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ABSTRACT

Intense tropical cyclones often exhibit concentric eyewall patterns in their radar reflectivity. Deep convection
within the inner, or primary, eyewall is surrounded by a nearly echo-free moat, which in turn is surrounded by
an outer, or secondary ring of deep convection. Both convective regions typically contain well-defined tangential
wind maxima. The primary wind maximum is associated with large vorticity just inside the radius of maximum
wind, while the secondary wind maximum is usually associated with relatively enhanced vorticity embedded in
the outer ring. In contrast, the moat is a region of low vorticity. If the vorticity profile across the eye and inner
eyewall is approximated as monotonic, the resulting radial profile of vorticity still satisfies the Rayleigh necessary
condition for instability as the radial gradient twice changes sign.

Here the authors investigate the stability of such structures and, in the case of instability, simulate the nonlinear
evolution into a more stable structure using a nondivergent barotropic model. Because the radial gradient of
vorticity changes sign twice, two types of instability and vorticity rearrangement are identified: 1) instability
across the outer ring of enhanced vorticity, and 2) instability across the moat. Type 1 instability occurs when
the outer ring of enhanced vorticity is sufficiently narrow and when the circulation of the central vortex is
sufficiently weak (compared to the outer ring) that it does not induce enough differential rotation across the
outer ring to stabilize it. The nonlinear mixing associated with type 1 instability results in a broader and weaker
vorticity ring but still maintains a significant secondary wind maximum. The central vortex induces strong
differential rotation (and associated enstrophy cascade) in the moat region, which then acts as a barrier to inward
mixing of small (but finite) amplitude asymmetric vorticity disturbances. Type 2 instability occurs when the
radial extent of the moat is sufficiently narrow so that unstable interactions may occur between the central vortex
and the inner edge of the ring. Because the vortex-induced differential rotation across the ring is large when
the ring is close to the vortex, type 2 instability typically precludes type 1 instability except in the case of very
thin rings. The nonlinear mixing from type 2 instability perturbs the vortex into a variety of shapes. In the case
of contracting rings of enhanced vorticity, the vortex and moat typically evolve into a nearly steady tripole
structure, thereby offering a mechanism for the formation and persistence of elliptical eyewalls.

1. Introduction

During the period 11–17 September 1988, Hurricane
Gilbert moved westward across the Caribbean Sea, over
the tip of the Yucatan peninsula, and across the Gulf of
Mexico, making landfall just south of Brownsville, Tex-
as. After passing directly over Jamaica on 12 September,
Gilbert intensified rapidly and at 2152 UTC on 13 Sep-
tember reached a minimum sea level pressure of 888
mb, the lowest yet recorded in the Atlantic basin (Wil-
loughby et al. 1989). Approximately 12 h later, when
its central pressure was 892 mb, the horizontal structure
of the radar reflectivity and the radial profiles of tan-
gential wind, angular velocity, and relative vorticity
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were as shown in Fig. 1. At this time the storm had
concentric eyewalls. The inner eyewall was between 8-
and 20-km radius and the outer eyewall between 55-
and 100-km radius, with a 35-km echo-free gap (or
moat) between the inner and outer eyewalls. The inner
tangential wind maximum was 66–69 m s21 at 10-km
radius, while the outer tangential wind maximum was
49–52 m s21 at 61–67-km radius. Detailed descriptions
of Hurricane Gilbert are given by Black and Willoughby
(1992), Samsury and Zipser (1995), and Dodge et al.
(1999).

Echo-free moats such as the one shown in Fig. 1 are
often found in intense storms, even when no well-de-
fined outer eyewall is present. In general, echo-free
moats are regions of strong differential rotation.1 For

1 We define differential rotation as dv/dr, where v is the azimuthal
mean angular velocity.
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FIG. 1. (a) Composite horizontal radar reflectivity of Hurricane Gilbert for 0959–1025 UTC 14 Sep 1988; the domain is
360 km 3 360 km, with tick marks every 36 km. The line through the center is the WP-3D aircraft flight track (from Samsury
and Zipser 1995). (b) Profiles of flight-level angular velocity (solid), tangential wind (short dash), and smoothed relative
vorticity (long dash) along the southern leg of the flight track shown in (a).
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example, in the Gilbert case, the circuit time (i.e., the
time required to traverse a complete circle) for a parcel
at a radius of 10 km, with tangential wind 68 m s21, is
15.4 min, while the circuit time for a parcel at a radius
of 50 km, with tangential wind 30 m s21, is 175 min.
In other words, the parcel at 10-km radius completes
11 circuits in the time the parcel at 50-km radius com-
pletes one circuit. Under such strong differential rota-
tion, small asymmetric regions of enhanced potential
vorticity are rapidly filamented to small radial scales
(Carr and Williams 1989; Sutyrin 1989; Smith and
Montgomery 1995) as they become more axisymmetric.
Thus, the moat is typically a region of active potential
enstrophy cascade to small scales. In contrast, the region
just inside the secondary wind maximum has weak dif-
ferential rotation. For example, the circuit time for a
parcel at 61-km radius, with tangential wind 52 m s21,
is 123 min, compared to the previously computed 175
min at 50-km radius. Hence, the region between 50 and
61 km is characterized by weak differential rotation and
can be considered a local haven against the ravages of
potential enstrophy cascade to small scales. Similarly,
the updraft cores within the primary eyewall are typi-
cally embedded in the local minimum of differential
rotation that lies just inside the radius of maximum
wind. This is evident in Fig. 1b, which shows a flat-
tening of the angular velocity profile inside the wind
maximum.

The tendency for convection to be suppressed in the
moat region is often attributed to mesoscale subsidence
between two regions of strong upward motion. Dodge
et al. (1999) found that the moat of Hurricane Gilbert
consisted of stratiform precipitation with weak (less
than 1 m s21) downward motion below the bright band
observed near 5-km height, and weak upward motion
above. An additional mechanism for suppressed con-
vection in the moat may be strong differential rotation.
For example, imagine a circular 5-km-diameter cloud
updraft that lies between 15- and 20-km radius from
the hurricane center. For the Gilbert wind field, the
inner edge of this updraft would be advected azimuth-
ally 1408 in 10 min, while the outer edge is advected
708 in 10 min. Since a parcel rising at 5 m s21 ascends
only 3 km in this 10-min interval, one could imagine
that ordinary cumulonimbus convection embedded in
such a flow would be inhibited from persisting as the
convection becomes increasingly susceptible to en-
trainment.

Concentric eyewall structures and tangential wind
profiles like those shown in Fig. 1 have been docu-
mented in a number of hurricanes (Samsury and Zip-
ser 1995; Willoughby et al. 1982, and references
therein) and raise interesting questions about the dy-
namic stability of hurricane flows. The answers to
such questions require studies using a hierarchy of
dynamical models, the simplest of which is the non-
divergent barotropic model. In such a model, Hurri-
cane Gilbert, for example, might be idealized as an

axisymmetric flow field with four distinct regions of
vorticity: an inner region (r , r1 ø 10 km) of very
high vorticity z1 ø 159 3 1024 s21 , a moat region (r1

, r , r 2 ø 55 km) of relatively low vorticity z 2 ø
5 3 1024 s21 , an annular ring (r 2 , r , r 3 ø 100
km) of elevated vorticity z 3 ø 27 3 1024 s21 , and the
far field (r . r 3 ) nearly irrotational flow. The as-
sumption of a monotonic profile near the vortex center
removes the possibility for primary eyewall instabil-
ities, which were the focus of Schubert et al. (1999).
In this idealization, vorticity gradients and associated
vortex Rossby waves are concentrated at the radii r1 ,
r 2 , r 3 . In this case, there are two types of instabilities,
as the vortex Rossby wave on the positive radial vor-
ticity gradient at r 2 can interact with either of the
vortex Rossby waves on the negative radial vorticity
gradients at r1 and r 3 .

In the first type of instability (called type 1), the
dominant interactions occur between the waves asso-
ciated with r 2 and r3 . The central vorticity does not
play a direct role in this instability, because the vor-
ticity wave at r1 is dynamically inactive. However, the
central vorticity does induce a differential rotation be-
tween r 2 and r3 , and this differential rotation can help
suppress the instability across the ring of elevated vor-
ticity between r 2 and r3 (Dritschel 1989). Type 1 in-
stability leads to a roll-up of the annular ring and the
formation of coherent vorticity structures. Once roll-
up has occured, the flow evolution is described by a
collection of vortex merger events in which the central
vortex is victorious (Melander et al. 1987b; Dritschel
and Waugh 1992) in the sense that the vorticity within
the central vortex remains largely unchanged while the
relatively weak coherent vortices become rapidly fi-
lamented and axisymmetrized by the differential ro-
tation imposed across the moat by the intense central
vortex. The result is a widening of the annular ring of
elevated vorticity and a weakening but ultimate main-
tenance of the secondary wind maximum. This type of
evolution is discussed in section 2.

In the second type of instability (called type 2), the
dominant interactions occur between the waves asso-
ciated with r1 and r2, that is, across the moat. In this
case, type 1 instabilities are largely or completely sup-
pressed by the presence of the central vortex. Type 2
instability leads to a rearrangement of the low vorticity
of the moat. One possible nonlinear outcome of this
instability is the production of a vortex tripole in which
the low vorticity of the moat pools into two satellites
of an elliptically deformed central vortex, with the
whole structure rotating cyclonically. This type of evo-
lution is discussed in section 3.

2. Stabilization of an annular ring of vorticity by
a strong central vortex

a. Linear stability analysis

The cyclonic shear zone associated with a secondary
eyewall can be envisaged as an annular ring of uni-
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formly high vorticity, with large radial vorticity gra-
dients on its edges. On the inner edge of the annular
ring the vorticity increases with radius, while on the
outer edge the vorticity decreases with radius. In terms
of vortex Rossby wave theory, waves on the inner edge
of the annular ring will prograde relative to the flow
there, while waves on the outer edge will retrograde
relative to the flow there. It is possible for these two
counterpropagating (relative to the tangential flow in
their vicinity) waves to have the same angular velocity
relative to the earth, that is, to be phase locked. If the
locked phase is favorable, each wave will make the
other grow, and barotropic instability will result. The
presence of a central region of high vorticity compli-
cates this picture in two ways. First, the edge of the
central region can also support waves, which might
interact with waves along the other two edges if they
are close enough (section 3). Second, even if the an-
nular ring of elevated vorticity between r 2 and r3 is far
enough away from the central region that the waves
along the edge of the central region do not significantly
interact, the central region of high vorticity can induce
an axisymmetric differential rotation across the annular
ring and thereby stabilize the ring. Both of these effects
can be understood as special cases of a four-region
model, which is discussed in the appendix. The main
result of that analysis is the eigenvalue problem (A6).
In order to understand the stabilizing effect of differ-
ential rotation across the annular ring, we first consider
the special case where z 2 5 0, and where r1 → 0 and
z1 → ` in such a way that z1 5 v 1 → C, where2 2pr 2pr1 1

C is a specified constant circulation associated with the
central point vortex. In this special case the axisym-
metric basic state angular velocity v (r) given by (A2)
reduces to

0 0 # r # r ,2C 1
2v(r) 5 1 z 1 2 (r /r) r # r # r ,3 2 2 322pr 2 

2 2(r /r) 2 (r /r) r # r , `, 3 2 3

(1)

and the corresponding basic state relative vorticity z(r)
given by (A3) reduces to

0 0 , r , r ,22 d(r v )
z(r) 5 5 z r , r , r , (2)3 2 3rdr 
0 r , r , `, 3

where r2, r3 are specified radii and z3 a specified vor-
ticity level. This idealized basic state was also studied
by Dritschel (1989). The eigenvalue problem (A6) re-
duces to

 1 1
mmv 1 z z (r /r )2 3 3 2 3 2 2 C C2 25 n . (3) 1 2 1 2C C1 1 3 3m2 z (r /r ) mv 2 z 3 2 3 3 32 2 

The system (3) can be regarded as a concise mathe-
matical description of the interaction between two coun-
terpropagating vortex Rossby edge waves along r2 and
r3 and influenced by the central vortex. As we shall see
below, with a basic flow satisfying v 2 , v 3, the waves
can phase lock, and instability is possible. Note that the
effects of the central point vortex enter through v 2 and
v 3. The effect of a strong central vortex is to make v 2

. v 3, which disrupts the ability of the two waves to
phase lock. To quantify the effects of the central point
vortex on the stability of the annular ring, let us now
examine the formula for the eigenvalues n.

The eigenvalues of (3), normalized by z3, are given by

n 1 v 1 v2 35 m1 2z 2 z3 3

1/22m21 v 2 v r2 3 26 1 1 m 2 . (4)5 1 2 1 2 6[ ]2 z r3 3

In order to more easily interpret the eigenvalue relation
(4), it is convenient to reduce the number of adjustable
parameters to two. We first define d 5 r2/r3 as a measure
of the width of the annular ring of vorticity and G 5
C/[pz3( 2 )] as the ratio of the central point vortex2 2r r3 2

circulation to the secondary eyewall circulation. Ex-
pressing v 2/z3 and v 3/z3 in terms of G and d, it can be
shown using (4) that wavenumbers one and two are
exponentially stable when G . 0, and for m . 2, sta-
bility is guaranteed when

2d
G . . (5)

21 2 d

The stability condition (5) is equivalent to Dritschel’s
(1989) condition, L . 1, where L 5 C/(pz3 ) is a2r2

dimensionless ‘‘adverse shear.’’ The region of the G–d
plane satisfying (5) lies above the dashed lines in Figs.
2 and 3. A physical interpretation of the stability con-
dition (5) is related to Fjørtoft’s theorem (Montgomery
and Shapiro 1995) and can be understood by noting that
since the right-hand side of (5) is less than unity and
the left-hand side is greater than unity if (v 2 2 v 3)/z3

. 0, stability is assured if v 2 . v 3 (for z3 . 0). Since,
in the absence of coupling, the waves on the inner edge
of the annular ring prograde relative to the flow in its
vicinity, and since the waves on the outer edge retro-
grade relative to the flow in its vicinity, a larger basic-
state angular velocity on the inner edge (v 2 . v 3) will
prevent the waves from phase locking, satisfying a suf-
ficient condition for stability.

Wavenumbers larger than two can produce frequen-
cies with nonzero imaginary parts. Expressing v 2 /z3

and v 3 /z3 in terms of d and G as v 2 /z3 5 G(d22 21
2

1) and v 3 /z3 5 (G 1 1)(1 2 d 2), and then using these1
2

in (4), we can calculate the dimensionless complex
frequency n /z3 as a function of the disturbance azi-
muthal wavenumber m and the two basic-state flow
parameters d and G. The imaginary part of n /z3 , de-
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FIG. 2. Isolines of the dimensionless growth rate ni/z3, computed from (4), as a function of d 5 r2/r3 and G 5 C/[pz3( 2 )] for2 2r r3 2

azimuthal wavenumbers m 5 3, 9, and 16. The parameter G is the ratio of the circulation associated with the central point vortex to the
circulation associated with the annular ring of elevated vorticity between r2 and r3. Nonzero growth rates occur only in the shaded regions.
The isolines are ni/z3 5 0.01, 0.03, 0.05, . . . . The maximum growth rates increase and are found closer to d 5 1 as m increases. The
region above the dashed line satisfies the sufficient condition for stability given by (5).

FIG. 3. Isolines of the maximum dimensionless growth rate ni/z3

among the azimuthal wavenumbers m 5 3, 4, . . . , 16 for type 1
instability. The isolines are the same as in Fig. 2. Shading indicates
the wavenumber associated with the maximum dimensionless growth
rate at each point.

noted by n i /z3 , is a dimensionless measure of the
growth rate. Isolines of n i /z3 as a function of d and G
for m 5 3, 9, and 16 are shown in Fig. 2. Note that
all basic states, no matter what the value of G, satisfy
the Rayleigh necessary condition for instability, but
that most of the region shown in Fig. 2 is in fact stable.
Clearly, thinner annular regions (larger values of r 2 /r3)
should produce the highest growth rates but at much
higher azimuthal wavenumbers. Note also the overlap
in the unstable regions of the G–d plane for different
azimuthal wavenumbers. For example, the lower right
area of the G–d plane is unstable to all the azimuthal
wavenumbers m 5 3, 9, and 16. We can combine the
three panels in Fig. 2 with the remaining growth rate
plots for m 5 3, 4, . . . , 16 and collapse them into a
single diagram if, for each point in the G–d plane, we
choose the largest growth rate of the fourteen wav-
enumbers. This results in Fig. 3.

To estimate the growth rates expected in a secondary
eyewall mixing problem, consider the cases d ø 0.84
and G ø 0.45, which are suggested by the Hurricane
Gilbert data shown in Fig. 1 (but for the special case
of z2 5 0). Then, from the isolines drawn in Fig. 3, we
obtain ni ø 0.12z3 for m 5 8. Using z3 ø 2.8 3 1023

s21, we obtain an e-folding time ø 50 min. The21ni

analysis of section 2c, where the restriction that z2 5
0 is relaxed, results in a maximum instability for m 5 9.

b. Nondivergent barotropic spectral model

To isolate the barotropic aspects of the nonlinear evo-
lution, we now consider the nondivergent barotropic
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model with spectral discretization and ordinary diffu-
sion. Expressing the velocity components2 in terms of
the streamfunction by u 5 2]c/]y and y 5 ]c/]x, we
can write the vorticity equation as

]z ](c, z)
21 5 n¹ z, (6)

]t ](x, y)

where

¹2c 5 z (7)

is the invertibility principle. Two integral properties as-
sociated with (6) and (7) on a closed or periodic domain
are the energy and enstrophy relations

dE
5 22nZ , (8)

dt

dZ
5 22nP , (9)

dt

where E 5 ## =c · =c dx dy is the energy, Z 51
2

## z 2 dx dy is the enstrophy, and P 5 ## =z · =z dx1 1
2 2

dy is the palinstrophy. The diffusion term on the right-
hand side of (6) controls the spectral blocking asso-
ciated with the enstrophy cascade to higher waven-
umbers.

We now present numerical integrations of (6)–(7)
that demonstrate the process by which an unstable
outer ring of enhanced vorticity mixes with its near

environment to form a broader and weaker vorticity
ring. All of the solutions presented in this paper were
obtained with a double Fourier pseudospectral code
having 1024 3 1024 equally spaced collocation points
on a doubly periodic domain of size 600 km 3 600
km. The code was run with a dealiased calculation of
the quadratic nonlinear terms in (6), resulting in 340
3 340 resolved Fourier modes. Although the collo-
cation points are only 0.585 km apart, a more realistic
estimate of resolution is the wavelength of the highest
Fourier mode, which is 1.76 km. Time differencing
was accomplished with a standard fourth-order Run-
ge–Kutta scheme. For the experiment of section 2c,
the time step used was 7.5 s and the chosen value of
viscosity in (6) was n 5 4 m 2 s21 , resulting in a 1/e
damping time of 5.5 h for all modes having total
wavenumber 340. However, for modes having total
wavenumber 170, the damping time lengthens con-
siderably to 22 h. For the experiment of section 2d,
the time step used was 15 s and the chosen value of
viscosity was n 5 32 m 2 s21 . This gives 1/e damping
times of 41 min and 3 h for all modes having total
wavenumber 340 and 170, respectively. The larger
value of viscosity used in the second experiment was
chosen in response to the more vigorous mixing and
associated palinstrophy production and enstrophy cas-
cade that occurs during the integration.

As the initial condition for (6), we use z(r, f, 0) 5
z(r) 1 z9(r, f ) where

z , 0 # r # r 2 d1 1 1

z S[(r 2 r 1 d )/2d ] 1 z S[(r 1 d 2 r)/2d ], r 2 d # r # r 1 d1 1 1 1 2 1 1 1 1 1 1 1

z , r 1 d # r # r 2 d2 1 1 2 2

z S[(r 2 r 1 d )/2d ] 1 z S[(r 1 d 2 r)/2d ], r 2 d # r # r 1 d2 2 2 2 3 2 2 2 2 2 2 2
z(r) 5 z , r 1 d # r # r 2 d (11)3 2 2 3 3

z S[(r 2 r 1 d )/2d ] 1 z S[(r 1 d 2 r)/2d ], r 2 d # r # r 1 d3 3 3 3 4 3 3 3 3 3 3 3

z , r 1 d # r # r 2 d4 3 3 4 4

z S[(r 2 r 1 d )/2d ] 1 z S[(r 1 d 2 r)/2d ], r 2 d # r # r 1 d4 4 4 4 5 4 4 4 4 4 4 4
z , r 1 d # r 5 4 4

is a circular four-region vorticity distribution and r1, r2,
r3, r4, d1, d2, d3, d4, z1, z2, z3, z4 are independently
specified quantities. The constant z5 will be determined
in order to make the domain average of z(r, f, 0) vanish.

2 Throughout this paper the symbols u, y are used to denote east-
ward and northward components of velocity when working in Car-
tesian coordinates and to denote radial and tangential components
when working in cylindrical coordinates.

Here S(s) 5 1 2 3s2 1 2s3 is the basic cubic Hermite
shape function satisfying S(0) 5 1, S(1) 5 0, S9(0) 5
S9(1) 5 0. Since z5 must generally be weakly negative
to satisfy the zero circulation requirement, but no neg-
ative vorticity is expected in the region of hurricanes,
we apply a small but positive ‘‘far field’’ vorticity z4 to
a radius beyond the area of expected mixing processes.
For the experiments of sections 2c and 2d, we apply an
azimuthally broadband perturbation across the annular
region r2 2 d2 # r # r3 1 d3, that is,
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0, 0 # r # r 2 d2 2

S[(r 1 d 2 r)/2d ], r 2 d # r # r 1 d2 2 2 2 2 2 2
12 

z9(r, f) 5 z cos(mf) 1, r 1 d # r # r 2 d (12)Oamp 2 2 3 3
m51

S[(r 2 r 1 d )/2d ], r 2 d # r # r 1 d3 3 3 3 3 3 3
0, r 1 d # r , ` 3 3

where zamp is a specified constant less than 1% of the
maximum vorticity in the annulus.

c. Type 1 instability in the presence of a central
vortex: Maintenance of a secondary wind
maximum

An initial condition that simulates an annular ring
of high potential vorticity (PV) with concentrated vor-
ticity at its center may be imposed by choosing z1 k
z3 . z 2 and r1 K r 2 in (11). In this way, wave inter-
actions between the ring and the central vortex are
minimized and the ring ‘‘feels’’ the presence of the
central vortex only through the angular velocity field.
For the first experiment, the numerical integration is
performed under the initial condition {r1 , r 2 , r3 , r 4}
5 {9.5, 52.5, 62.5, 120.0} km, {d1 , d 2 , d3 , d 4} 5 {2.5,
2.5, 2.5, 15.0} km, and {z1 , z 2 , z3 , z 4 , z 5} 5 {159.18,
5.18, 27.18, 2.18, 20.82} 3 1024 s21 . The associated
tangential wind profile is analogous to an observed
profile from a single National Oceanic and Atmospher-
ic Administration (NOAA) WP-3D radial flight leg into
Hurricane Gilbert during 1012–1029 UTC 14 Septem-
ber 1988 (as shown in Fig. 1). Radial profiles of the
symmetric part of the initial vorticity, tangential wind,
and angular velocity fields are shown by the solid lines
in Fig. 4 (the other lines in this figure will be discussed
later). The maximum wind of 69 m s21 is found near
10 km, while a secondary maximum of 47 m s21 , as-
sociated with the ring of enhanced vorticity, is evident
near 64 km. The prograding vortex Rossby waves
along the inner edge of the ring (50 # r # 55 km) are
embedded in a local angular velocity of approximately
5.6 3 1024 s21 , while the retrograding waves along the
outer edge of the ring (60 # r # 65 km) are embedded
in a stronger local angular velocity of approximately
7.3 3 1024 s21 . Although the presence of the central
vortex reduces the differential rotation across the an-
nular ring by about 30% when compared to the dif-
ferential rotation with the central vortex removed, it is
not enough to eliminate all instabilities. A piecewise
uniform vorticity profile as described in the four-region
model of the appendix and that imitates the smooth
initial vorticity profile of Fig. 4 is found to be unstable
in wavenumbers seven through 10, with the maximum
growth rate occuring in wavenumber nine with an as-

sociated e-folding time of 67 minutes (solid line of
Fig. 5).

Results of this experiment are shown in Fig. 6 in
the form of vorticity maps plotted over a 24-h period.
The growth of the wavenumber-nine maximum insta-
bility becomes evident within 4 h and by t 5 6 h the
ring has undergone a nearly complete roll-up into nine
coherent structures. The differential rotation induced
by the central vortex advects the inner edges of the
coherent structures more rapidly than the outer edges
so that at t 5 8 h, the structures have become cyclon-
ically stretched around the vortex, while trailing spirals
have formed as vorticity is stripped from their outer
edges. At t 5 10 h, the stretching has resulted in a
banded structure with thin strips of enhanced vorticity
being wrapped around the vortex. Leading spirals,
which have been stripped from the inner edges of the
bands, have propagated inward into regions of intense
differential rotation (and active enstrophy cascade). At
t 5 12 h, the moat has been maintained, although its
outer radius has contracted to 35 km from its initial
value of 60 km. Outside r 5 35 km, the vorticity of
the strips is sufficiently strong to maintain the strips
against the vortex-induced differential rotation. Inside
r 5 35 km, the strips can no longer maintain them-
selves and they are rapidly filamented to small scales
where they are lost to diffusion. Thus for these initial
conditions, r 5 35 km represents a barrier to inward
mixing. Also evident at this time, particularly in the
two eastern quadrants of the vortex, are secondary in-
stabilities across individual strips of vorticity. These
instabilities occur as the strips become thinner and are
most pronounced at larger radii where the vortex-in-
duced differential rotation is weak. The occurence of
secondary instabilities in our experiment can be related
to the results of Dritschel (1989) by estimating the
adverse shear L 5 C/(pz3 ) across these strips. Using2r2

C ø pz1 , we obtain L ø 0.187. For the case of a2r1

linear shear flow, Dritschel found that such secondary
instabilities lead to a roll-up into a string of vortices
when L , 0.21, while for larger L, the adverse shear
inhibits this secondary roll-up even though the strips
are in fact unstable. We see then that the presence of
a central vortex influences the flow evolution in two
somewhat disparate ways. In the region of the moat,
coherent vorticity structures are filamented and lost to
diffusion, while at larger radii (but still inside r 5 80



3900 VOLUME 57J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 4. (a) Azimuthal mean vorticity and tangential velocity, and (b) angular velocity for the
experiment shown in Fig. 6 at the selected times t 5 0 (solid), 6 h (long dash), 12 h (medium
dash), and 24 h (short dash). Averages were computed with respect to distance from the minimum
streamfunction position. The maximum angular velocity is truncated in the image to highlight
the region of the annular ring. Note the reversal of differential rotation across the ring between
6 and 12 h.

km), the vortex helps to maintain the vorticity by in-
hibiting the growth of secondary instabilities across
the thin strips.

At t 5 15 h, the instabilities across the strips have
rolled up into miniature vortices and during the re-
mainder of the evolution to t 5 24 h, these vortices
undergo mixing and merger processes, relaxing the flow
toward axisymmetry. Further time integration past t 5
24 h results in little appreciable change other than a
slow diffusive spindown.

The dashed lines of Fig. 4 show the evolution of the
vorticity, tangential velocity, and angular velocity. The

profiles represent azimuthal averages taken with respect
to distance from the minimum streamfunction.3 At t 5
6 h, the annular ring has become broader and weaker
and its maximum vorticity has moved inward. The tan-
gential wind profile shows a weakening of the secondary
maximum while the flow inside of the ring has strength-
ened, smoothing out the initially steep gradient between

3 Although the centroid of vorticity on an f plane is invariant,
asymmetries formed during the evolution cause the location of the
minimum streamfunction to oscillate.
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FIG. 5. Dimensional growth rates and e-folding times computed from Eq. (A6) for
the piecewise uniform approximations to the initial conditions of sections 2c and 2d.
The dots correspond to the integer values of azimuthal wavenumber m.

52 and 62 km. The angular velocity evolution exhibits
a lessening of the differential rotation across the ring.
At t 5 12 h, the symmetric part of the flow has relaxed
to a nearly steady state. The vorticity in the ring has
further broadened and weakened but the secondary max-
imum and its associated gradient reversal have persisted.
Similarly, the tangential wind maintains a significant
secondary maximum with the flow increasing from 30
m s21 at 35 km to 42 m s21 at 73 km. The angular
velocity has become monotonic, eliminating the positive
differential rotation across the ring. Thus the symmetric
part of the flow has become stable in the context of the
four-region model, and little change is noted during the
next 12 h.

The stability of the nearly equilibrated flow of the
above experiment may offer insight into the observed
longevity of hurricane secondary eyewalls. Our results
are based on an initial condition that imitates a profile
observed during a single radial flight leg into Hurricane
Gilbert on 14 September 1988. This profile was chosen
to demonstrate the mechanism whereby PV mixing can
occur while still maintaining a secondary wind maxi-
mum. Black and Willoughby (1992) calculated azi-
muthal mean tangential wind profiles in Hurricane Gil-
bert based on aircraft observations at the beginning and
end of the 14 September sortie (shown in their Fig. 4c).
In the context of the four-region model, the mean profile
at the beginning was found to be stable but near neutral,
and the mean profile based on the flow near the end of
the sortie was stable. Thus, the results of the experiment
shown in Fig. 6 are useful in describing how an unstable
secondary eyewall can evolve to a stable secondary eye-
wall, but these results could likely be an exaggeration
of the actual evolution of a hurricane’s secondary eye-
wall. It is possible that mixing associated with an un-

stable secondary eyewall is just enough to maintain a
near-neutral flow.

d. Instability in the absence of a central vortex:
Redistribution into a monopole

For comparison, a numerical simulation is performed
with the central vortex removed, so that z1 5 z2 5 5.18
3 1024 s21 and all other parameters in (11) remain es-
sentially unchanged.4 For further discussion of the evo-
lution of unstable rings of enhanced vorticity without
the presence of a central vortex, the reader is directed
to Schubert et al. (1999). Radial profiles of the initial
vorticity, tangential wind, and angular velocity fields
are shown by the solid lines in Fig. 7. The differential
rotation across the ring is greater than the previous ex-
ample (v ø 3.1 3 1024 s21 when 50 # r # 55 km and
v ø 5.3 3 1024 s21 when 60 # r # 65 km) and the
maximum growth rate has shifted from wavenumber
nine to six while the e-folding time has decreased from
67 to 48 min (dashed line in Fig. 5). The evolution is
again displayed in the form of vorticity maps in Fig. 8.

At t 5 4 h, the wavenumber-six maximum instability
has amplified and a roll-up of the annular ring has oc-
cured. The presence of the wavenumber-seven instabil-
ity, whose growth rate is 96% of the maximum insta-
bility, is evident in the northern quadrant. At t 5 8 h,
six well formed elliptical vortices have emerged. Weak
vorticity from outside the ring is beginning to enter the

4 The zero-circulation requirement of the doubly periodic domain
results in a shift in the vorticity everywhere when any local change
is made. Removing the central vortex causes a slight shift in z2, z3,
z4, z5.
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FIG. 6. Vorticity contour plots for the type 1 instability experiment. The model domain is 600 km 3 600 km but only
the inner 200 km 3 200 km is shown. Successively darker shading denotes successively higher vorticity. Initially, high
central vorticity is shaded black, enhanced vorticity in the ring is dark gray, and low vorticity in the moat and outside the
eyewall is white. (a) t 5 0 to t 5 8 h. (b) t 5 10 h to t 5 24 h. The time interval switches from 2 to 3 h after t 5 12 h.
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FIG. 6. (Continued )
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FIG. 7. Similar to Fig. 4 but for the experiment with the central
vortex removed (shown in Fig. 8). The azimuthal mean vorticity
profile when t 5 54 h is monotonic.

central region of the vortex, while stronger vorticity
from the center is ejected outward in the form of trailing
spirals. After this time, intricate vortex merger and mix-
ing processes dominate the evolution so that at t 5 16
h, five vortices remain, and at t 5 24 h, only three
remain. Without the presence of a dominant central vor-
tex, each coherent structure imposes a similar flow
across the others. There is no clear victor in the merger
process and high vorticity can mix to the center. At t
5 54 h, the vorticity has nearly relaxed to a monotonic
distribution that satisfies the Rayleigh sufficient con-
dition for stability. This behavior is in marked contrast
to the behavior in the presence of a central vortex (sec-
tion 2c), where the mixing results in a monotonic an-
gular velocity distribution which satisfies Fjørtoft’s, but
not Rayleigh’s, sufficient condition for stability across
the ring.

The vorticity rearrangement associated with type 1
instability suggests a nondivergent mechanism for the
contraction of secondary eyewalls that may augment the
axisymmetric contraction mechanism discussed by Sha-
piro and Willoughby (1982) and Willoughby et al.
(1982). As part of an eyewall replacement cycle, the
secondary eyewall strengthens through convergent and
convective processes and as the secondary eyewall mo-

nopolizes the inflow of moist energy, the primary eye-
wall typically spins down. Both processes act to desta-
bilize the secondary eyewall and result in asymmetric
mixing that moves the inner edge of the secondary eye-
wall inward while the flow tends toward stability. As
the secondary eyewall restrengthens, instabilities again
emerge and the contraction process continues. As the
primary eyewall weakens, the barrier to inward mixing
is reduced until the mixing can reach the center, thus
completing the cycle. In this case, the mechanisms that
strengthen the secondary eyewall and weaken the pri-
mary eyewall rely largely on the divergent circulation
but the contraction and ultimate replacement of the pri-
mary eyewall can be explained in terms of nondivergent
asymmetric mixing processes alone.

3. Formation and persistence of an elliptical
central vortex

Tropical cyclones sometimes have rotating elliptical
eyes. Two outstanding examples were recently docu-
mented by Kuo et al. (1999) for the case of Typhoon
Herb (1996), and by Reasor et al. (2000) for the case
of Hurricane Olivia (1994). Typhoon Herb was observed
using the WSR-88D radar on Wu-Feng Mountain in
Taiwan. The elliptical eye of Typhoon Herb had an as-
pect ratio (major axis/minor axis) of approximately 1.5.
Two complete rotations of the elliptical eye, each with
a period of 144 min, were observed as the typhoon
approached the radar. Kuo et al. interpreted this elliptical
eye in terms of the Kirchhoff vortex (Lamb 1932, p.
232), an exact, stable (for aspect ratios less than 3)
solution for two-dimensional incompressible flow hav-
ing an elliptical patch of constant vorticity fluid sur-
rounded by irrotational flow. Is the Kirchhoff vortex,
with its discontinuous vorticity at the edge of the ellipse,
a useful model of rotating elliptical eyes? Melander et
al. (1987a) have shown that elliptical vortices with
smooth transitions to the far-field irrotational flow are
not robust but tend to become axisymmetrized via an
inviscid process in which a halo of vorticity filaments
become wrapped around a more symmetric vortex core.
Montgomery and Kallenbach (1997) further clarified the
physics of this process for initially monopolar distri-
butions of basic-state vorticity, showing that axisym-
metrization can be described as the radial and azimuthal
dispersion of vortex Rossby waves that are progres-
sively sheared by the differential rotation of the vortex
winds. In this latter work, the dependence of the local
wave frequency and stagnation radius on the radial vor-
ticity gradient was made explicit. In other recent work,
Koumoutsakos (1997) and Dritschel (1998) have shown
that the extent to which a vortex axisymmetrizes is con-
trolled by the steepness of the vortex edge, with very
sharp initial vorticity distributions resulting in robust
nonaxisymmetric configurations. This result is congru-
ent with Kelvin’s linear analysis for Rossby edge waves,
in which the asymmetries never axisymmetrize on a
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FIG. 8. Similar to the experiment of Fig. 6 but without the presence of the central vortex. The shading is the same as
in Fig. 6. Plots are for the times t 5 0, 4, 8, 16, 24, and 54 h.
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discontinuous basic-state vorticity profile. If we now
allow a sharp but smooth gradient, the local Wenzel–
Kramers–Brillouin (WKB) theory of Montgomery and
Kallenbach (1997) suggests radially trapped waves that
axisymmetrize very slowly. The physics is generally a
struggle between Rossby elasticity and radial shearing.
Dritschel (1998, Figs. 6 and 7) gives an example of a
robust, quasi-steady rotating elliptical pattern of vortic-
ity with aspect ratio 1.6 in which approximately 40%
of the vorticity drop from the center to the far field
occurs discontinuously at the edge of the ellipse. A re-
cent study by Montgomery and Enagonio (1998) further
suggests that even in the absence of any discontinuity
in a monotonic basic-state vorticity profile, convectively
generated vortex Rossby waves can modify the basic
state and cause a reversal in radial vorticity profile. The
sign change allows for the existence of a discrete neutral
or weakly unstable vortex Rossby mode that may not
decay.

Reasor et al. (2000) documented the elliptical eyewall
of Hurricane Olivia using NOAA WP-3D airborne dual-
Doppler radar data and flight-level data, and identified
barotropic instability across the eyewall as a possible
source for the observed wavenumber-2 asymmetry.
During the observation period, the symmetric part of
the vorticity consisted of an elevated annular region
within the eyewall surrounding a depressed region with-
in the eye. An associated smooth basic-state vorticity
profile was found to support instabilities with a maxi-
mum growth in wavenumber two. The observed wave-
number-2 vorticity asymmetry in the eyewall was hy-
pothesized to be associated with the breakdown of an
initially unstable ring of elevated vorticity as described
by Schubert et al. (1999) and in section 2d of this study.

An alternative interpretation of the elliptical patterns
observed in hurricanes is that their vorticity fields had
evolved into structures resembling tripoles. Strictly
speaking, a tripole is defined as a linear arrangement of
three regions of distributed vorticity of alternate signs,
with the whole configuration steadily rotating in the
same sense as the vorticity of the elliptically shaped
central core. Tripoles have been the subject of several
laboratory experiments (Kloosterziel and van Heijst
1991; van Heijst et al. 1991; Denoix et al. 1994) and
numerical simulations ever since they were shown to
emerge as coherent structures in forced two-dimensional
turbulence simulations (Legras et al. 1988). In addition
to their emergence as coherent structures in two-di-
mensional turbulence, tripoles can be produced in a va-
riety of ways, some quite exotic from the point of view
of tropical cyclone dynamics. For example, tripoles can
be produced by the collision of two asymmetric dipoles
(Larichev and Reznik 1983) or by the offset collision
of two symmetric Lamb dipoles (Orlandi and van Heijst
1992). Rossi et al. (1997) applied a quadrupolar dis-
tortion to a monopolar Gaussian vorticity distribution
and found that for a large enough distortion, relaxation
to a tripole can occur, demonstrating that finite-ampli-

tude asymmetric perturbations applied to a stable mono-
pole do not always relax to their axisymmetric base
state. The generation mechanism of probable impor-
tance to tropical cyclone dynamics, however, is that as-
sociated with the barotropic instability of axisymmetric
shielded or, more importantly, partially shielded5 vor-
tices (Gent and McWilliams 1986; Flierl 1988). Here
we consider the central core of the vortex to be mono-
tonic and, hence, eliminate possibly dominant instabil-
ities that may occur across the eyewall, as investigated
by Reasor et al. (2000).

a. Instability across the moat of a shielded vortex

A well-studied family of shielded monopoles has the
angular velocity v(r) given by

v(r) 5 v0 exp[2(r/b)a], (13)

where v0 is the angular velocity at r 5 0, b the size of
the vortex, and a the steepness parameter, with a . 0.
The associated tangential wind y(r) 5 rv(r) and vor-
ticity z(r) 5 d(ry)/rdr are given by

ay (r) 5 v r exp[2(r/b) ], (14)0

1
a az(r) 5 2v 1 2 a(r/b) exp[2(r/b) ]. (15)0[ ]2

Plots of v/v0, y /(bv0), and z/(2v0) as functions of r/b
for a 5 2, 3, 4, 5, 6 are shown in Fig. 9. The radius
of maximum tangential wind occurs at r/b 5 (1/a)1/a,
and the vorticity reverses sign at r/b 5 (2/a)1/a and is
a minimum at r/b 5 (1 1 2/a)1/a. Note that for increas-
ing a, the vorticity in the core becomes more uniform,
the annulus of negative z/(2v0) becomes thinner and
the vorticity gradient at the edge of the core becomes
steeper. The instability and nonlinear evolution of this
particular initial vorticity profile has been studied by
Carton and McWilliams (1989), Carton et al. (1989),
Orlandi and van Heijst (1992), Carton and Legras
(1994), and Carnevale and Kloosterziel (1994). Carton
and McWilliams (1989) showed that this vortex is lin-
early stable for a & 1.9 and unstable for larger values
of a. Carnevale and Kloosterziel (1994, their Fig. 7)
showed that wavenumber two remains the fastest grow-
ing wave until a ø 6, at which point wavenumber three
becomes the fastest growing wave. Within the range 1.9
, a , 6, the wavenumber-two instability can saturate
as two distinct quasi-stable structures. Carton and Le-
gras (1994) found that when a , 3.2, saturation to a
tripole occurs, while for a . 3.2, two separating dipoles
emerge. As a is increased, the nonlinear amplification

5 An annular ring of negative vorticity can ‘‘partially shield’’ the
far-field flow from a central core of positive vorticity just as, for
example, in the element lithium (atomic number 3), the two electrons
that occupy the inner, spherical 1s-orbital ‘‘partially shield’’ the out-
ermost electron from the 13 charge of the nucleus.
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FIG. 9. Profiles of dimensionless angular velocity, tangential wind,
and vorticity for unstable shielded monopoles. The maximum growth
is in m 5 2 when a 5 2, 3, 4, 5 and m 5 3 when a 5 6. The profile
is stable when a # 1.9.

FIG. 10. (a) Saturation of a wavenumber-2 maximum instability to
a tripole for a shielded monopole with a 5 3. The contours begin at
27 3 1024 s21 and are incremented by 5 3 1024 s21. (b) Saturation
to two separating dipoles when a 5 4. The contours begin at 215
3 1024 s21 and are incremented by 6 3 1024 s21. The model domain
for both plots is 600 km 3 600 km, and values along the label bar
are in units of 1024 s21.

of wavenumber two increasingly elongates the central
monopole, and when a . 3.2, the central monopole is
elongated to the point where it breaks as the two dipoles
separate.

Two experiments are now performed using initial vor-
ticity profiles given by (15) with b 5 35 km and v0 5
1.85 3 1023 s21. For the first experiment, a 5 3 and
for the second, a 5 4. In both experiments, an initial
perturbation of proportional (1%) random noise is im-
posed across the moat.

When a 5 3, the wavenumber-two maximum insta-
bility results in a rearrangement of the vorticity into a
tripole (Fig. 10a). During the early stages of the evo-
lution, the central vorticity becomes highly elongated

as the negative vorticity of the annulus is anticycloni-
cally wrapped into two satellite vortices. The anticy-
clonic advection of the vorticity originally in the annulus
is not due to the sign of the vorticity there, but is due
to the arrangement of the positive vorticity being pulled
from the central region. This will be more clearly dem-
onstrated in section 3c. During the later stages, the as-
pect ratio (major axis/minor axis) of the elliptical central
region has decreased to 1.7 with the satellite vortices
found along the minor axis.

When a 5 4, the end result of the vorticity rear-
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rangement is dramatically different. The wavenumber-
two maximum instability does not saturate as a tripole
but results in the formation of two separating dipoles
(Fig. 10b). In the early part of the evolution, the negative
vorticity within the moat is strong enough to elongate
the central region into a strip and two pools of positive
vorticity form within the strip near the two satellite vor-
tices. The strip is eventually broken as the two dipoles
propagate away from each other.

Since the radius of minimum vorticity is given by r/b
5 (1 1 2/a)1/a, the evaluation of (15) at this radius
yields the minimum vorticity zmin 5 2v0a exp[2(1 1
2/a)], from which it is easily shown that f 1 zmin , 0
when 2v0/ f . (2/a) exp(1 1 2/a). Thus, the minimum
absolute vorticity is negative when 2v0/ f . 7.39, 3.53,
2.24 for a 5 2, 3, 4 respectively. Recognizing that
tropical cyclones have values of central vorticity ex-
ceeding 50 times the Coriolis parameter (i.e., 2v0/ f .
50), the use of (13)–(15) as an initial condition in a full
primitive equation model would result in regions of un-
realistic negative inertial stability, that is, regions with
( f 1 2y /r)( f 1 z) , 0. These considerations make
application of the well-studied family of shielded mono-
poles (13)–(15) to tropical cyclones highly questionable.
In section 3c, we will demonstrate that more realistic
initial conditions, with positive vorticity in the moat,
can also lead to the formation of tripoles.

b. Linear stability analysis of a partially shielded
vortex

Returning to the four-region model of the appendix,
consider the special case z1 . 0, z2 , 0, and z3 5 0.
The axisymmetric basic-state angular velocity v(r) giv-
en by (A2) then reduces to

z 0 # r # r ,1 11
2 2 2 22v(r) 5 [z r 1 z (r 2 r )]r r # r # r ,1 1 2 1 1 22
2 2 2 22[z r 1 z (r 2 r )]r r # r , `, 1 1 2 2 1 2

(16)

and the corresponding basic-state relative vorticity z(r)
given by (A3) reduces to

z 0 , r , r ,1 12 d(r v )
z(r) 5 5 z r , r , r , (17)2 1 2rdr 
0 r , r , `, 2

where r1, r2 are specified radii and z1, z2 specified vor-
ticity levels. The eigenvalue problem (A6) reduces to

 1 1
mmv 1 (z 2 z ) (z 2 z )(r /r )1 2 1 2 1 1 2 2 2 C1

 1 2C1 1 2m2 z (r /r ) mv 2 z 2 1 2 2 22 2 

C15 n . (18)1 2C2

Analogously to the discussion of section 2a, the system
(18) describes the interaction between two counterpro-
pagating vortex Rossby waves with the wave along the
edge of the vortex (r 5 r1) propagating clockwise rel-
ative to strong cyclonic flow, and the wave along the
outer edge of the moat (r 5 r2) propagating counter-
clockwise relative to weaker flow. In this case, both the
Rayleigh and Fjørtoft necessary conditions for insta-
bility are satisfied. The eigenvalues of (18), normalized
by z1, are given by

n 1
25 {m[1 1 z /z 1 (1 2 z /z )(r /r ) ] 2 1}2 1 2 1 1 2z 41

1
2 26 ^{m(1 2 z /z )[1 2 (r /r ) ] 2 [1 2 2(z /z )]}2 1 1 2 2 14

2m 1/21 4(z /z )(1 2 z /z )(r /r ) & .2 1 2 1 1 2 (19)

Figure 11 shows isolines of the imaginary part of n/z1

as a function of r1/r2 and 2z2/z1. Although all basic
states satisfy both the Rayleigh and Fjørtoft necessary
conditions for instability, much of the region shown in
Fig. 11 is stable, and for any value of 2z2/z1, instability
can occur only when r1/r2 * 0.38. An interesting feature
observed in Fig. 11 is that a larger central vortex is
more susceptible to instability across its moat. For ex-
ample, the secondary eyewall in Hurricane Gilbert on
14 September would need to contract to a radius less
than 17 km in order for type 2 instability to occur. For
the case of a larger central vortex (r1 5 30 km) sur-
rounded by a secondary eyewall where 2z2/z1 is the
same as the Gilbert case, type 2 instability occurs when
the inner edge of the secondary eyewall contracts to a
radius of 55 km.

c. Type 2 instability across a moat of positive
vorticity: Application to hurricanes

The wind structure of a hurricane is intimately tied
to the convective field, with the convection tending to
produce low-level convergence and hence cyclonic vor-
ticity in the area of a convective ring. When convection
is concentrated near the inner edge of a ring of enhanced
vorticity, a contraction of the ring may follow in re-
sponse to nonconservative forcing (Shapiro and Wil-
loughby 1982; Willoughby et al. 1982; Willoughby
1990). As the ring contracts, the differential rotation
imposed across the ring by the central vortex becomes
greater and eventually reverses the self-induced differ-
ential rotation of the ring. At this point, the ring is
assured to have no type 1 instabilities. Further contrac-
tion, however, brings the inner edge of the ring closer
to the central vortex where type 2 instabilities between
the ring and central vortex can take place. Recalling
Fig. 11 and noting that during a contraction, r1/r2 in-
creases from small values toward unity, we expect type
2 instabilities to appear first with a maximum growth
rate in wavenumber two. The vorticity mixing associ-
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FIG. 11. Isolines of the maximum dimensionless growth rate ni/z1 among the azimuthal wavenumbers m 5 3, 4, . . . , 16
for instability of a partially shielded vortex. The isolines and shading are the same as in Fig. 3.

ated with such an instability perturbs the vortex into a
tripole and offers an explanation for the origin and per-
sistence of elliptical eyewalls in hurricanes.

A numerical integration is now performed under the
initial condition parameters {r1, r2, r3, r4} 5 {25, 40,
45, 67.5} km, {d1, d2, d3, d4} 5 {2.5, 2.5, 2.5, 7.5}
km, and {z1, z2, z3, z4, z5} 5 {47.65, 1.15, 9.65, 1.15,
20.35} 3 1024 s21, which simulates a large central

vortex of uniform vorticity surrounded by a thin ring
of enhanced vorticity located at r 5 42.5 km or 1.7
times the radius of maximum wind. The symmetric part
of the initial vorticity and tangential wind fields are
shown by the solid lines in Fig. 12. The secondary ring
has the effect of flattening the tangential wind near r 5
42 km but no secondary wind maximum is present. The
retrograding vorticity waves along the central vortex
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FIG. 12. Azimuthal mean vorticity and tangential velocity for the experiment shown in
Fig. 13 at the selected times t 5 0 (solid), 7.5 h (long dash), 9 h (medium dash), and 24 h
(short dash).

edge (r ø 25 km) are embedded in relatively strong
angular velocity of 23.5 3 1024 s21 while the prograding
waves along the inner edge of the ring (r ø 40 km) are
embedded in weaker angular velocity of 10.1 3 1024

s21. Near the outer edge of the ring (r ø 45 km), the
angular velocity is 8.8 3 1024 s21, suppressing type 1
instability. Solving (A6) for this basic state reveals a
sole wavenumber-two instability whose growth rate has
an e-folding time of 62 min. Results of this experiment
are shown in Fig. 13.

At t 5 7.5 h, the wavenumber-two instability becomes
evident as the vortex and inner edge of the ring have
been perturbed into ellipses. Asymmetries along the vor-
tex are advected more quickly than those along the ring
edge while the aspect ratios of the vortex and ring edge
move farther away from unity, so that at t 5 9 h, the
major vertices of the vortex have moved close enough
to the ring to begin stripping vorticity from it. The fil-
aments of vorticity being stripped from the ring are then
pulled across the moat into regions of stronger rotation
and are advected along the vortex edge. As the leading
edges of the filaments approach the downstream major
vertices of the vortex, the differential rotation becomes
greater and by t 5 10.5 h, the outer edges of the fila-
ments have become trailing features. As the trailing edg-
es approach the downstream major vertices, their inner
edges are again swept cyclonically along the edge of
the vortex. At t 5 12 h, this repetitive process has re-
sulted in two strips of vorticity, which originated from
the ring edge, wound anticyclonically around two pools
of low vorticity, which originally composed the moat.
The pools, or satellite vortices, lie along the minor axis

of the elliptical central vortex. During its evolution, the
central vortex takes on a variety of elliptical patterns
with aspect ratios (major axis/minor axis) ranging from
1.3 to 1.8. Near the end of the simulation, the semimajor
(semiminor) axis is near 60 km (40 km) giving an aspect
ratio near 1.5. Although the ellipticity of the central
vortex is a persistent feature, the tripole pattern becomes
less easily identified when t . 12 h as the vorticity of
the ring becomes increasingly mixed into the regions of
the satellites.

The period of rotation of the tripole is approximately
89 min. The linear theory of Kelvin (Lamb 1932, 230–
231) applied to a wavenumber-two asymmetry on a Ran-
kine vortex with Vmax 5 58 m s21 at r 5 25 km predicts
a period of rotation of 90 min. The good agreement
between Kelvin’s theory and the model results suggest
that the period of rotation of a tripole can be predicted
well if treated as a Kirchhoff vortex and is then in good
agreement with the results of Kuo et al. (1999). Polvani
and Carton (1990) calculated the rotation rate of a point-
vortex tripole using the formula

1 G2V 5 G 1 , (20)121 22pd 2

where d is the distance from the centroid of the elliptical
central vortex to the centroid of either satellite vortex
and G1, G2 are the circulations of the central and satellite
vortices. It is not clear how to accurately apply (20) to
our numerical results since the calculation of G2 requires
quantification of how much vorticity from the ring has
been wound around the low vorticity of the moat. We
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FIG. 13. Vorticity contour plots for the type 2 instability experiment. Selected times are t 5 0, 7.5, 9, 10.5, 12, and
24 h. Successively darker shading denotes successively higher vorticity.
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can, however, approximate a range of values between
two extreme cases, one in which the satellite vortices
contain only vorticity from the moat, and the other in
which the satellite vortices have ingested all of the vor-
ticity of the ring. At 24 h the centroid of each satellite
vortex is roughly 36 km from the centroid of the central
vortex and we can assume that the circulation of the
central vortex has remained nearly fixed so that G1 ø
2.98p km2 s21. If no vorticity from the ring were in-
gested by the satellite vortices, then their circulations
would be half the initial circulation of the moat, yielding
G2 ø 0.06p km2 s21. If all of the ring vorticity were
ingested by the satellite vortices, then their circulations
would be half the sum of the initial circulations of the
moat and ring, yielding G2 ø 0.26p km2 s21. Using
these values in (20) we obtain the range of rotation
periods 87 & P & 90 min, where P 5 2p/V. It is clear
that in this case, where G1 k G2, there is little sensitivity
to the choice of G2 and the accuracy of (20) depends
largely on the estimated value of d.

The evolution of the symmetric part of the flow
(dashed lines in Fig. 12) shows a 26% reduction of the
maximum vorticity in the ring during the initial stage
of the tripole formation between t 5 7.5 h and t 5 9
h. This reduction smooths out the wind profile with the
initial flat spot replaced with a more uniform slope. At
t 5 24 h, the vorticity has become nearly monotonic
except for a small bump near r 5 50 km where trailing
spirals are present, and the tangential wind maximum
has decreased from its initial value of 58 to 52 m s21.
A remarkable aspect of type 2 instability is that a large
and intense central vortex can be dramatically perturbed
by apparently undramatic features of its near environ-
ment. For example, a thin ring of vorticity that is sta-
bilized by its proximity to a central vortex can persist
indefinitely but is barely discernable in the wind field.
Any subsequent strengthening or contraction of the ring
can introduce type 2 instability, and the central vortex
would be significantly rearranged.

Unlike the case of an initial shielded vortex (section
3a), where wavenumber-two instabilities can saturate as
tripoles or dipole pairs, the emergence of a tripole in
our numerical simulations appears to be an ubiquitous
result of type 2 instability across a moat of reduced, but
positive vorticity. Tripoles result from a variety of initial
conditions that share the common feature of a depressed
region of vorticity within the moat, with higher vorticity
outside. The initial width of the annular ring of elevated
vorticity is unimportant to the early development of a
tripole since the outer edge of the ring is dynamically
inactive. The width of the ring does, however, play a
role in the flow evolution at later times. As seen in the
numerical results of Fig. 14, for the case of an initially
broad annular ring, the formation of a tripole is followed
by a relaxation to a nearly steady solid body rotation
that is absent in the previous experiment. In this case,
most of the vorticity within the interior of the ring does

not participate in the vorticity rearrangement and the
tripole pattern is more robust.

The observational signature of a tripolar structure
would likely be identified by the presence of its weak
satellite vortices, but the position where the satellites
would be expected to reside may inhibit such identifi-
cation. For example, airborne Doppler radar–derived
flows, as calculated by Reasor et al. (2000), can become
suspect at distances greater than 30–40 km from the
hurricane center. In the experiment shown in Fig. 13,
the satellite vortices reside near r 5 40 km. The presence
of such satellites in an actual hurricane could then be
difficult to identify without some modification to present
airborne radar-based methods.

4. Concluding remarks

The relative importance of conservative vorticity dy-
namics in a mature hurricane, compared with the non-
conservative effects of friction and moist convection, is
an open question. Ideally, the hurricane should be sim-
ulated using a progression of numerical models of vary-
ing complexity. Working from the nonhydrostatic prim-
itive equations to the nondivergent barotropic model,
the implications of each simplification can be measured
in terms of the question ‘‘what physics remain?’’ while
progressing in the opposite sense, the question ‘‘what
physics are introduced?’’ must be addressed. With more
complex models, fundamental mechanisms may be ob-
scured by the inclusion of additional but extraneous
dynamics that often require parameterizations and typ-
ically must compromise, sometimes severely, numerical
resolution and thus dynamical accuracy. With simpler
models, there exists the danger that apparently dominant
mechanisms would be completely overshadowed by the
inclusion of additional physics.

The present study was confined to the simple frame-
work of the nondivergent barotropic model in an attempt
to capture the fundamental interaction between a hur-
ricane primary eyewall and surrounding regions of en-
hanced vorticity in the context of asymmetric PV re-
distribution. A four-region model was used to simulate
a monopolar central vortex surrounded by a region of
low vorticity, or moat, which in turn was surrounded
by an annular ring of enhanced vorticity. The moat was
found to be a region of intense differential rotation and
associated enstrophy cascade where cumulonimbus con-
vection would have difficulty persisting. This mecha-
nism offered an additional explanation beyond meso-
scale subsidence for the relative absence of deep con-
vection in the moat.

The four-region model provided a basic state that can
support two instability types. In the first instability type,
phase locking occured between vortex Rossby waves
propagating along the inner and outer edges of the an-
nular ring. The central vortex was dynamically inactive
but served to induce a differential rotation across the
ring, which had the effect of stabilizing the ring by
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FIG. 14. Results of the numerical integration for the case of an initially wide annular ring. Mean profiles of vorticity and tangential wind
and vorticity contour plots for t 5 3.5 h and t 5 12 h. The outer edge of the ring does not participate in the mixing and the tripole rotates
nearly as a solid body. Little change is observed in the mean profiles after t 5 3.5 h.

opposing its self-induced differential rotation and in-
hibiting phase locking between the ring edges. This sta-
bilizing mechanism offered an explanation for the ob-
served longevity of secondary eyewalls in hurricanes.

Observed mean profiles in Hurricane Gilbert, calculated
by Black and Willoughby (1992), suggested that the
presence of Gilbert’s central vortex was indeed adequate
to stabilize its secondary eyewall. In the case where the
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opposing differential rotation was insufficient to com-
pletely stabilize the ring, the vorticity of the ring mixed
to form a broader and weaker ring. During this process,
the central vortex imposed a barrier to inward mixing
and inhibited rearrangement into a monopole. The flow
relaxed to a quasi-steady state, which satisfied the
Fjørtoft sufficient condition for stability while still sat-
isfying the Rayleigh necessary condition for instability,
and while maintaining a significant secondary wind
maximum.

In the second instability type, the outer edge of the
annulus was rendered dynamically inactive by the vor-
tex-induced differential rotation, and interaction across
the moat between the inner edge of the annular ring and
the outer edge of the central vortex took place. This
instability was most likely realized in azimuthal wave-
number two and the subsequent mixing resulted in the
formation of a tripole. This mechanism offered an ex-
planation for the origin and persistence of elliptical eye-
walls, but the existence and significance of type 2 in-
stabilities in tropical cyclones remains an open question.

Acknowledgments. The authors would like to thank
Rick Taft, Paul Reasor, Scott Fulton, William Gray, John
Knaff, Mark DeMaria, Frank Marks, Peter Dodge, Mel
Nicholls, and Hung-Chi Kuo for many helpful com-
ments and discussions. This work was supported by NSF
Grant ATM-9729970 and by NOAA Grant
NA67RJ0152 (Amendment 19).

APPENDIX

Linear Stability Analysis of the
Four-Region Model

Consider a circular basic-state vortex whose angular
velocity v(r) is a given function of radius r. Using
cylindrical coordinates (r, f ), assume that the small-
amplitude perturbations of the streamfunction,
c9(r, f, t), are governed by the linearized barotropic
nondivergent vorticity equation (]/]t 1 v]/]f )¹2c9 2
(]c9/r]f )(dz /dr) 5 0, where z(r) 5 d(r2v)/rdr is the
basic-state relative vorticity, (u9, y9) 5 (2]c9/r]f,
]c9/]r) the perturbation radial and tangential compo-
nents of velocity, and ](ry9)/r]r 2 ]u9/r]f 5 ¹2c9 the
perturbation vorticity. Searching for modal solutions of
the form c9(r, f, t) 5 (r)ei(mf2nt) , where m is the az-ĉ
imuthal wavenumber and n the complex frequency, we
obtain the radial structure equation

d dĉ dz
2(n 2 mv ) r r 2 m ĉ 1 mr ĉ 5 0. (A1)1 2[ ]dr dr dr

A useful idealization of an annular region of elevated
vorticity surrounding a central vortex is the piecewise
constant four region model. In this model the axisym-
metric basic-state angular velocity v(r) is given by

z 0 # r # r ,1 1

21 z 2 (z 2 z )(r /r) r # r # r ,2 2 1 1 1 2v(r) 5 (A2)
2 22 z 2 (z 2 z )(r /r) 2 (z 2 z )(r /r) r # r # r ,3 2 1 1 3 2 2 2 3

2 2 22(z 2 z )(r /r) 2 (z 2 z )(r /r) 1 z (r /r) r # r , `, 2 1 1 3 2 2 3 3 3

and the corresponding basic-state relative vorticity by

z 0 , r , r ,1 1

2 d(r v ) z r , r , r ,2 1 2z(r) 5 5 (A3)
rdr z r , r , r ,3 2 3

0 r , r , `, 3

where r1, r2, r3 are specified radii and z1, z2, z3 are
specified vorticity levels.

Restricting study to the class of perturbations whose
disturbance vorticity arises solely through radial dis-
placement of the basic-state vorticity, then the pertur-
bation vorticity vanishes everywhere except near the
edges of the constant vorticity regions, that is, (A1)
reduces to (rd/dr)( ) 2 m2 5 0 for r ± r1, r2,rdĉ/dr ĉ
r3. The general solution of this equation in the four
regions separated by the radii r1, r2, r3 can be con-

structed from different linear combinations of rm and
r2m in each region. A physically revealing approach is
to write the general solution, valid in any of the four
regions, as a linear combination of the basis functions

(r), defined by(m)Bj

m(r/r ) 0 # r # r ,j j(m)B (r) 5 (A4)j m5(r /r) r # r , `,j j

for j 5 1, 2, 3. The solution for is then 5ĉ(r) ĉ(r)
C1 (r) 1 C2 (r) 1 C3 (r), where C1, C2, and(m) (m) (m)B B B1 2 3

C3 are complex constants. Since /dr is discontin-(m)dB1

uous at r 5 r1, the solution associated with the constant
C1 has vorticity anomalies concentrated at r 5 r1 and
the corresponding streamfunction decays away in both
directions from r 5 r1. Similarly, the solutions asso-
ciated with the constants C2 and C3 have vorticity
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FIG. A1. Isolines of the maximum value of the dimensionless growth rate ni/z3, computed from (A7), as a function of
r1/r2 and r2/r3 for the case z1/z3 5 5.7 and for azimuthal wavenumbers up to m 5 16. Type 1 instability (for m 5 3, 4,
. . . , 16) occurs on the left side of the diagram and type 2 instability (for m 5 2, 3, . . . , 16) occurs on the right side. The
azimuthal wavenumber associated with the most unstable mode is indicated by the alternating gray scales. The white region
is stable, and the isolines are ni/z3 5 0.01, 0.03, 0.05, . . . .

anomalies concentrated at r 5 r2 and r 5 r3, respec-
tively.

In order to relate C1, C2, C3, we integrate (A1) over
the narrow radial intervals centered at r1, r2, r3 to obtain
the jump (pressure continuity) conditions

r 1ejdĉ
lim (n 2 mv )r 1 (z 2 z )mĉ(r )j j j11 j j1 2[ ]dre→0 r 2ej

5 0, (A5)
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where v j 5 v(rj) and j 5 1, 2, 3. Substituting our general solution into the jump conditions (A5) yields the
matrix eigenvalue problem

1 1 1 
m mmv 1 (z 2 z ) (z 2 z )(r /r ) (z 2 z )(r /r )1 2 1 2 1 1 2 2 1 1 32 2 2

C C   1 1 1 1 1   
m m(z 2 z )(r /r ) mv 1 (z 2 z ) (z 2 z )(r /r ) C 5 n C . (A6)     3 2 1 2 2 3 2 3 2 2 3 2 2  2 2 2

C C   3 3
1 1 1

m m 2 z (r /r ) 2 z (r /r ) mv 2 z3 1 3 3 2 3 3 32 2 2 

Noting that for the basic state given by (A2), v 1 5 z1,1
2

v 2 5 [z2 2 (z2 2 z1)(r1/r2)2] and v 3 5 [z3 2 (z2 21 1
2 2

z1)(r1/r3)2 2 (z3 2 z2)(r2/r3)2], we can solve the ei-
genvalue problem (A6) once we have specified the pa-
rameters m, r1, r2, r3, z1, z2, z3.

Now consider the special case obtained by
assuming z 2 5 0. Then, dividing the first row of
(A6) by z1 and the second and third rows by z 3 , we1 1

2 2

obtain

21 m m) )z n r r1 1 11 2 m 1 21 2 1 2 1 2 1 2z z r r3 3 2 3) )
m 2 mr z r n r1 1 1 2) )1 1 m 2 2 5 0. (A7)1 2 1 21 2 1 2 1 2r z r z r2 3 2 3 3

m m 2 2r r z r r n) )1 2 1 1 21 2 m 1 1 2 1 21 2 1 2 1 2 1 2 1 2[ ]r r z r r z3 3 3 3 3 3) )

For given r1/r2, r2/r3, and z1/z3, the determinant (A7)
yields three values of the dimensionless frequency n/z3.
Choosing the most unstable of these three roots, Fig.
A1 shows isolines of the imaginary part of n/z3 as a
function of r1/r2 and r2/r3 for the case z1/z3 5 5.7. For
this value of z1/z3, there are two distinct types of in-
stability. Type 1 occurs for azimuthal wavenumbers m
5 3, 4, 5, . . . when r1 is small compared to r2 and when
r2 is nearly as large as r3 (the annular ring of elevated
vorticity is narrow). Type 1 instability involves the in-
teraction of vorticity waves at r2 and r3, that is, across
the ring of elevated vorticity. Type 2 instability occurs
for azimuthal wavenumbers m 5 2, 3, 4, . . . when r1

is nearly as large as r2 (the moat is narrow). Type 2
instability involves the interaction of vorticity waves at
r1 and r2, that is, across the moat. Although the two
types of instability are well separated when z1/z3 5 5.7
(and larger), they begin to overlap in the central part of
the diagram as z1/z3 decreases to approximately 2. Type
1 instability is discussed in section 2 and type 2 insta-
bility in section 3.

The analysis presented here is an extension of pre-
vious work by Dritschel (1989) and Carton and Legras
(1994). Dritschel considered the thin-strip limit r2 2 r1

k r3 2 r2, where instabilities across the ring strongly
dominate instabilities across the moat. The region of
Fig. A1 that is pertinent in this limit is restricted to the
upper-left corner and, in this case, instabilities that serve
as a precursor to tripole formation are suppressed. Car-
ton and Legras considered the special case of the four-
region model applied to shielded monopoles. They pre-
sent solutions to the eigenvalue problem (A7) where the
vorticity of the ring is restricted to be negative and given
by z3 5 2z1[ /( 2 )].2 2 2r r r1 3 2
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