTA L IR cloud-top brightness temperature (r 5 100–300 km)

SDBT1 L, B Std dev of the IR cloud-top brightness temperature (r 5 50–200 km)

PX30 B Percent area covered by IR cloud-top brightness temperatures #2308C (r 5 50–200 km)

BTMX L Maximum IR cloud-top brightness temperature (r 5 0–30 km)
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Overall, as indicated in Table 4, the composite means

of eastern Pacific predictors for the RI and non-RI sam-

ples are consistent with the results in KDK10 and the

results for the Atlantic above. It is worth noting that the

predictor ENSS is less negative for rapidly intensifying

storms, which indicates that the atmosphere surrounding

rapidly intensifying storms is less statically stable. Also,

consistent with BTA in the Atlantic, BTMX is more

negative in TCs about to undergo or continue an RI ep-

isode in the eastern Pacific.

3. Validation

Both the logistic regression and Bayesian probabilistic

models possess skill in predicting RI, as demonstrated

through leave-one-season-out cross validation. Figure 1

provides an overview of the BSS for each model, RI

threshold, and ocean basin. In both basins, the logistic

regression model provides higher BSS values than the

Bayesian model for all RI thresholds. In the Atlantic,

the BSS ranges from 12% to 22% for the logistic re-

gression model and from 8% to 15% for the Bayesian

model. In the eastern Pacific, BSS ranges from 27% to

32% for the logistic regression model and 20% to 23%

for the Bayesian model. As the specified RI threshold is

increased from 25 to 35 kt (24 h)21, the forecast skill

decreases as RI becomes even more of a rare event.

Higher forecast skill was found in the eastern Pacific as

compared to the Atlantic in the SHIPS-RII model as

well (KDK10).

Reliability diagrams [also known as attributes dia-

grams; see Wilks (2006)] for each model, ocean basin,

and RI threshold are provided in Figs. 2 and 3. In each of

the reliability diagrams shown in the left-hand panels,

TABLE 3. The mean values of the predictors used in the Atlantic for the RI and non-RI samples for the 25, 30, and 35 kt (24 h)21 RI

thresholds. All differences between the means are statistically significant at the 99.9th level. The sample sizes for the RI (non RI) samples

with RI thresholds of 25, 30, and 35 kt (24 h)21 are N 5 310 (2262), N 5 194 (2378), and N 5 113 (2459), respectively.

Predictor Units

RI mean Non-RI mean Difference

25 kt 30 kt 35 kt 25 kt 30 kt 35 kt 25 kt 30 kt 35 kt

PER m s21 4.5 4.9 5.3 1.3 1.5 1.6 3.2 3.4 3.7

RSST 8C 28.5 28.6 28.7 27.5 27.5 27.6 1.0 1.1 1.1

OHC kJ cm22 51.2 53.8 57.0 32.4 33.1 33.7 18.8 20.7 23.4

RHLO % 73.0 73.2 73.1 68.2 68.4 68.6 4.8 4.8 4.5

D200 1027 s21 45.5 46.4 47.8 25.5 26.4 27.0 20.0 20.0 20.8

SHDC m s21 5.3 5.1 4.8 8.4 8.3 8.2 23.1 23.2 23.4

SHRD m s21 6.3 6.1 5.8 9.3 9.2 9.1 23.0 23.1 23.3

POT m s21 40.6 40.3 40.4 29.7 30.2 30.5 10.9 10.1 9.9

SDBT1 8C 13.3 12.2 11.3 15.9 15.9 15.8 22.7 23.7 24.5

SDBT2 8C 19.0 18.1 17.1 21.0 21.0 21.0 22.0 22.9 23.9

PX30 % 77.8 81.0 84.0 61.7 62.3 62.7 16.1 18.7 21.4

BTAV 8C 259.2 261.4 265.0 237.4 238.3 238.9 221.8 223.1 226.1

TABLE 4. The mean values of the predictors used in the eastern Pacific for the RI and non-RI samples for the 25, 30, and 35 kt (24 h)21

RI thresholds. All differences between the means are statistically significant at the 99.9th level. The sample sizes for the RI (non RI)

samples with RI thresholds of 25, 30, and 35 kt (24 h)21 are N 5 310 (2304), N 5 210 (2404), and N 5 150 (2464), respectively.

Predictor Units

RI mean Non-RI mean Difference

25 kt 30 kt 35 kt 25 kt 30 kt 35 kt 25 kt 30 kt 35 kt

PER m s21 5.9 6.6 7.3 0.4 0.6 0.7 5.5 6.0 6.6

OHC kJ cm22 30.8 33.4 35.0 15.5 15.9 16.2 15.3 17.5 18.8

ENSS 8C 223.1 222.2 221.2 238.8 238.3 237.9 15.7 16.1 16.7

RHLO % 77.8 77.7 77.8 73.4 73.6 73.7 4.4 4.1 4.1

D200 1027 s21 54.4 58.2 61.1 29.8 30.5 31.0 24.6 27.7 30.1

SHDC m s21 4.1 3.9 3.8 6.3 6.2 6.1 22.2 22.3 22.3

SHRD m s21 4.3 4.2 4.2 6.4 6.3 6.3 22.1 22.1 22.1

POT m s21 48.8 48.4 47.7 38.9 39.3 39.6 9.9 9.1 8.1

BTA 8C 244.7 245.8 247.7 227.5 228.1 228.4 217.2 217.7 219.3

SDBT1 8C 11.0 10.6 9.8 14.8 14.7 14.6 23.8 24.1 24.8

PX30 % 85.2 86.7 89.2 60.6 61.5 61.9 24.6 25.2 27.3

BTMX 8C 263.7 264.7 266.2 240.9 241.8 242.3 222.8 222.9 223.9
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the 458 diagonal line indicates perfect reliability for all

forecast probabilities. The horizontal and vertical dashed

lines show the climatological probability of RI. Points

within the shaded region indicate forecast probabilities

that contribute positively to the BSS. Points below the 458

diagonal line indicate forecasted probabilities that are too

high, whereas points above this line indicate that the

forecasted probabilities are too low (i.e., these deviations

provide the conditional bias). Overall, these figures in-

dicate that forecasts are generally more reliable for lower

RI thresholds and that forecasts for the eastern Pacific are

more reliable than those made for the Atlantic. These

aspects are consistent with the BSS results. Except for the

marked reduction in reliability at higher forecasted

probabilities, the logistic regression model tends to have

greater reliability overall, which is reflected in the BSSs

presented in Fig. 1. On the other hand, the Bayesian model

provides greater reliability for forecasts of high RI prob-

abilities. The corresponding histograms indicate that the

sample sizes in the higher probability bins are typically

larger for the Bayesian model (i.e., the Bayesian model is

slightly more skewed toward higher probabilities of RI

than the logistic regression model), which allows finite

reliability for high-end probabilities. Still, model forecasts

indicating a high probability of RI are quite rare. There-

fore, there are little to no data to determine the reliability

of higher-probability forecasts of RI. The histograms also

help explain the superior reliability in the eastern Pacific,

since both probabilistic models more commonly produce

very high probabilities (80% or higher) of RI there.

Figure 4 provides an example of the performance

of each model in predicting RI [using the 25 and

35 kt (24 h)21 thresholds] for Atlantic Hurricane Wilma

(2005) during its time over the Caribbean Sea. Wilma

experienced an astounding intensification of 95 kt be-

tween 1200 UTC 18 October and 1200 UTC 19 October.

At the end of this 24-h period of intensification, Wilma

achieved a new Atlantic record minimum sea level

pressure of 882 hPa. Both models successfully show el-

evated probabilities of RI for forecast times that sub-

sequently experience RI. The Bayesian model produces

maximum probabilities of 90% and higher during Wilma’s

RI event. The logistic regression model’s highest proba-

bilities are smaller than are those of the Bayesian model,

and the maximum occurs 6 h too late since the final 24-h

increment of RI is already under way. The higher proba-

bilities predicted by the Bayesian model are consistent

with the reliability diagrams and the Bayesian model

has better discernment of when to produce heightened

probabilities of RI, although the logistic regression

model is better at predicting the beginning of the period

of RI. It is of interest to note that the timing of the ob-

served onset of Wilma’s RI was deduced in part from air-

craft reconnaissance measurements. In the absence of such

in situ data, intensity is strongly influenced by satellite-

based techniques, which generally also lag the onset of

RI because of prespecified rules–constraints (Knaff et al.

2010; Velden et al. 2006). In these cases, the statistical–

empirical RI prediction models may in fact provide the

first warning of an RI event.

The differences in the ability of the two models to cap-

ture the timing (onset, duration, and demise) of Wilma’s

RI event, and the difference in their ability to provide

probabilities approaching 100% (Fig. 2), suggest that the

two models carry independent information and could be

combined to form a potentially more skillful forecast. The

biases in forecasted probabilities computed from the en-

tire cross-validated dataset suggest that the two schemes

can indeed offer independent information. In the Atlantic,

FIG. 1. BSSs (%) determined from leave-one-year-out cross

validation (1995–2009) for the logistic regression (black) and

Bayesian (dark gray) probabilistic models over the (a) Atlantic

and (b) eastern Pacific and for the RI thresholds of 25, 30, and

35 kt (24 h)21. The sample sizes are N 5 2572 for the Atlantic and

N 5 2614 for the eastern Pacific.
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it is found that the logistic regression and Bayesian models

have positive and negative biases, respectively, for all RI

thresholds. Sampson et al. (2008) demonstrate how using

a consensus of independent TC intensity forecasts can re-

sult in a forecast with reduced mean error.

4. Combining the models to improve skill

Given multiple forecast models, it is worth examining

whether an ensemble mean of forecasted probabilities of

RI can improve skill. To this end, the logistic regression

and Bayesian models are utilized in an ensemble-mean

forecast. In addition, the 6-hourly probabilities from the

SHIPS-RII dataset described in KDK10 and trained with

the operational SHIPS developmental dataset over the

years 1995–2009 are used as a third ensemble member.

We did not have ready access to the SHIPS-RII model in

order to derive training subset model parameters for the

independent testing method of leave-one-year-out cross

validation. Consequently, including the SHIPS-RII model

in the ensemble-mean constrains our analyses of skill

to be based on dependent testing in which forecasted

FIG. 2. Atlantic reliability diagrams resulting from independent testing of the logistic re-

gression (red) and Bayesian (orange) models for RI thresholds of (a) 25, (c) 30, and (e)

35 kt (24 h)21, and corresponding figures for the number of forecasted probabilities falling

between 0–0.1, 0.1–0.2, . . . , and 0.9–1.0 for (b) 25, (d) 30, and (f) 35 kt (24 h)21.
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probabilities are computed for each time in the training

dataset using model parameters derived from the same

dataset. Compared to independent testing methods, de-

pendent testing will inflate measures of skill, and a com-

parison of model biases (as discussed above) is not as

meaningful, but the dependent analysis is adequate for

the purpose of comparing the relative performances of

the three models and their ensemble mean.

Figure 5 compares the BSS computed from the de-

pendent dataset for each model and the three-model

ensemble-mean forecast. The logistic regression model

possesses higher forecast skill than does the Bayesian

model. Except for the RI threshold of 35 kt (24 h)21 in

the Atlantic, both the logistic regression and Bayesian

models perform somewhat better than the SHIPS-RII.

More importantly, the three models evidently bring

enough independent information so that the ensemble-

mean model skill is higher than any other individual en-

semble member. Intermodel correlation coefficients, which

may provide an informal sense of model independence,

range anywhere from 0.63 to 0.89 (Table 5). The BSS of

the ensemble mean in the Atlantic is 33% greater than the

existing SHIPS-RII scores for predictions of RI at the

25 kt (24 h)21 threshold. Similar gains are seen at the 30

and 35 kt (24 h)21 thresholds. In the eastern Pacific, the

ensemble-mean BSS at the 25 kt (24 h)21 threshold is

52% greater than the BSS of the SHIPS-RII alone. Again,

similar gains are seen for the remaining thresholds. These

improvements are particularly significant when consid-

ered within the context of improving intensity forecasting,

FIG. 3. As in Fig. 2, but for the eastern Pacific.
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as the SHIPS-RII is presently a key operational fore-

casting tool at the NHC.

The reliability diagrams for the three probabilistic

models and their ensemble mean are shown in Figs. 6 and

7. Because these diagrams are constructed using proba-

bilities from the dependent testing framework, the re-

liability of the models is artificially inflated but the

general pattern of behavior of the logistic regression and

Bayesian models seen in Figs. 2 and 3 is still exhibited

here. Namely, the logistic regression model has superior

reliability at lower forecasted probabilities of RI, whereas

the Bayesian model is more likely to successfully produce

high probabilities of RI. Also, the reliability is once again

superior for all models in the eastern Pacific.

The reliability of the SHIPS-RII is comparable to the

other models, but exhibits a weakness similar to the

logistic regression model in its inability to produce proba-

bilities above around 80%. The reliability of the ensemble-

mean model is best at lower- to midlevel probabilities as

well. In the eastern Pacific (Fig. 7), the reliability of the

ensemble mean is particularly high at the 25 kt (24 h)21

RI threshold, but its improvement over the individual

members is less consistent at the remaining thresholds.

Still, the ensemble mean is consistent in significantly in-

creasing the skill of the SHIPS-RII in both basins and at all

rapid intensification thresholds.

Following the Hurricane Wilma (2005) example shown

in Fig. 4, probabilities of RI are shown in Fig. 8 for the

FIG. 4. Evolution of observed best-track intensity (solid black

line, kt) and the probability of (a) 25 kt (24 h)21 or greater and (b)

35 kt (24 h)21 or greater intensification rates as predicted by the

logistic regression (orange) and Bayesian (red) models for Hurri-

cane Wilma (2005). The gray-shaded region indicates forecast

times where RI was observed over the subsequent 24 h.
FIG. 5. BSSs (%) determined from dependent testing (1995–

2009) for the logistic regression (black), Bayesian (dark gray),

SHIPS-RII (light gray), and consensus (white) models over the (a)

Atlantic and (b) eastern Pacific and for the RI thresholds of 25, 30,

and 35 kt (24 h)21.

TABLE 5. Correlation coefficients between each of the model

forecasted probabilities with the other models for the Atlantic and

eastern Pacific and for the 25, 30, and 35 kt (24 h)21 RI thresholds.

Models

Atlantic Eastern Pacific

25 kt 30 kt 35 kt 25 kt 30 kt 35 kt

Logistic/Bayesian 0.78 0.71 0.63 0.81 0.80 0.79

Logistic/SHIPS-RII 0.89 0.83 0.82 0.87 0.84 0.82

Bayesian/SHIPS-RII 0.77 0.74 0.69 0.78 0.77 0.76
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logistic regression, Bayesian, and SHIPS-RII models, as

well as the three-model ensemble mean. Although these

probabilities are now obtained within the dependent

testing framework, the logistic regression and Bayesian

models possess values that are qualitatively similar to the

results found in the independent testing results through-

out the course of Wilma’s lifetime over the Caribbean. As

noted previously, the Bayesian model provides the lowest

probabilities during non-RI periods and the greatest

maximum probabilities during the RI event. However,

the Bayesian model is also slowest to recognize the onset

of RI. Similar to the Bayesian model, the SHIPS-RII

model successfully recognizes the end of the RI event, but

the logistic regression model performs poorly in this

regard. Both the SHIPS-RII and logistic regression models

give overly high probabilities prior to the onset of RI, while

the Bayesian model performs better during this period. As

expected by its construction, the three-model ensemble

mean tends toward a smoother evolution during Wilma’s

passage through the Caribbean Sea and generally captures

the better patterns of behavior of each model.

5. Conclusions

In this paper, empirical prediction of rapid intensity

change in tropical cyclones was revisited using two new

probabilistic models based on logistic regression and

Bayesian principles. Each model incorporated data from

FIG. 6. As in Fig. 2, but for dependent testing of the logistic regression (red), Bayesian (orange),

SHIPS-RII (green), and the ensemble (blue) models.
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the SHIPS developmental database over both the Atlantic

and eastern Pacific to provide the probability of exceeding

the standard rapid intensification thresholds [25, 30, and

35 kt (24 h)21] for 24 h into the future. The optimal SHIPS

and satellite-based predictors of RI differed slightly be-

tween each probabilistic model and ocean basin, but each

set of optimal predictors incorporated aspects of the trop-

ical cyclone’s environment and its structure.

Cross validation demonstrated that both the logis-

tic regression and Bayesian probabilistic models are

skillful relative to climatology. Dependent testing in-

dicated that both models exhibit forecast skill that is

similar but superior to the operational SHIPS-Rapid

Intensification Index (RII) presently employed at the

NHC. This comparison was found to be consistent for

the 25 and 30 kt (24 h)21 RI thresholds in the Atlantic

and for all RI thresholds in the eastern Pacific. A simple

three-member ensemble mean combining the SHIPS-RII

with the logistic regression and Bayesian models showed

superior skill compared to each individual ensemble

member.

Unique patterns of behavior for each model during

the life cycles of tropical cyclones were identified. As the

logistic regression model’s frequency of high probabili-

ties of RI is lower than the other two models in situations

of observed RI, the logistic regression model often dis-

plays longer lead times of enhanced RI probabilities

than the Bayesian or SHIPS-RII models. Overall, the

FIG. 7. As in Fig. 6, but for the eastern Pacific.
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ensemble mean of the three models provides additional

reliability than is demonstrated by any individual model.

The logistic regression and Bayesian models can likely

be improved in future research and operational fore-

casting. It has been found by KDK10 and in this study that

coarse IR-based predictors add significant skill to proba-

bilistic models. Using predictors developed from other

individual geostationary satellite channels, multichannel

predictors, and/or further innovations to IR predictors

may further improve forecast skill. In addition, it has been

shown that predictors from passive microwave imagery

captured aboard low-earth-orbiting satellites improve the

statistical intensity forecasting (Jones et al. 2006; Jones and

Cecil 2007). Preliminary results with the logistic regression

RI model have indicated that microwave-based predictors

also add substantial skill to the prediction of RI (Velden

et al. 2010). Thus, while improvements in RI forecasting

from numerical modeling and data assimilation techniques

should continue to increase substantially in coming years,

there are still a number of rather inexpensive ways to

achieve enhanced operational predictability of RI through

the use of simple statistical techniques.

Improvement of rapid intensity change forecasts is the

highest operational need and a topmost priority of HFIP.

The new models introduced here have the potential to

substantially increase the skill of RI forecasts and can be

readily transitioned to operations at the NHC with rea-

sonably minimal effort. All required model input data are

available through the operational SHIPS model, and

model output could be easily appended to the existing

SHIPS-RII output. While efforts toward improving nu-

merical guidance and data collection–assimilation are

expected to ultimately lead to better RI forecasts, the

simpler empirical–statistical models described here con-

tinue to provide the greatest skill and should be exploited

to their maximum operational potential.
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