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ABSTRACT

This paper explores the potential utility of seasonal Atlantic hurricane forecasts to a hypothetical property

insurance firm whose insured properties are broadly distributed along the U.S. Gulf and East Coasts. Using

a recently developed hurricane synthesizer driven by large-scale meteorological variables derived from global

reanalysis datasets, 1000 artificial 100-yr time series are generated containing both active and inactive hur-

ricane seasons. The hurricanes thus produced damage to the property insurer’s portfolio of insured property,

according to an aggregate wind-damage function. The potential value of seasonal hurricane forecasts is

assessed by comparing the overall probability density of the company’s profits from a control experiment, in

which the insurer purchases the same reinsurance coverage each year, to various test strategies in which the

amount of risk retained by the primary insurer, and the corresponding premium paid to the reinsurer, varies

according to whether the season is active or quiet, holding the risk of ruin constant.

Under the highly idealized conditions of this experiment, there is a clear advantage to the hypothetical

property insurance firm of using seasonal hurricane forecasts to adjust the amount of reinsurance it purchases

each year. Under a strategy that optimizes the company’s profits by holding the risk of ruin constant, the

probability distribution of profit clearly separates from that of the control strategy after less than 10 yr when

the seasonal forecasts are perfect. But when a more realistic seasonal forecast skill is assumed, the potential

value of forecasts becomes significant only after more than a decade.

1. Motivation

Several recent studies have demonstrated that as

much as 65% of the year-to-year variance of Atlantic

basin hurricane activity can be hindcast if the large-scale

environmental conditions are well known (Knutson et al.

2007; Emanuel et al. 2008), even though synoptic-scale

variability, such as African easterly waves, may not be

known at all. This implies that if such large-scale condi-

tions could be forecast many months in advance, some

basinwide measures of hurricane activity might be pre-

dictable on such time scales. Even if one could forecast

such large-scale conditions perfectly, however, much of

the tropical cyclone variance would not be predictable,

owing to random chaotic influences, large-scale envi-

ronmental factors not accounted for in the aforemen-

tioned modeling studies, or model error. Even if 65% of

the variance of basinwide storm counts could be forecast

perfectly, this would not necessarily translate into pre-

dictability of landfalling storms, which are almost always

the events of interest, nor would it imply any pre-

dictability of the intensity of landfalling storms, which has

a large effect on storm damage.

Here, we explore the potential economic value of sea-

sonal hurricane forecasts. To provide an upper bound on

the potential utility of such forecasts, we first examine the

near-best-case scenario of perfect predictability of large-

scale conditions; later, we explore the effects of assuming
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more realistic forecast skill. We here focus on the eco-

nomic utility of forecasts to a particular industry—the

property insurance sector—under somewhat simplified

but nevertheless realistic conditions. We regard the pre-

sent study as developing a framework for estimating the

potential economic value of seasonal hurricane forecasts

rather than as a comprehensive estimate of such value

across the entire economy.

2. Methods

Encouraged by the success of the aforementioned

hindcasts of Atlantic basinwide hurricane activity, we

explore the potential economic value to a property in-

surance firm of seasonal predictions of Atlantic hurri-

cane activity. For the purposes of the present study, we

aim for maximum simplicity and, in keeping with this

philosophy, we assume that hurricane damage is the

dominant source of volubility for insured losses; volu-

bility owing to other sources would diminish the effects

examined here. We also pretend that Atlantic hurricane

seasons are divided into just two sets: active and quiet

seasons. We represent quiet years by the large-scale

conditions present during the hurricane season of 1991,

when just 7 named storms formed in the Atlantic region,

and active years by the conditions present in 2003, which

produced 16 named storms. We also assume that one can

forecast with perfect accuracy and with about a 6-month

lead time whether the coming season will be quiet or

active. Using a synthetic hurricane generator to produce

event sets appropriate to the quiet and active regimes,

we create 1000 artificial time series of Atlantic hurri-

canes, each with a length of 100 yr and involving both

quiet and active years. Some of the hurricanes affect

properties contained in a portfolio insured by a hypo-

thetical insurance company, and a damage function is

used to predict how much damage each storm will do

to these properties. Thus, we generate 1000 nearly in-

dependent possible realizations of 100-yr time series of

damage to the portfolio. We use these time series to

compare different possible strategies that a property

insurance firm might take. In a control strategy, the firm

takes out identical excess-of-loss reinsurance contracts

each year, paying a premium to the reinsurer, who then

covers all losses for each individual event in excess of an

agreed upon amount; the primary insurer retains all

losses below this amount. This strategy is then compared

to an optimal strategy in which the primary insurer ne-

gotiates different retentions in different years (and with

correspondingly different annual premiums) according

to whether the upcoming season will be active or quiet.

The relative success of this strategy is measured by

probability distributions of the company’s profits under

the constraint that its probability of ruin remains con-

stant. The sections below describe our methods in detail.

a. Hurricane event sets

The historical record of Atlantic hurricanes is too

short and contains too few events to develop a statisti-

cally robust estimate of hurricane damage to the U.S.

East Coast. For this reason, we use a synthetic hurricane

generator developed by Emanuel et al. (2008). This

method begins with a global dataset of key meteoro-

logical variables, including wind at two altitudes in the

atmosphere, sea surface temperature, and temperature

and humidity through the whole troposphere and lower

stratosphere. This global dataset may be produced by

global models; but in the present case, we use data from

analyses of the atmosphere produced by the National

Centers for Environmental Prediction (Kalnay et al.

1996). In the first step, the given climate state is seeded,

randomly in space and time, with weak proto-hurricanes.

Once seeded, the nascent storms are assumed to move

with the large-scale winds of the given climate state, with

a small correction owing to the earth’s rotation. Finally,

their intensity is predicted using a detailed, coupled

ocean–atmosphere hurricane model, again driven by

the large-scale climate variables. In general this model

predicts that most of the proto-hurricanes fail to develop;

these failed events are discarded. The small fraction of

proto-hurricanes that develop then constitute the hurri-

cane climatology according to this method. Details may

be found in Emanuel et al. (2008).

When applied to the quiet Atlantic hurricane season

of 1991, this method predicts that 7.5 named storms

should have developed versus the observed 7 named

storms, while it predicts 15.5 named storms in 2003,

which in fact produced 16 storms (the fractional annual

storm count results from having produced 10 000 syn-

thetic events for each year and comparing this number

to the number of seeded storms that failed to develop).

This and evidence presented in Emanuel et al. (2008)

suggests that the method is capable of distinguishing

active from quiet years.

Using these two synthetic datasets, we create artificial

100-yr time series of Atlantic hurricanes. To do this, we

first create a single 100-yr series of randomly ordered

ones and zeros representing active and quiet years. We

generate a storm count for each year by drawing ran-

domly from a Poisson distribution based on the long-term

mean frequency of events, using the long-term mean fre-

quency as appropriate from the active or quiet dataset.

We then randomly select that number of events from the

quiet or active 10 000-member event set as appropriate.

Because climatic conditions (such as El Niño) often

exhibit ‘‘memory’’ from one year to the next, here we
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choose whether a year is quiet or active from an autor-

egressive series that exhibits some memory from year to

year but insures that there are exactly 50 members each

of active and quiet seasons. We create 1000 such 100-yr

series, differing only in the particular random draws

from the Poisson distribution in each year. By this

means, we create one thousand 100-yr time series of

hurricane events containing an autoregressive sequence

of equal numbers of active and quiet years.

b. Hurricane vulnerability

Estimating the damage that a particular hurricane

causes requires detailed estimates of the value of each

property affected by the storm as well as the vulnera-

bility of that property to storm-related effects, such as

wind and storm surge. For the purposes of the present

work, we greatly simplify this calculation to include only

wind damage, and we assume that a given history of

wind reduces the value of all properties by the same

fraction, neglecting variations in vulnerability from one

property to the next.

We begin with a database of insured property values,

the Industry Exposure Database, produced by Risk

Management Solutions Inc. (A. Lange 2010, personal

communication). This consists of estimates of total in-

sured values for each zip code and county in the United

States and for each postcode in Europe, using sampled

company premium information, census demographics

and economics data, building square footage data, and

representative policy terms and conditions. These total

insured values and other variables are then aggregated

into 100 zones distributed along the U.S. Gulf and East

Coasts, as shown in Fig. 1. The latitudes and longitudes

represent roughly the geographical centers of the zones.

Again, for simplicity, we model the damage in a given

zone according to the wind experienced at the position

of the zone center. For the smaller zones, this may be

a good approximation; but for the larger zones, it yields

only a rough estimate. For each hurricane event, we use

a wind-damage function (described in the next sub-

section) to estimate the fractional loss of value in each

zone and multiply this by the total insured value of

property in that zone. This gives an estimate of the total

amount of damage in U.S dollars caused by each event in

each zone; the total insured damage from an event is

then the sum of this quantity over all zones. We assume

that our hypothetical company’s share of the property

value and damage is a fixed fraction of those of the entire

insured property portfolio. This assumption will over-

estimate damages for insurance companies whose insured

properties are weighted away from hurricane-prone re-

gions and underestimate it for companies more heavily

invested in hurricane regions.

c. Wind-damage function

Property damage from wind storms is observed to

increase quite rapidly with wind speed. On theoretical

grounds, one might expect damage to scale as the cube of

the wind speed, which is proportional to the total power

dissipated frictionally when wind blows over a rough

surface. But empirical studies relating wind to damage

suggest much higher power-law dependencies of damage

on wind (Pielke 2007). For example, Nordhaus (2010)

estimates that damage varies as the ninth power of wind

speed for wind damage in the United States. In reality,

most structures in the United Stsates are built to with-

stand frequently encountered winds; it is highly unlikely,

for example, that a wind of 20 kt would do any damage at

all. Thus, we consider a damage function that produces

positive values only for wind speeds in excess of a speci-

fied threshold (Emanuel 2011). On physical grounds, we

expect that damage should vary as the cube of the wind

speed over a threshold value. Finally, we require that the

fraction of the property damaged approach unity at very

high wind speeds and, in any event, we cannot allow it

to exceed unity. A plausible function that meets these

requirements is

f 5
y3

n

1 1 y3
n

, (1)

where f is the fraction of the property value lost and

yn [
MAX[(V 2 50 kts), 0]

60 kts
, (2)

with V as the wind speed in knots. This function is

plotted in Fig. 2. Half the property value is lost when the

FIG. 1. Centers of zones (black dots) used to estimate property

damage caused by tropical cyclones.
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wind speed reaches 110 kt. In reality, property damage

depends on much more than the peak wind speed ex-

perienced during a storm; for example, the direction of

the wind, its degree of gustiness, and the duration of

damaging winds all influence the amount of damage. But

again in the spirit of simplicity, we estimate aggregate

damage in each zone by the peak 1-min wind speed at

10 m altitude experienced at the geographical center of

the zone during the course of each event. For the purposes

of this exercise, we do not consider variability from one

region to the next in the susceptibility of structures to wind,

assuming that the same wind will do the same fractional

damage no matter where it occurs. While not realistic, we

do not expect such variability to have any significant in-

fluence on the main findings of the present work, which

compares damage done in quiet and active years.

d. Hypothetical property insurance business

Our hypothetical primary insurance business begins

with a fixed amount of capital. To keep things simple, we

assume that the only losses experienced by the company

are those owing to hurricanes, and that there is a con-

stant revenue stream that, over the 100-yr period and

averaged over the 1000-member ensemble, is such that

the company neither gains nor loses value. (In reality, an

insurance company would insure against losses other than

hurricanes, such as fire, but we assume that these are

random, small events that do not contribute appreciably

to the volatility of the company’s business; we essentially

assume that there is a separate revenue stream that bal-

ances these losses together with operating expenses. The

presence of any nonhurricane sources of volubility would

dilute the value of seasonal hurricane forecasts that we

examine here.) Any investment income is included in our

definition of the annual revenue. We do not include the

effects of inflation.

If the company’s net capital were to increase with

time, owing, for example, to its use of seasonal hurricane

forecasts, then it could use the increased capital in many

different ways. For example, it could be used to reduce

its reinsurance coverage, retaining greater potential los-

ses that it can cover with its increased capital. But here,

for simplicity, we assume that if, at the end of each year,

the company’s capital has increased above its starting

capital, then the excess capital is distributed as dividends

to its shareholders.

Owing to the comparatively rare instance of intense

hurricanes at a given location, there will be a degree of

volatility of the company’s value. A few large losses in

a row, for example, will decrease the company’s net

worth by a substantial margin, whereas a period of rel-

ative inactivity will lead to an increase in net worth. We

will suppose here that if the net worth drops below 30%

of its initial capital, the company will go out of business.

We regard this number as a lower bound, in keeping

with our strategy of erring on the side of high potential

utility of seasonal forecasts; in reality, marketplace and

regulatory pressures would likely force the insurer out

of business1 at levels somewhat higher than this. To

decrease such volatility, real companies purchase rein-

surance policies, which can take any of a large number of

forms. Here, we will simply suppose that the primary

insurer takes out excess-of-loss reinsurance that reim-

burses all losses over a specified cap in a given year; the

primary insurer retains all losses below the specified

cap.2 The primary insurer loses revenue by having to pay

a premium to its reinsurer but gains when the latter

covers losses in excess of the cap. We begin by designing

a base premium such that, over the 1000-member en-

semble of 100-yr integrations, the net worth of the

primary insurer remains constant over all retentions in

a scenario in which the reinsurance contract (including

the premium) is the same every year. This base premium

should be thought of as what the reinsurer would need to

charge, for each retention, to break even, assuming no

costs other than hurricane losses. In reality, the reinsurer

must cover a variety of other costs, including especially

the costs of dealing with the volatility of hurricane los-

ses. To account for this while adhering to the spirit of

simplicity, we assume here that the reinsurer’s premium

is twice the base premium. Figure 3 shows the annual

FIG. 2. Fraction of property value lost as a function of wind speed

using Eq. (1).

1 Notwithstanding that capital infusions from a parent company

or a buyout may save the company.
2 Most such policies also place a cap on the total amount that is

covered by a single event. For simplicity, we place no such cap here.
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premium paid to the reinsurer as a function of the

amount of risk retained by the primary insurer, while

Fig. 4 shows how the probability of ruin over 100 yr

varies with the premium paid by the primary insurer,

assuming that the primary insurer’s initial capital is $250

million. By design, the primary insurer will choose an

annual retention that optimizes its annual revenues

against the probability of ruin. Here, we assume that the

optimum point corresponds to a risk of ruin over 100 yr

of 12%, or roughly 0.1% each year. By ‘‘ruin,’’ we spe-

cifically mean an outcome that is unacceptable to

shareholders and/or regulators and would likely result in

at least a major reorganization, if not an outright shut-

tering of the firm. Lowering the risk of ruin would entail

a more conservative strategy (e.g., ceding more risk to

a reinsurer) that would result in lower short-term profits,

while increasing it would increase profitability but risk

lowering the firm’s rating.

e. Baseline operating strategy

We run a 1000-member ensemble of 100-yr time series

of Atlantic hurricanes and tally the losses and gains to

the primary insurer for each ensemble member resulting

from hurricane impacts on each of the 100 zones shown

in Fig. 1, using the fractional damage function given by

Eq. (1). In tallying the variables that control the primary

insurer’s performance, there are a few essential nondi-

mensional parameters. The first is the ratio of the initial

capital to the mean or median of the annual losses, which

measures the degree to which the company is at risk in

the absence of reinsurance. Another important number

is the ratio of the risk retained by the company (the cap

described above) to its initial capital. Mindful of these

important nondimensional numbers, we nevertheless

present the results in dollar amounts for illustrative

purposes. In particular, our hypothetical company is

taken to begin with $250 million in capital. Note that the

shape of the curve shown in Fig. 4 depends crucially on

the ratio of the initial capital to the median annual loss.

For the baseline scenario, we have the company retain

$30 million in losses for each hurricane event, for which

it pays its reinsurer an annual premium of $20,363,000

so as to maintain the 100-yr probability of ruin at 12%.

At the end of every year, the amount of capital (if any) in

excess of the starting capital of $250 million is paid out as

dividends to shareholders, resetting the capital to $250

million. No capital is added to the company if its year-

end capital is less than $250 million. In this control ex-

periment, the capital remaining after 100 yr, averaging

over the 1000-member ensemble, is $194 million, while

the ensemble-average dividend payout, accumulated over

100 yr, is $59 million. Although we have chosen to assume

that all the profitability of the hypothetical insurance firm

accrues to shareholders for the purposes of this paper, in

reality some fraction of any increase in profitability (e.g.,

from utilizing seasonal hurricane forecasts) would be used

to reduce premiums, thereby benefitting ratepayers as

well as shareholders (Kunreuther et al. 1995).

f. Using seasonal forecasts

Owing to state-imposed regulation, primary insurers

in the United States have relatively few degrees of free-

dom they can exercise from one year to the next. For

example, most states have regulations preventing pri-

mary insurers from cancelling policies without just cause,

so that insurers can only choose locations to insure when

writing new policies. Similarly, rates are strongly regu-

lated, so that insurers must ask state commissioners to

FIG. 3. Annual premium vs annual retention.
FIG. 4. Probability of ruin after 100 yr as a function of annual

premium.
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approve rate increases, and this, to the extent that it

happens at all, requires substantial lead time. Insurers can

elect not to renew policies when they are up for renewal,

but even this is regulated in some states. Even if in-

terannual climate variability had predictable spatial pat-

terns, it is unlikely that insurers would systematically

attempt to shift the geographic distributions of its policies

on an annual time scale.

One degree of freedom that insurers can exercise on

an annual basis is the choice of how much loss they are

prepared to retain in reinsurance contracts. They can,

for example, choose to retain more loss in a year when

they expect losses to be smaller. In practice, this degree

of freedom may also be limited by regulation and by the

need for the company to maintain a sufficiently high

rating. But here we will simply assume that the company

has complete freedom in choosing its retention from one

year to the next.

One strategy for making use of a seasonal forecast is

to retain a smaller loss cap in years when a high level of

hurricane activity is expected, and a higher loss cap in

years when smaller activity is predicted. We shall as-

sume for the time being that the reinsurer maintains

a constant pricing scheme of premium as a function of

retention, regardless of the seasonal hurricane forecast,

thus we give all the potential value of seasonal forecasts

to the primary insurer. (Future work will apply game

theory to the interaction between the primary insurer

and the reinsurer.)

To optimize the value of the seasonal forecasts, we

adjust the quiet and active season retentions so as to

maximize the profit accumulated over 100 yr, averaged

over the 1000-member ensemble, subject to the condi-

tion that the 100-yr risk of ruin always remains at 12%,

as in the control strategy. It transpires that the net profit

as a function of quiet- and active-year retentions has a

broad peak over a range of retention pairs, but the ab-

solute peak is achieved for a quiet-year retention of $119

million and an active-year retention of only $18 million.

For this combination, the capital remaining after 100 yr,

averaging over the 1000-member ensemble, is $229

million, and the ensemble-average dividend payout,

accumulated over 100 yr, is $340 million.

3. Results

Figure 5 shows the time history of the net worth of the

company for 10 of the 1000 realizations, in the control

experiment in which the company retains $30 million in

potential losses for each event each year. (For this re-

tention, the probability of going out of business before

100 yr is 12%.) The net value resembles a random walk

but with an asymmetry of slow gains because of a steady

revenue stream punctuated by large losses owing to rare

hurricane events. Clearly, two of the realizations show

the company going out of business before 100 yr. At the

opposite extreme, a few realizations are hardly affected

by storms over the entire 100-yr period. Recall that when

the capital exceeds $250 million, the excess is distributed

to shareholders and the company’s capital is reset to $250

million.

Figure 6 shows the probability density of the com-

pany’s net worth after 10, 20, 50, and 100 yr for the

control strategy, using all 1000 realizations, and com-

pares it to the strategy that optimally uses hypothetically

perfect seasonal forecasts of whether the large-scale

conditions favor an active or a quiet season. In this op-

timal strategy, the risk retained by the primary insurer is

reduced to $18 million in active seasons and increased to

$119 million in quiet seasons, with the premium paid to

the reinsurer adjusted accordingly. Clearly, the optimal

strategy greatly increases the dividends paid to share-

holders while holding constant the risk of ruin, and the

difference is clearly discernable even after only 10 yr.

To examine the effect of forecast imperfection, we

assume that a randomly selected 40 of the 100 forecasts

are wrong (e.g., an active year is forecast and a quiet

year ensues). Note that 50 wrong forecasts corresponds

to zero forecast skill in this case; assuming that 40

forecasts are wrong is broadly consistent with the cur-

rent marginal skill seen in seasonal hurricane forecasts

in the Atlantic region (Owens and Landsea 2003). We

reoptimize the primary insurer’s retention strategy so

as to hold constant the 100-yr risk of ruin . The opti-

mum strategy in this case retains $50 million in quiet

FIG. 5. Ten realizations of the net worth of the primary insurer

over 100 yr, given an annual retention of $30 million and a starting

capital of $250 million. Thick horizontal line represents the mini-

mum capital for the company to stay in business. Two of these 10

realizations fail before 100 yr.
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years and $28 million in active years—a much smaller

spread than the optimum strategy yields when forecasts

are perfect. For this combination, the capital remaining

after 100 yr, averaging over the 1000-member ensem-

ble, is $212 million, and the ensemble-average dividend

payout, accumulated over 100 yr, is $113 million. The

probability distribution of revenue after 50 yr is shown

in Fig. 7 and compared to the control and perfect

forecast results. The effect of forecast imperfection is

clearly evident, with the probability distribution of

accumulated revenue using flawed forecasts much

closer to the control strategy distribution than to the

distribution when the strategy is optimized to take

advantage of perfect forecasts.

4. Discussion

In approaching the problem of the potential utility of

seasonal hurricane forecasts, we have deliberately erred

on the side of maximum potential utility. We have chosen

an artificially large climate signal—the difference be-

tween one very active and one very inactive Atlantic

hurricane season—and we have assumed that the large-

scale climate, insofar as it affects hurricanes, has some

degree of predictability at the time a reinsurance contract

is negotiated (usually the prior winter).

Owing to the large cost of reinsurance, reflecting the

high cost of dealing with the large volatility of hurricane

losses, primary insurers can potentially save a great deal

of reinsurance premium in quiet years while being able

to afford more protection in active years. The net

savings are large enough that, in the framework of a

1000-member ensemble, there is a high probability of

realizing gains from perfect seasonal forecasts after only

10 yr or so, provided perfect forecasts are available. Of

course, in reality, reinsurers would quickly adjust their

premium rates to take advantage of such seasonal

forecasts, whose benefits would consequently become

shared between the primary insurer and the reinsurer.

Moreover, there are other options available to primary

insurers, including tiered pricing schemes in which the

premium paid is a function not only of retention but

varies with the ‘‘layers’’ of risk in excess of the retention.

Current seasonal forecasts have only marginal skill

(Owens and Landsea 2003), and when this is accounted

for, there is correspondingly less potential benefit from

the forecasts.

The overall results are summarized in Table 1, which

shows the ensemble mean revenue at various times for

each of the three experimental conditions examined.

Perfect forecasts have potential value to the primary

insurer even after a short time, while the value of more

realistically flawed forecasts only becomes evident after

somewhat more than a decade.

5. Summary

We here explored the potential economic value to

a hypothetical property insurance firm of seasonal

FIG. 6. Probability density of accumulated revenue after 10, 20, 50,

and 100 yr, based on 1000 realizations, for the control strategy

(solid) that retains $30 million in losses each year and the optimal

strategy for using seasonal forecasts (dashed) that increase retention

to $119 million in quiet years and decrease it to $18 million in active

years. Shades of gray correspond to accumulated dividend periods as

labeled in years. Note that the abscissa is plotted on a log scale.

FIG. 7. Probability density of accumulated revenue after 50 yr

when 40% of the forecasts are wrong (dark gray) compared to the

control strategy (black) and the optimal strategy when the forecasts

are perfect (light gray). For the flawed forecasts, $50 million in

losses are retained by the primary insurer when the forecast is for

a quiet year, while $28 million are retained when the forecast is for

an active year. Note that in this case, the abscissa is linear in ac-

cumulated revenue.
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predictions of Atlantic hurricane activity. Aiming for

maximum simplicity, we pretended that Atlantic hurri-

cane seasons are divided into just two sets: active and

quiet seasons. We represented quiet years by the large-

scale conditions present during the inactive hurricane

season of 1991 and active years by the conditions present

in 2003. We also assumed that the primary insurer had,

at the time it negotiated reinsurance contracts, access to

forecasts of whether the coming season will be active or

quiet. We used a synthetic hurricane generator to pro-

duce event sets appropriate to the quiet and active re-

gimes and created 1000 artificial time series of Atlantic

hurricanes, each with a length of 100 yr and involving

both quiet and active years. Some of the hurricanes

affected properties contained in a portfolio insured by

a hypothetical insurance company, and a damage func-

tion was used to predict how much damage each storm

would do to these properties. We used the resulting time

series of hurricane damage to compare different possi-

ble strategies that the hypothetical primary insurer

might take. In the control strategy, the firm takes out

identical excess-of-loss reinsurance contracts each year.

This strategy was compared to an optimal strategy in

which the primary insurer negotiates different re-

tentions in different years (and with correspondingly

different annual premiums) according to whether the

upcoming season will be active or quiet, maintaining

a constant level of overall risk to the company. In one

case, we assumed perfect forecasts and in another,

more realistic scenario, we assumed only marginally

skillful seasonal forecasts. The relative success of this

strategy was measured by probability distributions of

the company’s net profit.

When the seasonal forecasts are perfect, there is

a clear advantage to using them to adjust the amount of

risk retained by the primary insurer, with the advantage

becoming apparent after only about 10 yr. Thus, perfect

seasonal forecasts would have a decided utility in the

property insurance sector under the idealized conditions

assumed here. It is less clear whether the insurance

sector can make profitable use of seasonal forecasts that

are far from perfect, as is currently the case. Taken

together, these results suggest that improved seasonal

forecasts of Atlantic hurricane activity could greatly

increase their economic value, at least to the insurance

industry.

Although we use profitability as a simple measure of

forecast influence here, in reality market forces would at

least partially substitute lower premiums for increased

profits, and reinsurers would respond to fluctuating

demand by adjusting their pricing accordingly. These

effects will be the subject of future work on this problem.
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TABLE 1. Ensemble mean revenue (in millions of dollars) after

the indicated number of years for the control, flawed forecast, and

perfect forecast experiments. In each case, the 100-yr probability of

ruin is held at 12%.

Experimental

conditions

10-yr

revenue

20-yr

revenue

50-yr

revenue

100-yr

revenue

Control 18.2 25.9 39.2 59.3

40% wrong forecasts 19.4 37.2 63.1 113.1

Perfect forecasts 33.9 59.1 136.2 340.1
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