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ABSTRACT

The asymmetric dynamics of potential vorticity mixing in the hurricane inner core are further advanced by

examining the end states that result from the unforced evolution of hurricane-like vorticity rings in a non-

divergent barotropic model. The results from a sequence of 170 numerical simulations are summarized. The

sequence covers a two-dimensional parameter space, with the first parameter defining the hollowness of the

vortex (i.e., the ratio of eye to inner-core relative vorticity) and the second parameter defining the thickness

of the ring (i.e., the ratio of the inner and outer radii of the ring). In approximately one-half of the cases, the

ring becomes barotropically unstable, and there ensues a vigorous vorticity mixing episode between the eye

and eyewall. The output of the barotropic model is used to (i) verify that the nonlinear model approximately

replicates the linear theory of the fastest-growing azimuthal mode in the early phase of the evolution, and

(ii) characterize the end states (defined at t 5 48 h) that result from the nonlinear chaotic vorticity advection

and mixing. It is found that the linear stability theory is a good guide to the fastest-growing exponential mode

in the numerical model. Two additional features are observed in the numerical model results. The first is an

azimuthal wavenumber-2 deformation of the vorticity ring that occurs for moderately thick, nearly filled

rings. The second is an algebraically growing wavenumber-1 instability (not present in the linear theory

because of the assumed solution) that is observed as a wobbling eye (or the trochoidal oscillation for a

moving vortex) for thick rings that are stable to all exponentially growing instabilities. Most end states are

found to be monopoles. For very hollow and thin rings, persistent mesovortices may exist for more than 15 h

before merging to a monopole. For thicker rings, the relaxation to a monopole takes longer (between 48 and

72 h). For moderately thick rings with nearly filled cores, the most likely end state is an elliptical eyewall. In

this nondivergent barotropic context, both the minimum central pressure and maximum tangential velocity

simultaneously decrease over 48 h during all vorticity mixing events.

1. Introduction

Diabatic heating in the core of a tropical storm tends

to produce a tower of potential vorticity (PV) that extends

into the upper troposphere (Schubert and Alworth 1987).

As the storm strengthens into a hurricane and an eye

forms, diabatic heating becomes confined to the eyewall

region and this PV tower becomes hollow. This hollow

tower structure (Möller and Smith 1994) has been re-

cently simulated in a high-resolution full-physics model

by Yau et al. (2004). The sign reversal of the radial

gradient of PV sets the stage for dynamic instability.

If the hollow tower is thin enough, it may break down,

causing potential vorticity to be mixed into the eye.

During these PV mixing episodes, polygonal eyewalls,

asymmetric eye contraction, and eye mesovortices have

been documented in numerical models, laboratory ex-

periments, and observations (Schubert et al. 1999, here-

after SM99; Kossin and Schubert 2001; Montgomery
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et al. 2002; Kossin et al. 2002; Kossin and Schubert 2004).

Eye mesovortices are sometimes visible in radar images

or even in satellite images as vortical cloud swirls in the

eye. As an example of mesovortices and inner-core

vorticity mixing, a radar reflectivity image of Hurricane

Dolly (2008) is shown in Fig. 1. Shortly after the time of

this radar image, as Dolly was approaching the Texas

coast, the National Hurricane Center best-track inten-

sity estimate was 80 kt (41.2 m s21) and 976 mb (valid at

1200 UTC 23 July 2008). Note the wavenumber-4 pat-

tern in the eyewall and the appearance of both straight

line segments and mesovortices. Because of the high

correlation of radar reflectivity and vorticity (e.g., Fig.

1 of Kossin et al. 2000), it can reasonably be concluded

that the radar image of Dolly has captured the barotropic

instability of a thin vorticity ring. In this regard it should

be noted that although the Rayleigh necessary condition

for dynamic instability is satisfied for all rings, not all rings

are unstable. In particular, thick rings, which may be

analogous to annular hurricanes (Knaff et al. 2003), are

usually stable to exponentially growing perturbations.

These PV mixing episodes are thought to be an im-

portant internal mechanism governing hurricane inten-

sity change on time scales of 1 to 24 h. Mixing of PV

from the eyewall into the eye changes the tangential

wind profile inside the radius of maximum wind (RMW)

from U-shaped (›2y/›r2 . 0) to Rankine-like (›2y/›r2 ’

0). Although it might be expected that the maximum

tangential velocity would decrease as the PV is radially

broadened, the mixing of PV into the eye causes the y2/r

term in the gradient wind equation to become very

large, which supports a decrease in central pressure.

This dual nature of PV mixing has recently been studied

using a forced barotropic model (Rozoff et al. 2009). In

addition, eye mesovortices that sometimes form are

thought to be important factors governing intensity

FIG. 1. Base reflectivity (left, dBZ color scale) from the Brownsville, TX, National Weather Service radar at 1052 UTC 23 Jul

2008. At this time Hurricane Dolly was approaching the coast and asymmetries, including eye mesovortices and straight line

segments, were observed in the inner core.
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change because they may serve as efficient transporters

of high-moist-entropy air at low levels of the eye to the

eyewall (Persing and Montgomery 2003; Montgomery

et al. 2006; Cram et al. 2007), allowing the hurricane to

exceed its axisymmetric energetically based maximum

potential intensity (Emanuel 1986, 1988).

To obtain insight into the basic dynamics of this

problem, SM99 performed a linear stability analysis for

hurricane-like rings of enhanced vorticity. By defining a

ring thickness parameter (ratio of the inner and outer

radii) and a ring hollowness parameter (ratio of the eye

to the inner-core vorticity), they were able to express

the exponential growth rates of disturbances of various

azimuthal wavenumbers in this thickness–hollowness

space. In the aggregate, they found that the fastest

growth rates existed for thin, hollow rings, while slower

growth rates existed for thick, filled rings. Very thick

rings were found to be stable to exponentially growing

perturbations of all azimuthal wavenumbers. The non-

linear evolution of a prototypical hurricane-like vortic-

ity ring was examined to study the details of a vorticity

mixing episode. In the early phase, a polygonal eyewall

(multiple straight line segments) was observed; later, as

high PV fluid was mixed from the eyewall to the eye,

asymmetric eye contraction occurred. This confirmed

that polygonal eyewalls can be attributed solely to vor-

ticity dynamics rather than to transient inertia–gravity

wave interference patterns (Lewis and Hawkins 1982).

After 24 h, the initial vorticity field was essentially re-

distributed into a nearly symmetric monopole. In gen-

eral, it is not possible to accurately predict such end states

analytically (i.e., without numerically simulating the non-

linear advection); however, the use of vortex minimum

enstrophy and maximum entropy approaches have

yielded some useful insight (SM99, sections 5 and 6).

In the present work, we examine the complete life

cycles of 170 different vorticity rings in a nondivergent

barotropic model framework. The model experiments

sample the two-dimensional parameter space using 10

different values of hollowness (hollow to nearly filled)

and 17 values of ring thickness (thick to thin). These

rings are indicative of vorticity structures present in a

wide spectrum of real hurricanes. In the initial linear

wave growth phase, the nondivergent barotropic model

results are compared to the SM99 linear theory for the

most unstable azimuthal mode. The unforced evolution

is then allowed to progress into its fully nonlinear phase.

The end states (defined at t 5 48 h) are assessed and

characterized for each ring. Azimuthal mean diagnos-

tics are also presented showing the evolution of the

radial pressure and tangential wind profiles for each ring

to assess the relationship between PV mixing events

and hurricane intensity change. Provided that the basic

structure of the vorticity field can be ascertained, these

results can be used as a guide for understanding vor-

ticity redistribution in real hurricanes.

The outline of this paper is as follows. In section 2, the

linear stability analysis of SM99 is briefly reviewed. The

pseudospectral barotropic model and initial conditions

are described in section 3. To examine the utility of the

numerical model results, observations of PV mixing in

hurricanes are reviewed in section 4. A comparison of

the fastest-growing azimuthal mode observed in the

numerical model to the linear stability analysis is pro-

vided in section 5. The end states of the unstable vor-

tices are characterized and discussed in section 6. A

discussion of the relationship between PV mixing and

hurricane intensity change is presented in section 7.

Finally, a summary of the results is given in section 8.

2. Review of linear stability analysis

It is well known that the sign reversal in the radial vor-

ticity gradient in hurricanes satisfies the Rayleigh neces-

sary condition for barotropic instability.1 One can view

the instability as originating from the interaction of two

counterpropagating vortex Rossby (or PV) waves (Guinn

and Schubert 1993; Montgomery and Kallenbach 1997). A

Rossby wave on the inner edge of the annulus will pro-

grade relative to the mean flow, and a Rossby wave on the

outer edge will retrograde relative to the mean flow. If

these waves phase-lock (i.e., have the same angular ve-

locity), it is possible for the whole wave pattern to amplify.

A linear stability analysis of initially hollow vorticity

structures was performed by SM99 (their section 2). A

brief review of that work is presented here. First, the

discrete vorticity model is defined as three separate re-

gions: eye, eyewall, and environment (see also Michalke

and Timme 1967; Vladimirov and Tarasov 1980; Terwey

and Montgomery 2002). The corresponding basic state

vorticity is defined as

�zðrÞ5
ja 1 jb if 0 # r , ra ðeyeÞ
jb if ra , r , rb ðeyewallÞ,
0 if rb , r , ‘ ðfar-fieldÞ

8<
: (1)

where the constants ja and jb are the vorticity jumps at

the radii ra and rb. Small-amplitude perturbations to this

basic state vorticity are governed by the linearized

nondivergent barotropic vorticity equation

1 In real hurricanes, where vertical shear and baroclinicity is

nontrivial, we expect the instability to be a combined barotropic–

baroclinic one. See Montgomery and Shapiro (1995) for a discus-

sion of the Charney–Stern and Fjortoft theorems applicable to

baroclinic vortices.
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›

›t
1 �v

›

›f

� �
=2c9�

›c9

r›f

d�z

dr
5 0, (2)

where �vðrÞ 5 �y/r is the basic state angular velocity,

u9 5 �›c9/r›f is the perturbation radial velocity, y9 5

›c9/›r is the perturbation azimuthal velocity, and z9 5

=2c9 is the perturbation relative vorticity. By seeking

solutions of the form c 0ðr, f, tÞ 5 ĉðrÞeiðmf�ntÞ (where

m is the azimuthal wavenumber and n is the complex

frequency), (2) reduces to an ordinary differential equa-

tion for the radial structure function ĉðrÞ. Using the ĉðrÞ

solution in conjunction with appropriate boundary con-

ditions, a mathematical description of the traveling vor-

tex Rossby waves at the two vorticity jumps is obtained,

along with their mutual interaction. The eigenvalue re-

lation can be written in a physically revealing form by

introducing two vortex parameters, d 5 ra/rb and g 5

(ja 1 jb)/zay (where zay 5 jad2 1 jb is the average vor-

ticity over the region 0 # r # rb). Then, the dimensionless

complex frequency n/zay can be expressed solely in terms

of the azimuthal wavenumber m, the ring thickness pa-

rameter d, and the ring hollowness parameter g as

n

zav

5
1

4
m 1 ðm� 1Þg

"

6 ½m� ðm� 1Þ�g � 2
1� gd2

1� d2

� �� �2
 

1 4
1� gd2

1� d2

� �
g �

1� gd2

1� d2

� �
d2m

�1
2

#
. (3)

Exponentially growing or decaying modes occur when

the imaginary part of the frequency ni is nonzero (i.e.,

when the term in the square root is negative). Isolines

of the dimensionless growth rate ni/zav can then be

drawn in the (d, g)-parameter space for each azimuthal

wavenumber m. This set of diagrams can be collapsed

into a single summary diagram by choosing the most

rapidly growing wave for each point in the (d, g)-

parameter space. This summary diagram is shown in

Fig. 2. As an example of interpreting this diagram, con-

sider a vortex defined by (d, g) 5 (0.7, 0.3). According to

Fig. 2, the most unstable mode is m 5 4; this mode grows

at the rate ni/zav ’ 0.15. For a hurricane-like vorticity of

FIG. 2. Isolines of the maximum dimensionless growth rate ni/zav for azimuthal wave-

numbers m 5 3, 4, . . . , 12. Contours range from 0.1 to 2.7 (lower right), with an interval of 0.1.

The shaded regions indicate the wavenumber of the maximum growth rate at each d (abscissa)

and g (ordinate) point.
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zav 5 2.0 3 1023 s21, this corresponds to an e-folding

time of 0.93 h.

The rings considered in SM99 were stable to expo-

nentially growing modes of wavenumber m 5 1 and m 5

2. As shown by Terwey and Montgomery (2002), there

does exist an exponentially growing m 5 2 mode in the

discrete model; however, a necessary condition for it is

that jjbj , jjaj (the eye vorticity is negative). This mode

is absent from Fig. 2 because only g $ 0 is considered. In

the analogous continuous model (6) with smooth tran-

sitions instead of vorticity jumps, exponentially growing

m 5 2 modes are also possible (SM99; Reasor et al. 2000).

Both the discrete and continuous models are stable

to exponentially growing wavenumber m 5 1 modes

(Reznik and Dewar 1994). However, an algebraic m 5

1 instability that grows as t1/2 (Smith and Rosenbluth

1990) exists. The only requirement for this instability

is a local maximum in angular velocity (Nolan and

Montgomery 2000), which occurs for every vortex con-

sidered in SM99 and here. However (as will be shown),

the m 5 1 algebraically growing mode is only visible in

rings that are stable to all the exponentially growing

modes (thick and filled rings). The m 5 1 instability is

visible as a growing wobble of the eye (Nolan et al. 2001).

The SM99 linear analysis was generalized by Nolan and

Montgomery (2002) to three-dimensional idealized hur-

ricane-like vortices. Broadly, they found that the unstable

modes were close analogs of their barotropic counterparts.

3. Pseudospectral model experiments

A nondivergent barotropic model is used for all the

simulations. The model is based on one prognostic equa-

tion for the relative vorticity and a diagnostic equation

for the streamfunction, from which the winds are ob-

tained (u 5 2›c/›y and y 5 ›c/›x); that is,

›z

›t
1

›ðc,zÞ

›ðx,yÞ
5 n =2z, (4)

z 5 =2c, (5)

where n is the kinematic viscosity. The initial condition

consists of an axisymmetric vorticity ring defined by

�zðr, 0Þ5

z1 0 # r # r1

z1S
r � r1

r2 � r1

� �
1 z2S

r2 � r

r2 � r1

� �
r1 # r # r2

z2 r2 # r # r3,

z2S
r � r3

r4 � r3

� �
1 z3S

r4 � r

r4 � r3

� �
r3 # r # r4

z3 r4 # r , ‘

8>>>>>>><
>>>>>>>:

(6)

where z1, z2, z3, r1, r2, r3, and r4 are constants and S(s) 5

1 2 3s2 1 2s3 is a cubic Hermite shape function that

provides smooth transition zones. The eyewall is de-

fined as the region between r2 and r3, and the transition

zones are defined as the regions between r1 and r2, and

r3 and r4. To relate the smooth continuous model (6) to

the discrete model (1), the midpoints of the smooth

transition zones are used to compute the thickness pa-

rameter, so that d 5 (r1 1 r2) / (r3 1 r4).

To initiate the instability process, a broadband per-

turbation (impulse) was added to the basic state vor-

ticity (6) of the form

z9ðr, f, 0Þ5 zamp �
12

m51
cosðmf 1 fmÞ

3

0 0 # r # r1,

S
r2 � r

r2 � r1

� �
r1 # r # r2,

1 r2 # r # r3,

S
r � r3

r4 � r3

� �
r3 # r # r4,

0 r4 # r , ‘,

8>>>>>>>>><
>>>>>>>>>:

(7)

where zamp 5 1.0 3 1025 s21 is the amplitude and fm is

the phase of azimuthal wavenumber m. For this set of

experiments, the phase angles fm were chosen to be

random numbers in the range 0 # fm # 2p. In real

hurricanes, the impulse is expected to develop from a

wide spectrum of background convective motions.

A sequence of 170 numerical experiments was con-

ducted using a pseudospectral discretization of the model.

The experiments were designed to cover the thickness–

hollowness (d, g) parameter space described above at

regular intervals. The four radii (r1, r2, r3, r4) were chosen

to create 17 distinct values of the thickness parameter d 5

(r1 1 r2) / (r3 1 r4); that is, d 5 (0.05, 0.10, . . . , 0.85). This

was accomplished by first setting r3 and r4 constant at 38

and 42 km, respectively. Then, r1 and r2 were varied under

the constraint that r2 2 r1 5 4 km to produce the desired

values of d. For example, r1 5 0 km and r2 5 4 km de-

fined the d 5 0.05 point, r1 5 2 km and r2 5 6 km defined

the d 5 0.10 point, and so forth. The thinnest ring was

defined by r1 5 32 km and r2 5 36 km, corresponding

to d 5 0.85 and resulting in a 6-km-thick eyewall. The g

points were defined as follows: First, the inner-core

average vorticity was set to zav 5 2.0 3 1023 (this value

corresponds to a hurricane with maximum sustained

winds of approximately 40 m s21 for the radii chosen).

Then, the eye vorticity z1 was incremented to produce

10 values of g 5 z1/zav; that is, g 5 (0.00, 0.10, . . . , 0.90).

The eyewall vorticity z2 was then calculated by z2 5 zav

(1 2 gd2) / (1 2 d2). In each experiment the environ-

mental vorticity z3 was set so that the domain average

vorticity would vanish.
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The numerical solution was obtained on a 600 km 3

600 km doubly periodic domain using 512 3 512 equally

spaced points. One 48-h simulation was conducted for

each of the 170 points in the (d, g)-parameter space.

After dealiasing of the quadratic advection term in (4),

the number of retained Fourier modes yielded an ef-

fective resolution of 3.52 km. A standard fourth-order

Runge–Kutta time scheme was used with a time step of

10 s. The diffusion coefficient on the right-hand side of

(4) was set to n 5 25 m2 s21, resulting in a (1/e) damping

time of 3.5 h for the highest retained wavenumbers. The

same random impulse (7) was added to the basic state

axisymmetric vorticity field in the eyewall region for

each experiment.

The initial conditions of the numerical model exper-

iments are shown in Fig. 3. In the left panels, the mean

relative vorticity, tangential velocity, and pressure anom-

aly are shown for the [g 5 0.0, d 5 0.00, 0.05, . . . , 0.85]

rings. This illustrates how varying the ring thickness

affects the three curves while holding the hollowness

fixed. Similarly, the initial conditions for the [g 5 0.0,

0.1, . . . , 0.9, d 5 0.75] rings are shown in the right panels.

FIG. 3. Basic state initial condition of various rings. Azimuthal mean relative vorticity, azimuthal velocity, and

pressure are shown for (left) g 5 0.0 and d 5 0.00, 0.05, . . . , 0.85 and (right) g 5 0.0, 0.1, . . . , 0.9 and d 5 0.75. On the

left, thicker lines indicate increasing d (rings become thinner); on the right, thicker lines indicate increasing g (rings

become more filled).
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This illustrates how the three curves change as the

hollowness parameter g is varied while holding the

thickness parameter d fixed. In the left panel, thicker

curves represent thinner rings; in the right panel, thicker

curves represent more filled rings. Note that in each case

only the inner-core profiles (r , 42 km) are changing

and that the maximum tangential velocity is always the

same (approximately 40 m s21). The pressure fields,

displayed in the bottom panels of Fig. 3, were obtained

by solving the nonlinear balance equation

1

r
=2p 5 f =2c� 2

›2c

›x›y

� �2

�
›2c

›x2

›2c

›y2

" #
, (8)

using f 5 5 3 1025s21 and r 5 1.13 kg m23. According

to (8), in the nondivergent barotropic model the pres-

sure immediately adjusts to the evolving wind field. In

the real atmosphere and in primitive equation models,

the adjustment may be accompanied by inertia–gravity

wave emission, which is obviously nonexistent in the

nondivergent barotropic model framework.

Two integral properties associated with (4) and (5) on

a closed domain are the kinetic energy and enstrophy

relations

dE

dt
5 �2nZ and (9)

dZ

dt
5 �2nP, (10)

where E 5
Ð Ð

1
2=c � =c dx dy is the kinetic energy, Z 5Ð Ð

1
2 z2dx dy is the enstrophy, and P5

Ð Ð
1
2 =z � =z dx dy is

the palinstrophy. In the absence of diffusion, both ki-

netic energy and enstrophy are conserved. However,

diffusion is necessary to damp the enstrophy cascade to

high wavenumbers in a finite-resolution model. During

vorticity mixing events P becomes very large, causing Z

to decrease. As Z becomes smaller, E decreases at a

slower rate. Thus, enstrophy is selectively decayed over

energy.

4. Observations of vorticity mixing

Observations of the intricate details of inner-core

vorticity mixing in hurricanes have been sparse. Dense

spatial and temporal measurements of the horizontal

velocity are necessary. As a result, most insight into

inner-core vorticity mixing has been obtained through

diagnostics of the output of numerical model simula-

tions. The most complete observational study of inter-

nal vorticity mixing in hurricanes is Kossin and Eastin

(2001). Using radial flight leg data from a number of

hurricanes, they found two distinct regimes of the ki-

nematic and thermodynamic structure of the hurricane

eye and eyewall. The first regime was characterized

by an annular radial profile of relative vorticity with a

maximum in the eyewall region, whereas the second

regime was marked by a nearly monotonic profile with a

maximum in the eye. These two regimes are illustrated

in Fig. 4. They showed that typically there is a transition

from the first regime to the second regime on a time

scale of 12–24 h. Before the transition, the eye is dry;

after the transition, the eye becomes moister at low

levels.

To see how these observations fit into our two-

dimensional parameter space, we now estimate the values

of d and g implied by Fig. 4. We first assume axisym-

metry and look at the plot with respect to the storm

center rather with respect to the radius of maximum

wind. For regime 1 (solid curve), ra ’ 13 km and rb ’

20 km, yielding d 5 ra/rb 5 0.65. To determine g,

the average inner-core and eye vorticity (zav and ja 1 jb

respectively) must be obtained. In the inner core (r ,

RMW), zav ’ 50 3 1024 s21 and ja 1 jb 5 30 3 1024 s21.

Using these values, g 5 (ja 1 jb)/jav ’ 0.6. Summa-

rizing, the inner-core vorticity profile of Hurricane

Diana (1984) in regime 1 at this time can be charac-

terized by (d, g) ’ (0.65, 0.60). As will be shown in

the next sections, dynamic instability of such a ring in

a nondivergent barotropic model would support a

wavenumber-5 breakdown and slow mixing into a

monopole. Note that at a later time, Diana has an ap-

proximately monopolar vorticity radial profile (regime 2).

Note also that the peak tangential wind decreases in the

transition from regime 1 to regime 2, which will also be

shown to occur in the nondivergent barotropic model

(section 7).

FIG. 4. Averaged relative vorticity z and tangential velocity y

radial profiles at 850 mb in Hurricane Diana (1984). Plots are

shown with respect to the radius of maximum wind. Reproduced

from Kossin and Eastin (2001).
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5. Comparison of the fastest-growing azimuthal
mode

The fastest-growing mode at each (d, g) point was

determined from the output of the pseudospectral model

and compared to the linear stability analysis. Because

the initial broadband perturbation, given in (7), assigns

the same amplitude to wavenumbers 1–12, the initial

instability that emerges in the numerical model is the

fastest-growing mode (largest dimensionless growth

rate). The mode with the maximum dimensionless

growth rate is shown in Fig. 5 at each of the discrete (d,

g) points for both (top) the exact linear solution and

(bottom) the observed output from the pseudospectral

model. In the limit of very fine resolution in (d, g) space,

the top panel of Fig. 5 would reduce to the shaded re-

gions of Fig. 2. However, the fastest-growing mode is

shown at the coarser (d, g) points in Fig. 5 to allow for a

direct comparison with the numerical model (bottom

panel). It is clear that when d , 0.5 the rings are usually

stable to exponentially growing modes. Thicker rings

are found to be more prone to lower wavenumber

growth, whereas thinner rings are more prone to higher

wavenumber growth. As the rings become more filled,

there is a tendency for the disturbance instability to be

at a higher wavenumber.

In comparing the numerical results of the pseudo-

spectral model to the linear results of SM99 (Fig. 5, top

and bottom), it is found that the SM99 linear stability

analysis is a good guide to the nonlinear model behavior

in the early stages of the evolution. The (d, g) structure

of the most unstable wavenumber is similar for W3,

W4, . . . , W9. There are two main differences. The first

and most obvious is the W1 and W2 features observed

in the numerical model that are not present in the linear

stability analysis. The W1 feature is the algebraically

FIG. 5. (top) Fastest-growing wavenumber m (Wm) instability at the discrete d (abscissa) and

g (ordinate) points using the linear stability analysis of SM99; (bottom) the observed values

from the pseudospectral model. In the top, the ‘‘S’’ denotes that the vortex was stable to

exponentially growing perturbations of all azimuthal wavenumbers. The ‘‘U’’ in the bottom

panel signifies that the initial wavenumber of the instability was ‘‘undetermined’’ (i.e., it could

not be easily determined by visual inspection of the model output).
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growing instability that is not present in the linear sta-

bility analysis because of the assumed form of solution.

The W2 feature is not present in the linear stability

analysis because it is nonexistent in the discrete three-

region model with g . 0. The analogous continuous

three-region model, on the other hand, does support this

instability. It is not clear whether the W2 pattern is a

result of an exponential instability (Nolan and Farrell

1999; Reasor et al. 2000), a side effect of the large area

of negative vorticity, or is a by-product of nonlinear

breakdown of the vorticity ring. In some of these cases,

the fastest-growing mode appears to be at a higher

wavenumber, but then either a secondary instability or

nonlinear interactions cause it to slowly evolve into an

ellipse. The second difference is that for a given ring

thickness in the unstable regime, the numerical model

tends to produce a slightly higher wavenumber than ex-

pected from linear theory. As an example of this, at the

(d, g) 5 (0.60, 0.30) point the fastest-growing mode in

the numerical model is wavenumber m5 4, whereas the

linear stability analysis predicts the fastest-growing mode

to be wavenumber m53. This difference is probably due

to the inclusion of the 4-km-thick transition zones be-

tween the eye and eyewall and between the eyewall and

environment in the numerical simulations. These transi-

tion zones were necessary to minimize the Gibbs phe-

nomena in the pseudospectral model. The width was

chosen to be as small as possible considering the model

horizontal resolution, so the continuous profiles are very

similar to the discrete profiles. Although the average

eyewall vorticity in each case is the same, these transition

zones effectively make the region of peak vorticity in the

experimental rings 4 km thinner than the linear theory

rings. To illustrate this, take the following example. The

(d 5 0.70, g) points correspond to rings with r1 5 26 km,

r2 5 30 km, r3 5 38 km, and r4 5 42 km that are filled to

various degrees. The same d value would yield jump radii

(ra and rb) from the linear theory of ra 5 28 km and rb 5

40 km. Thus, for this set of d values, the numerical model

sees a peak vorticity region (minus the smooth transi-

tions) that is r3 2 r2 5 8 km thick, whereas in the linear

stability analysis the region would be rb 2 ra 5 12 km

thick. This is the primary reason that the pseudospectral

model produces a higher wavenumber instability for a

given d value, and it is noticeably more pronounced for

thicker rings (essentially, the top and bottom panels of

Fig. 5 cannot be viewed exactly as a one-to-one com-

parison for the d points).

Other factors that may contribute weakly to the ob-

served differences are the model horizontal resolution,

diffusion (not present in the inviscid vortex used in the

linear stability analysis), and periodic boundary condi-

tions. The horizontal resolution (3.52 km) is a little

coarse to resolve the early disturbance growth of the

thinnest rings (d 5 0.85) but should be sufficient for all

other rings. The inclusion of explicit diffusion (25 m2 s21)

in the numerical model may have some effect on the

initial wavenumber instability, but it is likely to be mi-

nor because the (1/e) damping time is 3.5 h for the

smallest resolvable scales. Finally, it is possible that the

periodicity that exists on a square domain could induce

a nonphysical m 5 4 mode, which would tend to broaden

the areal extent of the W4 region in (d, g) space as

compared to theory. However, examining Fig. 4, this

does not appear to occur. Hence, the domain size of

600 km 3 600 km is large enough that the periodic

boundary conditions do not appear to influence the so-

lution to any appreciable degree. Additionally, the wide

spectrum of the initial perturbations does not favor the

growth of any particular mode.

6. End states after nonlinear mixing

The end states for each of the 170 experiments were

determined. Generally, the end states were defined as

the stable vorticity structure that existed at t 5 48 h;

however, in some cases additional information during

the life cycle was included. The purpose of character-

izing these end states is to provide a guide for assessing

the most probable vorticity redistribution in the short

term (less than 48 h), given the known axisymmetric

characteristics of the initial vorticity ring.

The list of end state classifications is shown in Table 1.

The monopole (MP) classification denotes that at t 5 48 h

an approximately axisymmetric, monotonically decreas-

ing vorticity structure has been established. The slow

TABLE 1. End state definitions.

Identifier Name Description

TO Trochoidal oscillation Trochoidal oscillation due to the m 5 1 instability

MP Monopole Monotonically decreasing vorticity from center

SP Slow monopole Same as monopole but takes longer (48 h # t # 72 h)

MV Mesovortices Two or more mesovortices exist for Dt $ 15 h

EE Elliptical eyewall Elliptically shaped eyewall

PE Polygonal eyewall Polygonal eyewall with straight line segments
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monopole (SP) classification denotes that at t 5 48 h a

monopole did not yet exist, but the trend was such that if

the model were run longer (in most cases, less than t 5

72 h) a monopole would form. In these cases, the dis-

turbance exponential growth rates are smaller (see Fig.

2) and therefore the model was not run long enough to

capture the full axisymmetrization process. The meso-

vortices (MV) classification denotes that two or more

local vorticity centers persisted for at least 15 h during

the unforced evolution of the ring. With the exception

of the (d, g) 5 (0.85, 0.10) ring (in which a stable con-

figuration of four mesovortices existed at t 5 48 h; Fig. 8,

left panel), the mesovortices merged into a monopole

by t 5 48 h. The elliptical eyewall (EE) classification

denotes an end state involving an ellipse of high vor-

ticity. The polygonal eyewall (PE) classification denotes

an end state involving an eyewall with multiple straight

line segments. The shape of the polygon was found to be

the same shape as the initial exponentially growing

mode. Note that many of the rings with an MP or SP end

state exhibited polygonal eyewalls during their evolu-

tion to a monopole (see Fig. 7). Finally, the trochoidal

oscillation (TO) classification signifies that the end state

is more or less identical to the initial state, with the

exception of the diffusive weakening of the gradients

and the trochoidal wobble of the eye due to the m 5

1 algebraic instability.

The actual end states observed at t 5 48 h for each

(d, g) point are shown in Fig. 6. For very thin and hollow

rings (d 5 0.85), there is a strong tendency to produce

multiple persistent, long-lived mesovortices. In the un-

forced experiments of Kossin and Schubert (2001),

mesovortices similar to these had significant meso-low

pressure areas (as much as 50 mb lower than the envi-

ronment), and this barotropic breakdown was therefore

hypothesized to precede a rapid fall in central pressure.

Examining the g 5 0 row, we see that for moderately

thin hollow rings (0.60 # d # 0.80), the mostly likely end

states are monopoles (MP); for thicker hollow rings

(0.45 # d # 0.55), the tendency is for slow monopoles

(SP); and for thick, hollow rings (d # 0.40), the end

states are generally trochoidal oscillations (TO). For a

given d value, as the eye becomes more filled (increasing

g) there is a tendency for the mixing to a monopole to

take longer (more like an SP), and it is less likely to have

persistent mesovortices. For moderately thin rings (0.45

# d # 0.75) with nearly filled cores (g $ 0.60), there is a

tendency for an end state of an elliptical eyewall (EE).

This tendency is probably the result of either a slower

growing wavenumber m 5 2 exponential mode or non-

linear effects. For a few moderately filled thick rings

there was a tendency for polygonal eyewalls (PE) to

exist at t 5 48 h. In these cases, the growth rates of the

initial wavenumber m 5 3 and 4 instabilities were so

small that the low-vorticity eye could not be expelled or

mixed out, and the resulting structure was an polygonal

eyewall of the same character as the initial instability.

The complete life cycles of some unstable rings are

shown in Figs. 7, 8, and 9 . The left panel of Fig. 7 depicts

the evolution of the (d, g) 5 (0.75, 0.20) ring. The initial

instability is m 5 5 (although close to m 5 4), and the

end state is a monopole. The right panel of Fig. 7 depicts

the evolution of the (d, g) 5 (0.50, 0.20) ring. The initial

instability is m 5 3, and the end state is a slow mono-

pole. If the model were run slightly longer, the vorticity

mixing process would be complete and the low-vorticity

eye would be expelled. Figure 8 (left panel) depicts the

evolution of the (d, g) 5 (0.55, 0.80) ring. The initial

instability is m 5 2, and the end state is an elliptical

eyewall. Figure 8 (right panel) depicts the evolution of

FIG. 6. End states (t 5 48 h) observed in the pseudospectral model after nonlinear vorticity

mixing at the discrete d (abscissa) and g (ordinate) points.
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the (d, g) 5 (0.50, 0.50) ring. The initial instability is m 5

4, and the end state is a square, polygonal eyewall. Figure

9 (left panel) depicts the evolution of the (d, g) 5 (0.85,

0.10) ring. The initial instability is m 5 6, and the end

state is a stable (nonmerging) pattern of four meso-

vortices. Figure 9 (right panel) depicts the evolution of

the (d, g) 5 (0.25, 0.70) ring. The initial instability is m 5

1, and the end state is a stable ring with a wobbling eye.

FIG. 7. The evolution of the (left) (d, g) 5 (0.75, 0.20) and (right) (d, g) 5 (0.50, 0.20) rings. The end states are MP and

SP, respectively.
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The evolution of the normalized enstrophy Z(t)/

Z(0) for each of the above rings is shown in Fig. 10.

For the TO, EE, and PE classifications, the enstrophy

decay was gradual and small. For the SP classification,

the enstrophy decay was gradual and slightly larger.

For the MP and MV classifications, the enstrophy

decay was rapid and large. Also shown in Fig. 10 is an

additional MV case, with (d, g) 5 (0.85,0.00). In this

FIG. 8. The evolution of the (left) (d, g) 5 (0.55, 0.80) and (right) (d, g) 5 (0.50, 0.50) rings. The end states are EE

and PE, respectively.
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case, a stair-step pattern was observed in ZðtÞ/Zð0Þ,

a behavior associated with mesovortex mergers. In

the other MV case, this stair-step pattern was not

observed because the four mesovortices that formed

during the initial ring breakdown did not undergo

any subsequent mergers. These results are broadly

consistent with vorticity ring rearrangement study of

Wang (2002).

FIG. 9. The evolution of the (left) (d, g) 5 (0.85, 0.10) and (right) (d, g) 5 (0.25, 0.70) rings. The end states are MV

and TO, respectively.
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7. PV mixing and hurricane intensity change

What is the relationship between inner-core PV

mixing and hurricane intensity change? A complete

answer to this question would require both observa-

tional analysis and a comprehensive study of forced

(with diabatic heating effects) and unforced simulations

using a hierarchy of numerical models: the nondivergent

barotropic model, the shallow water model, the quasi-

static primitive equation model, and the full-physics

nonhydrostatic model. In this section, we examine the

relationship between PV mixing and intensity change in

the unforced nondivergent barotropic context.

In Fig. 11, the azimuthal mean vorticity, tangential

velocity, and central pressure at t 5 0 h (solid curve) and

t 5 48 h (dashed curve) are shown for the evolution of

two rings: (d, g) 5 (0.7, 0.7) on the left and (d, g) 5

(0.85, 0.0) on the right. The end states are SP and MP,

respectively. In the left panel it can be seen that the

azimuthal mean relative vorticity is not yet monotonic,

although the mixing is proceeding such that a monopole

would form later. During its evolution both the peak

tangential velocity and central pressure decreased slightly

ðD�ymax 5 �3:9 m s�1 and Dpmin 5 �0:8 hPaÞ. In the

right panel, the annulus of vorticity was redistributed to

a monopole, causing the radius of maximum wind to

contract approximately 25 km in 48 h. Both the tan-

gential velocity and central pressure decreased signifi-

cantly ðD�ymax 5 �7:7 m s�1 and Dpmin 5 �14:4 hpaÞ

during this period.

The changes in central pressure and maximum azi-

muthal mean tangential velocity for each ring examined

in this study are shown in Fig. 12. In the top panel, the

change in central pressure is shown, with light gray

denoting a pressure change of 25 # Dpmin , 0 hPa and

dark gray denoting a pressure change of Dpmin , 25

hPa. In the bottom panel the changes in maximum

tangential velocity are shown with light gray denoting a

change of �7 # D�ymax , �3 m s�1 and dark gray de-

noting a change of D�ymax , �7 m s�1. The main con-

clusion from this figure is that for all rings that under-

went vorticity mixing episodes, both the tangential ve-

locity and central pressure decreased. The decreases

were most pronounced for thin, hollow rings that mixed

to a monopole or mesovortices that persisted and then

merged into a monopole (cf. Kossin and Schubert 2001).

Note that because the (d, g) 5 (0.85, 0.10) ring had an

end state of four mesovortices, the central pressure fall

was weak; however, lower pressure anomalies were as-

sociated with each mesovortex.

At first glance, the simultaneous lowering of the

central pressure and peak tangential velocity may ap-

pear to be unrealistic. Indeed, empirical wind–pressure

relationships [see the reexamination by Knaff and Zehr

(2007)] indicate that if the peak tangential velocity in-

creases, the central pressure should decrease and vice

versa. These relationships are generally supported ob-

servationally. From a theoretical standpoint, however,

there is no reason that a hurricane-like vortex cannot

have simultaneous decreases in central pressure and

maximum tangential velocity. Wind–pressure relation-

ships generally make an approximation of the form

ymax 5 Cðpref � pcÞ
n, (11)

where C and n are empirical constants, ymax is the max-

imum azimuthal velocity, pref is the reference pressure,

and pc is the central pressure. Such approximations may

not be valid during PV mixing events. To illustrate why

this is the case, we write the cyclostrophic balance

equation y2/r 5 (1/r)(›p/›r) in its integral form:

ðrref

0

r
y2

r
dr 5 pref � pc, (12)

where rref is the radius at which the pressure equals pref.

Comparing the empirical relation (11) with the cyclo-

strophic balance relation (12), we see that (11) is justi-

fied if the integral on the left-hand side of (12) can be

accurately approximated by (ymax/C)1/n for all the y(r)

profiles encountered during PV mixing events. Exam-

ining the two tangential velocity profiles in Fig. 11

(middle right panel), we see that although the peak

tangential velocity decreased, there exists a much larger

radial region of higher winds for the dashed curve at t 5

48 h. The pressure fall, which must account for the en-

tire radial integral, is therefore larger in this case even

though the peak winds decreased. This occurs primarily

FIG. 10. Evolution of the enstrophy Z(t)/Z(0) for the rings in

Figs. 7–9. An additional MV curve is plotted for the (d, g) 5 (0.85,

0.00) ring.
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because the increase of angular momentum at small

radii causes the y2/r term to be large there. Empirical

wind–pressure relationships usually work because most

hurricanes have similar y(r) profiles. However, during

PV mixing events, the y(r) profiles can change dramat-

ically. For tropical cyclones that are undergoing signif-

icant eye–eyewall mixing, the approximation of the left-

hand side of (12) will generally not be valid, and the use

of ymax rather an integral measure (Powell and Rein-

hold 2007; Maclay et al. 2008) to describe hurricane

intensity will not be as accurate. The authors are not

aware of observations showing that a hurricane can si-

multaneously lower its central pressure and reduce its

maximum sustained winds. It would be interesting to

examine aircraft reconnaissance data to see if such ob-

servations exist. It would also be useful to observationally

validate our predictions that breakdowns of hollow and

thin rings produce the largest pressure falls and to ex-

amine the correlation of g with eye size.

8. Summary

The life cycles of 170 different hurricane-like poten-

tial vorticity rings, filling the parameter space of the

hollowness of the core (defined by the ratio of eye to

inner-core relative vorticity) and the thickness of the

FIG. 11. The initial (t 5 0 h; solid curve) and final (t 5 48 h; dashed curve) azimuthal mean relative vorticity,

tangential velocity, and pressure for the (left) (d, g) 5 (0.70, 0.70) and (right) (d, g) 5 (0.85, 0.00) rings. The end states

of the two rings are SP and MP, respectively.
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ring (defined by the ratio of the inner and outer radii),

were examined in a nondivergent barotropic model

framework. In approximately half the cases the ring

became exponentially unstable, causing vorticity to be

mixed from the eyewall to the eye. In the early part of

the life cycle, the fastest-growing exponential mode was

compared to the linear stability analysis of SM99. In the

later part (nonlinear mixing), the resultant end states

were characterized for each ring at t 5 48 h.

It was found that the linear stability analysis of SM99

is a good guide to the nonlinear model behavior in the

exponential growth phase of the life cycle. The assump-

tions used in the SM99 linear stability analysis eliminated

the possibility of wavenumbers m 5 1 (algebraic) and

m 5 2 instabilities, which were both observed in the

pseudospectral model results. The slowly growing wave-

number m 5 1 instability was visible as a wobble of the

eye in thick, filled rings that were stable to all other

exponentially growing modes. If the vortex were mov-

ing, this wobble would be observed as a trochoidal os-

cillation. A wavenumber m 5 2 pattern was observed

for a few moderately thick, nearly filled rings. This was

most likely due to either an exponential instability (al-

lowed by the model’s continuous vorticity profile) or

nonlinear vorticity mixing. Elliptically shaped vorticity

structures have been observed in hurricanes (Kuo et al.

1999; Reasor et al. 2000; Corbosiero et al. 2006) and

simulated as a nonlinear interaction between a monopole

and a secondary ring of enhanced vorticity (Kossin et al.

2000), but their formation dynamics are not clear in the

evolution of unforced PV rings.

The most likely end state of an unstable ring is a

monopole. For thick, filled rings, the relaxation to a

monopole takes longer than for thin, hollow rings. For

FIG. 12. (top) Central pressure change (hPa) from t 5 0 h to t 5 48 h for each ring. Negative

values (pressure drop) are shaded with 25 # Dpmin # 0 in light gray and Dpmin # 25 in dark

gray. (bottom) Maximum tangential velocity change (m s21) from t 5 0 h to t 5 48 h for each

ring: �7 # D�ymax#�3 (light gray shading) and D�ymax # �7 (dark gray shading).

720 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 66



very thin rings with relatively hollow cores, multiple

long-lived (on the order of 15 h) mesovortices persisted

before mixing to a monopole. For moderately thick and

filled rings, the end state was an elliptical eyewall that

formed because of the wavenumber m 5 2 feature de-

scribed above. For some thick and moderately filled

rings, the end state was a polygonal eyewall of the same

character as the initial instability.

For all rings that underwent a barotropic breakdown

and vorticity mixing, both the central pressure and peak

azimuthal mean tangential velocity decreased. The most

dramatic pressure and tangential velocity decreases were

found for thin, hollow rings that evolved to a monopole,

either directly or via a number of persistent meso-

vortices. In a 48-h time frame, the storms that formed

monopoles (on average) had a central pressure fall of 6

hPa and tangential velocity fall of 9 m s21. Weaker falls

were found for slow monopoles (1 hPa and 4 m s21,

respectively). Very minor changes occurred for all other

rings.

In real hurricanes, diabatic effects tend to constantly

produce a PV hollow tower. This hollow tower will

periodically become dynamically unstable and PV will

be mixed from the eyewall into the eye. Subsequently,

diabatic heating will tend to regenerate the hollow

tower, from which another mixing episode may occur,

and so forth. In this work, we have shown which end

states are most likely to result from these episodic PV

mixing events for hollow towers (vorticity rings in the

nondivergent barotropic context) that are filled and thin

to various degrees. For strong and intensifying hurri-

canes that produce thin hollow towers, these results

suggest another mechanism by which the central pres-

sure can rapidly fall. Thus, PV mixing may complement

the intensification process.

Finally, we have chosen a very simple framework (a

nondivergent barotropic model) to study this problem.

In real hurricanes, where baroclinicity and moist pro-

cesses are important, these results may change to some

degree. Future work should be focused on studying the

relationship between inner-core PV mixing and hurri-

cane intensity change in more complex models. A logi-

cal next step to the current work would involve similar

simulations in a three-dimensional dry quasi-static prim-

itive equation model framework, examining the life cycles

of unforced (adiabatic) PV hollow towers, including the

preferred isentropic layers for PV mixing.
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