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The problem of determining the exact regions of convergence and divergence of the block Accelerated
Overrelaxation (AOR) iterative method, when it applies to systems with a Generalized Consistently
Ordered (GCO) coefficient matrix, is addressed here. Some new algebraic results in the theory of
regular splittings are obtained and used for the determination of extended regions of convergence.
Complementary, in some cases, divergence regions are obtained by making use of a recently derived
eigenvalue functional equation.
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1. INTRODUCTION

During the last decade, a number of interesting convergence results, concerning the
two-parametric AOR [1,2] method, appeared in the literature (e.g. [3-24]). Most
of these results deal with the fundamental problems of convergence and optimiza-
tion of the AOR method, as it pertains to cyclic consistently ordered matrices. In
particular:

i) for a class of nonsymmetric 2-cyclic consistently ordered matrices, arising from
the discretization of elliptic PDEs by the Hermite-bicubic finite element colloca-
tion method, it is shown [15, 19, 22] that the optimal AOR is always faster than
the optimal Successive Overrelation (SOR [25, 26]) method.

ii) for a class of 3-cyclic consistently ordered matrices, arising from the
least-squares solution of large overdetermined systems, it is shown [20, 24] that
the optimal 3-block AOR method is always faster than the corresponding optimal
3-block SOR method.

The above results establish the fact that the AOR method is a competitive
scheme, and motivated us to further develop its underlying convergence theory.

Here, as a physical continuation of the work in [23], we deal with the problem
of exactly determining the boundaries of the largest convergence domain (defined
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by the AOR’s two parameters) of the AOR method, as it pertains to a whole class
of GCO matrices. Our main purposes are:

i) To obtain extended convergence domains, using the theory of nonnegative
matrices and regular splittings (Section 2).

ii) To derive some upper bounds of convergence, using the eigenvalue functional
equation of [23] (Section 3).

iii) To determine the regions where the above complement each other (Section
4).

To fix notation, consider the system of linear equations
Ax=bh, (1.1)

where A4 is a nonsingular n x n complex matrix (4€C™").
Writing 4 as

A=D(I—L-U), (12)

where D is a nonsingular block diagonal matrix and L, U are respectively strictly
lower and strictly upper triangular matrices, it is well known that the associated
Jacobi iteration matrix B4 can be expressed as

BA=L+U. (1.3)

Using now the definition in [27], the matrix A of (1.2) is GCO (s,q), if all the
eigenvalues of the matrix B(a)=a’L+a~9U are independent of a, a#0 (s and g are
positive integers). In this case we also say that B* of (1.3) is a GCO (s, q)-matrix.

For any matrix C=[c;;] in C™", let |C| denote the matrix in R™" with entries
|c;;|- Throughout this paper we assume that the matrix A of (1.2) belongs to the
matrix set

4:={AeC""/|B4|=|L|+|U| is a GCO (s, q)-matrix}. (1.4)
Apparently, if B4 of (1.3) is a nonnegative GCO (s, g)-matrix or can be permuted
to a certain diagonal form (cf. [28-30]) then (cf. [27]) both B* and |B*|, and
hence A4, are GCO (s, g)-matrices.
The block AOR method, applied to the matrix equation (1.1) is, as usual,
defined by (cf. [1])
=@ x™+c ,, m=012,...

P, o= P =(I—rL) ' [(1 —0)+(@—rL+0U]L (1.5)

Croi=0(I—rL)"'D™'b
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The parameters r and w=#0 are respectively referred to as acceleration and
overrelaxation factors. By their special combinations, well known iterative schemes
are recovered. For instance, when (r,w)=(0,1), (1,1) and (w,w), the AOR reduces
to Jacobi, Gauss-Seidel and SOR methods, respectively. Finally, observe that upon
writing

&, o=I—w(I—rL)"'D"'A4 and ¢, ,=(I-2, )A"'b (1.6)

and since A is nonsingular and w#0, the AOR method is completely consistent
([31], p. 64).

2. DOMAINS OF CONVERGENCE

In this Section, the theory of nonnegative matrices and regular splittings is used to
obtain domains of convergence for the AOR method.
Given the matrix B=B* of (1.3), let ji denote the spectral radius of

|B|=|L|+|U|=|B| 2.1)
namely
fi:= p(|B]). (22

Then, it is known (cf. [23]) that:

Lemma 2.1 Let |B| of (2.1) be a GCO (s,q)-matrix and p:=s+q. Then, for any
real nonnegative constants a, B and vy, with y+#0, satisfying

o foP <y”, (2.3)
the matrix A:=yI—o|L|—B|U| is such that
A 1320, (2.4)
Now, let the matrices M, N, M and N be defined by
(M:=1—zL—%U
N:=(1—2)L+(1—2)U

(2.5)
:= 1 [ |L] -2 |U|

N:=|1—z[|L|+]1 —3||U]

where z and % are any complex valued parameters. Then,

LEMMA 2.2 Under the hypothesis of Lemma 2.1 and for all complex z and 2
satisfying
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2|72l AP <1 (2.6)
both M and M are nonsingular and such that
oM Y sM~L 2.7)

Proof Application of Lemma 2.1 implies that, for z and Z satisfying (2.6), M is
nonsingular and

M—l

v

0. (2.8)

If we write M=1I—E, it follows from Eq. (2.5) that E=0 so that, from Theorem
3.8 of [32], p(E)<1. Now if M=I—E, |[E|SE so that p(E)<1. Therefore, infinite
expansions of both (I—E)~! and (I—E) !, in the power of E and E respectively,
are valid, and comparing these yields |M BRI E R |

Using the Lemma above we now prove:

THEOREM 2.1  Let |B| of (2.1) be a GCO (s,q)-matrix and p:=s+q. Then, for any
complex z and ? satisfying

(|2 +]1—z]%(

24+[1-2

yar<t, (29
there holds
p(M™'N)<p(M ' N)<1, (2.10)

where M, N, M and N are as defined in (2.5).

Proof Using Lemma 2.2 and since N >0 it is easily seen that, for all z and 2
satisfying (2.9), since (2.9) implies (2.3) and hence Lemma 2.1,

0<|M~'N|sM™'N,
hence, by Theorem 2.8, p. 47 of [32],
p(M~'N)<p(M~'N). (2.11)
Moreover, as both M ! and N are nonnegative,
A:=M—N=I—(z|+|1—z]|L|-(|z[+|1 —2)|U| (212
is a regular splitting (cf. [32]), with (by Lemma 2.1)

A 120, (2.13)
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for all z and 2 satisfying (2.9). Upon application of Theorem 3.13, p. 89 of [32], we
have

p(M~'N)<1,

which combined with (2.11) completes the proof. I

At this point we would like to remark that a generalized analog of the Theorem
above has been obtained and used, in [33], for the determination of convergence
domains for preconditioned iterative methods.

Now set

T:=(I—-rL) " 'D " 'A=(I—rL)"'(I—-L-U), (2.14)
and, recalling (1.6), observe that

Z, -7, (2.15)

o= r

where %, , is the block AOR iteration matrix of (1.5).

Apparently then 4 and t are respectively eigenvalues of %, , and 7, if and only
if
i=1—-owrt, (2.16)
whence,
p(&, )<l iff 1#£0 and |l-o1|<l (2.17)
Notice that, for ©>0, |l —wt|<1 is equivalent to 2Re(r)>wl|t|?>, where Re(t)
denotes the real part of 1.
Assuming now that z satisfies

z=1-(1-3)(1—r), 2#1 (2.18)

one can easily verify that

M=(1—2)(I—rL)[I+ d - 9’]
1-2

(2.19)
N=(1-3)-rL)(I-7,),

whence

3 -1
M“‘N=[1+lz,ﬁ',:| (I-7). (2.20)
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It is thus apparent that, for all z and 2 satisfying (2.9) and (2.18), Theorem 2.1
implies that

- <1, (2.21)
z

1
T3

T

for any eigenvalue 1 of 7, of (2.14). This relationship implies that 7#0 and that,
for 2<1,
2Re(7) z

_ & 22
i (222

Combination of (2.17) and (2.22) yields that, for all z and Z satisfying

(|2 + |1 = 22| +]1 -2
z=1—(1=3)(1—7) (2.23)

i<(1-w)/2-w), O<w<2,

yar<l

there holds p(L, ,) <1.
Following the analysis above we establish that:

THEOREM 2.2 Let A of (1.2) be an element of the matrix set G of (1.4). Then, for
any r and o satisfying

{0<w<2 (224)

(1—o+r+|1 =1 +|1 — 0] a? <@ —w)?,

where p:=s-+q and [.=p(B*), the block AOR method, applied to the matrix
equation (1.1), converges (i.e. p(Z, ,)<1).

Proof Upon setting

l—w+r
z=
2—w -

observe that (2.23) holds for all r and w satisfying (2.24), and hence the proof
follows. W
As an immediate consequence of the above, one can easily obtain that:

CoOROLLARY 2.1 Under the hypotheses of Theorem 2.2 and for
0<i@:=p(BY) <1
O<w=1 and r(w;p)<r<ry(w;f) (2.25)

1<w<%ﬂms and r (w;p)<r<r(w;p),
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where
_ o(l+prn-2
rl(w;#)2=’( 251,“)
. 2—o(l—pPn
{ rao; u):=‘2(ﬂp,q“ ) (2.26)
— P Ve
ir={os] Coor ||
L Wi
the block AOR method, applied to the matrix equation (1.1), converges.
COROLLARY 2.2 Under the hypotheses of Theorem 2.2 and for
O=a=p(BY) <1
(2.27)
O<w< L_,
1+4

the block SOR method, applied to the matrix equation (1.1), converges.

Concluding this section, it is worthwhile to remark that the results in Corollary
2.1 extend the convergence results found in [23].

3. UPPER BOUNDS OF CONVERGENCE
We begin the analysis for the determination of some upper bounds of convergence
for the AOR method, by stating the following result (cf. [23]):
THeoREM 3.1  Let B of (1.3) be a GCO (s,q)-matrix and p:=s+4q. If ©#0, A is an
eigenvalue of &,., of (1.5), with A#1—w if r=1, and p satisfies
(A+w—1)"=(r+w—r)fio’y?, 3.1)
then u is an eigenvalue of BA. Conversely, if u is an eigenvalue of B* and A satisfies
(3.1), then A is an eigenvalue of &, .
Based on the above we prove:
THEOREM 3.2 If one of the following:
w0 or w2
b) i =p(BY=1, for w>0 (3.2)
) 2—w)P< |2r—a)|"a)sﬂ"J

holds, then
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sup{p(L4,): Aisanelement of ¥} 21, (3.3)

where 9 is as defined in (1.4).

Proof Given A4 in %, let B* be a GCO (s, g)-matrix. If, besides that,

a) u=0 is an eigenvalue of B“, then Theorem 3.1 implies that :=1—0 is an
eigenvalue of £, . Thus

1-0|21=p(2L,.,)21. (34)

b) uP=j? is an eigenvalue of (B4)?, with ji:=p(B*), then Theorem 3.1 implies
that any A which satisfies

P(A;r, 0, 1) =0, (3.9)

where P(4;r,o,u):=(A+w— 1)’ —(Ar+o—r)'e’u?, is an eigenvalue of 2, ,,.
Observe now that, for g=1 and w>0,

P(Lir,0,g)=w(1-p") <0, (3:6)
which combined with the fact that
P(A;r,m, 1) >0, for A, p sufficiently large, (3.7)

implies that there exists A*>1 such that P(i*;w,r,i)=0. Thus, as (3.5) implies
that A* is an eigenvalue of &£, ., we have that

21 and 0>0=p(Z, )21 (3.8)

c) uP=(—1)*#* is an eigenvalue of (B*)?, with jz:=p(B*), and g even, Theorem
3.1 implies that if v satisfies

P(v;r,0,3)=0, (39

where P(v;r,w, i):=(v—w+1)’—|vr—w+r|["»*z", and 2:= —v then 1 is an eigen-
value of &, . By a similar argument as in (b) above, one can easily verify that

Q2-oPPr-ol'o*P=p(¥, )21 (3.10)
Combination of (3.4), (3.8) and (3.10) completes the proof. I

At this point it is worthwhile to remark that the relation (3.2c) can equivalently
be expressed as

r<r (w;1) and rzrt(w;p) 3.11

where r*(w; i) are as defined in (2.26).
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Figure 1 Regions of convergence and divergence of the block AOR method, as it pertains to GCO
(s,q) matrices.

4. CONCLUSION AND ILLUSTRATIONS

For clarity, the results from Corollary 2.1 and Theorem 3.2 are graphically
represented in Figure 1. Observe that for

1fw<

1+ "

the regions of convergence and divergence exactiy complement each other.
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Concluding, and as a first step in answering the question of whether conver-
gence or divergence or both occur in the regions marked by ‘? of Figure 1, the
following two remarks are inctuded.

Remark 1 Recalling the curves defined in (2.26), one can easily verify that, for s
fixed,

lim {r (03 @)} = lim {ry(e; @)} =2~ 200
g g~ 2[1
im {7 (@30} = lim {ry (o5} = 2502,

Therefore, for g sufficiently large and for 0<w<1, the curves which separate the
domains of convergence and divergence “exactly” approach each other.

Remark 2 Utilizing the constant term of the characteristic polynomial asso-
ciated with %, ,, of (1.5), we established (the proof is omitted for brevity) that, for

1—(w—-1)*

w2~—2~— and rgw—I: =
w'p?

—1+ﬁP/S

1/q
] =:ry(w; f1)

there holds
(£ )21, for any GCO (s, g)-matrix A.

Finally, we would like to remark that a similar analysis has been used in [34]
for the derivation of exact convergence regions of the SSOR method, as it pertains
to H-matrices.
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