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ABSTRACT

New objective methods are introduced that use readily available data to estimate various aspects of the
two-dimensional surface wind field structure in hurricanes. The methods correlate a variety of wind field
metrics to combinations of storm intensity, storm position, storm age, and information derived from geo-
stationary satellite infrared (IR) imagery. The first method estimates the radius of maximum wind (RMW)
in special cases when a clear symmetric eye is identified in the IR imagery. The second method estimates
RMW, and the additional critical wind radii of 34-, 50-, and 64-kt winds for the general case with no IR
scene—type constraint. The third method estimates the entire two-dimensional surface wind field inside a
storm-centered disk with a radius of 182 km. For each method, it is shown that the inclusion of infrared
satellite data measurably reduces error. All of the methods can be transitioned to an operational setting or

can be used as a postanalysis tool.

1. Introduction

At present, there are a number of methods available
for measuring or estimating surface wind fields around
tropical cyclones, each with its own strengths and short-
comings. Satellite-based microwave scatterometers
generally perform best in low-wind and low-precipi-
tation environments (Zeng and Brown 1998; Weissman
et al. 2002; Yueh et al. 2003) and are thus useful for
estimating surface winds in the tropical cyclone (TC)
outer core away from the high-wind and high-
precipitation region of the eyewall. Satellite-based pas-
sive microwave instruments such as the Special Sensor
Microwave Imager (SSM/I) are routinely applied to the
estimation of surface wind over open water but are also
limited to the outer core when estimating TC winds
(Goodberlet et al. 1989). Similarly, geostationary satel-
lite cloud-track winds (e.g., Velden et al. 2005) can be
deduced in the outer core away from the obscuring
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effects of the cirrus shield that typically resides over the
inner core. The underlying surface winds can then be
estimated by reducing the cloud-track winds to the sur-
face (Dunion et al. 2002; Dunion and Velden 2002).
Further information on outer-core surface winds is
obtained by global positioning system (GPS) dropwind-
sondes (Hock and Franklin 1999) released from Gulf-
stream-IV jet aircraft that routinely fly in the western
Atlantic basin (Aberson and Franklin 1999; Aberson
2002) and more recently from Astra SPX jet aircraft
flying in the northwest Pacific basin (Wu et al. 2005).
For reasons of safety, these small high-altitude jet air-
craft avoid the turbulent area of the TC inner core.
While there are a variety of sources for TC outer-
core wind data, the only inner-core wind data that are
routinely available at present are collected by low-
altitude aircraft reconnaissance. These aircraft—the
National Oceanic and Atmospheric Administration
(NOAA) WP-3D and United States Air Force WC-
130—typically fly radial flight legs toward and away
from the TC center. Most of the radial legs are flown at
an altitude of ~3 km and the wind at that level is mea-
sured by inertial and GPS navigation systems on board
the aircraft. The flight-level wind data can be reduced
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to the surface using empirically derived relationships
(e.g., Franklin et al. 2003).

In addition to flight-level measurements, dropwind-
sondes are regularly deployed from the WP-3D and
WC-130 aircraft, and surface wind below the WP-3D
aircraft is estimated along the flight path by a passive
microwave sensor—the Stepped-Frequency Microwave
Radiometer (Uhlhorn and Black 2003). In addition to
the onboard wind sensors, the WP-3D aircraft are
equipped with Doppler radar that can be operated in
dual-Doppler mode to measure the three-dimensional
wind structures in the precipitating inner core (Reasor
et al. 2000; Marks 2003), but these data are not avail-
able operationally and require significant postprocess-
ing.

At present, sampling of the inner cores of hurricanes
by low-altitude aircraft is performed routinely only in
the Atlantic basin. Aircraft reconnaissance in the east-
ern and central Pacific is occasionally tasked at the dis-
cretion of the National Hurricane Center. In all other
TC-prone ocean basins, in situ information about inner-
core winds is based entirely on occasional serendipitous
sources such as ships, buoys, and island-based meteo-
rological measurements. Furthermore, because of the
range limitations of the aircraft, westward-tracking hur-
ricanes in the Atlantic are not investigated until they
are close enough to aircraft bases required for takeoff
and landing. Thus, storms that are far out to sea, but
still pose a threat to shipping and marine interests, are
not sampled by aircraft and information about inner-
core wind is often unavailable for many days.

Here, we introduce new methods for estimating TC
surface wind structure in the absence of aircraft recon-
naissance, with an emphasis on the TC inner core. The
methods use information regarding current storm in-
tensity, position, and age—which are always operation-
ally available—and information related to the cloud
structures measured by geostationary infrared (IR) im-
agery, which is available globally every 30 min.

The data used in this study comprise flight-level wind
profile data from U.S. Air Force WC-130 and NOAA
WP-3D reconnaissance archives (Jorgensen 1984;
Kossin and Eastin 2001), IR imagery from the Coop-
erative Institute for Research in the Atmosphere
(CIRA) Tropical Cyclone IR Archive (Zehr 2000),
best-track position fixes (Jarvinen et al. 1984), opera-
tional “working best track” intensity and position fixes,
and “extended best track” information, which in-
cludes measurements of critical wind radii (Kimball and
Mulekar 2004). The data cover the North Atlantic
hurricane seasons from 1995 to 2004. All IR imagery
was renavigated to storm-centric coordinates using cu-
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bic-spline-interpolated best-track positions (Kossin
2002).

We will introduce three methods for estimating the
TC surface wind field structure. The first method (sec-
tion 2a) takes direct advantage of the relationship be-
tween TC eye size and the radius of maximum wind
(RMW). The second method (section 2b) applies ex-
tended best-track information to directly estimate the
critical wind radii of 34-, 50-, 64-kt winds (R34, R50,
and R64, respectively), and RMW. In the third method
(section 2¢) we apply flight-level wind profiles, working
best-track information regarding storm intensity and
position, and IR data to train a simple regression that
can then be used to estimate the entire two-dimensional
inner-core surface wind field. In sections 2a—c, we will
perform independent tests of the method and docu-
ment error, and section 3 will summarize the results.

2. Estimation of surface wind field structure

a. Direct estimation of RMW in clear-eye cases

The relationship between the transverse (divergent)
and primary (rotational) circulations in TCs is well es-
tablished (Shapiro and Willoughby 1982). Typically, the
primary updraft core in the eyewall is within a few ki-
lometers of the RMW and the updraft core is generally
flanked by radially broader regions of weaker subsi-
dence (e.g., Jorgensen et al. 1985). As a storm matures,
the area of subsidence inside the RMW typically forms
an eye while the subsiding area outside the RMW forms
the relatively convection free area referred to some-
times as the moat (Kossin et al. 2000, Rozoff et al.
2006). When a clear symmetric eye becomes apparent
in the IR imagery, we can then directly exploit this
relationship with our data by considering the relation-
ship between IR-measured eye size and RMW.

To form an algorithm that can be used to estimate
RMW, we formed a sample of the IR-measured eye size
in cases of well-defined clear and symmetric eyes, and
regressed aircraft-measured RMW onto this. We also
have an a priori expectation that the RMW is corre-
lated to storm intensity (hereafter referred to as V,,,,)
and storm latitude (Shea and Gray 1973; Mueller et al.
2006), but we found that including these as additional
predictors in the regression did not have much effect on
the error or variance explained. In this case, there is a
such a strong one-to-one relationship between IR-
measured eye size and RMW that the inclusion of ad-
ditional predictors that have a less direct relationship to
RMW made virtually no additional contribution.

The sample of aircraft-measured RMW was con-
structed by individual scrutiny of flight-level tangential
wind profiles from the NOAA WP-3D database. Re-
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duction of the flight-level RMW to the surface was per-
formed assuming a 45° outward slope with height from
1 km above the surface to flight level, and no slope
below 1 km (Willoughby 1998; Jorgensen 1984; Cor-
bosiero et al. 2005). Cases where the RMW was asso-
ciated with a secondary wind maximum within a sec-
ondary eyewall (Willoughby et al. 1982; Samsury and
Zipser 1995) were not included in the sample, and the
algorithm will suffer from transient errors related to
eyewall replacement cycles. Under the limitation that
the ubiquitous cirrus canopy of hurricanes is opaque in
IR wavelengths, there is no present method for identi-
fying secondary eyewalls with IR imagery and our al-
gorithm is necessarily constrained by this.

The IR-measured eye size was calculated as follows:

1) Identify the preceding storm-centered IR image

nearest in time to the aircraft reconnaissance fix.

2) Measure the mean cloud-top brightness tempera-
ture above the eyewall (denoted BT.ycwan). The
mean is calculated in an annulus 40 = r = 70 km. We
found that this annulus was a good compromise for
capturing more eyewall cloud-top BT with minimal
contribution from the warmer BT found in the eye
and outside the eyewall in the moat.

If BT ¢yewan = —50°C, which is true in most cases, we

measure the distance from storm center to the

—45°C isotherm along the four cardinal directions:

N, E, S, and W. We found that the radius of the

—45°C isotherm serves as a good proxy for the cir-

cular region of steep BT gradient separating the

warm eye and cold eyewall cloud tops, but without
introducing the noise inherent in calculating gradi-
ents directly from the BT data. The requirement
that BT yewan = —50°C better guarantees that the

—45°C isotherm will lie within the eye—-eyewall in-

terface.

Occasionally, it is found that BT.yeway > —50°C. In

these somewhat rare cases, the IR-measured eye

size is better represented by measuring the distance
from storm center to a warmer isotherm as follows:

(a) measure the warmest pixel in a storm-centered
disk r = 30 km (denoted BT,.);

(b) the warmer isotherm is then given by
(BTeye + 2BT,yewan)/3; we found that shifting
the isotherm in this way does a good job of plac-
ing it within the eye-eyewall interface as re-
quired;

(c) measure the distance from storm center to this
isotherm along the four cardinal directions (N,
E, S, and W).

The IR-derived eye size is then given by the mean of

the four distances.

3)

4)

5)
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The regression, which explains 60% of the RMW
variance, is given by

RMW = ag + a;Rye,

where RMW_, is the estimated surface RMW (km),
R, is the IR-measured eye size (km), and the coeffi-
cients are a, = +2.8068, a; = +0.8361.

In a dependent test on the sample data, the mean
absolute error (MAE) of the estimated RMW was 4.7
km (sample size N = 164). The spatial resolution of the
IR imagery is 4 km, so this is near the limit of reducing
the mean error characteristics. However, as mentioned
previously we expect the performance to be affected by
transient but possibly large errors caused by eyewall
replacement cycles and asymmetries. Another chal-
lenge to estimating RMW is the occurrence of “flat”
tangential wind profiles, that is, cases where the wind
decays very slowly with radius. In these cases, a small
local wind increase at large radius can cause a large
instantaneous jump in the RMW. This makes the op-
erational utility of knowledge of the RMW somewhat
questionable in such cases. Corbosiero et al. (2005) ad-
dressed this issue by defining a “radius of maximum
slope change,” which is typically the radius where the
tangential wind first stops increasing with increasing
radius and becomes flat or starts decreasing with radius.
This is the radius that our algorithm tends to identify
and in most cases it is collocated with the RMW.

As an independent test, the algorithm was executed
in real time during the 2005 Atlantic hurricane season.
Automated identification of clear eyes in the IR imag-
ery was performed by the advanced Dvorak technique
(ADT; Velden et al. 1998; Olander and Velden 2007),
and in these cases, the RMW algorithm was executed
every half-hour. Validation was performed against air-
craft reconnaissance, which yielded 139 cases. The error
distribution is shown in Fig. 1. As expected, we find that
the algorithm is biased toward underestimating the
RMW (bias = +6.7 km); the bias gives some indication
of the systematic difference between the RMW and the
radius of maximum slope change described above,
which is expected to be less than or equal to the RMW
in general. The MAE of the RMW estimates is 10.2 km.
The mean relative error of the testing sample is 19% of
the estimated RMW.

One application that has been found to benefit from
the IR-estimated RMW is the Cooperative Institute for
Meteorological Satellite Studies Advanced Microwave
Sounding Unit (CIMSS-AMSU) algorithm (Brueske
and Velden 2003), which is used operationally to esti-
mate TC intensity. The algorithm relies on RMW in-
formation to serve as a proxy for eye size in order to
mitigate subsampling issues due to the coarse resolu-
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Fi1G. 1. Error distribution of RMW estimates in cases where a clear eye was identified (N =
139). The errors are based on independent real-time testing during the 2005 Atlantic hurricane
season. Clear-eye cases were identified by the ADT.

tion of the instrument (Herndon and Velden 2004).
This RMW information has been traditionally ex-
tracted from the Automated Tropical Cyclone Forecast
(ATCF) system (Miller et al. 1990; Sampson and
Schrader 2000). To measure the potential improvement
in the CIMSS-AMSU algorithm, 55 cases from 2001 to
2004 were compared using RMW information from the
ATCEF system versus the IR-derived RMW from our
algorithm. Using the RMW from the ATCEF files, the
MAE of the intensity estimates (measured as minimum
sea level pressure) was 7.9 mb with a bias of +3.9 mb.
Replacing the ATCF RMW with IR-measured RMW
decreased the absolute error by 30% to 5.6 mb and the
bias was reduced to —1.4 mb (errors are determined
using contemporaneous aircraft reconnaissance mini-
mum sea level pressure measurements). Because of the
significant error reduction in the intensity estimates,
starting in the 2005 season the CIMSS-AMSU intensity
estimation algorithm began using the IR-estimated
RMW, which are made available in real time by the
ADT in clear-eye cases. More thorough testing is under
way.

b. Direct estimation of R34, R50, R64, and RMW

Here we form a general algorithm for the direct cal-
culation of the axisymmetric critical surface wind radii
R34, R50, and R64 as well as RMW, but without the
requirement of a clear eye in the IR imagery as consid-
ered in the previous section. For the construction of this
algorithm, we applied extended best-track data and
storm-centered IR imagery that has been averaged over
6-h periods to coincide with the synoptic periods of the
extended best track. The extended best-track data were
quality controlled (as discussed in Kimball and Mulekar
2004) to remove spurious cases that do not satisfy the
required relations RMW = R64, RMW = R50, RMW
= R34, and R64 < R50 < R34. To establish a higher

degree of confidence in the reported critical surface
wind radii, we formed a subset of the extended best-
track data in which all data points are within =12 h of
an aircraft reconnaissance fix.

The critical wind radii in the extended best track are
identified in each storm quadrant (NE, SE, SW, and
NW), which we averaged to form an estimate of the
axisymmetric radii. The 6-hourly mean IR imagery was
produced for the entire archive, which presently spans
the period 1995-2004. This resulted in 2995 mean two-
dimensional images, which were then reduced to
6-hourly mean radial profiles by azimuthally averaging
the two-dimensional imagery around the storm center
to a radius of 500 km. To extract the leading modes of
the variability of the azimuthally averaged brightness
temperature (BT) profiles, we performed principal
component analysis (PCA) on the standardized sample.
The leading modes and the variances they explain are
shown in Fig. 2. The first mode (or empirical orthogo-
nal function; EOF) has little spatial structure and is
always the same sign. This mode represents the overall
BT anomaly of the cloud shield. The expansion coeffi-
cient (or principal component; PC) associated with this
mode would be negative (positive) for cases where the
BT is colder (warmer) than average. It is found that the
first PC is well correlated with V.. (with a negative
correlation coefficient), which is in agreement with the
basis of the Dvorak enhanced IR technique (Dvorak
1984); that is, colder cloud-top temperatures are asso-
ciated with greater intensity. The remaining modes
(EOFs 2 and 3) have more structure and change sign at
various radii. For example, when PC3 is negative, the
eye BT is warmer than average and the cloud-top BT in
the region 110 = r = 360 km is colder than average.
Again in agreement with the basis of the Dvorak tech-
nique, we find that PC3 is well correlated with V.
(with a negative correlation coefficient); that is, warmer
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FIG. 2. Leading modes of variability (EOFs) of the 6-hourly
mean azimuthally averaged profiles of IR BT. The variance ex-
plained by each EOF is shown in parentheses.

eyes and colder eyewall cloud tops are associated with
greater intensity.

In addition to information about storm intensity, the
EOFs contain information about the spatial structure of
the convection occurring around the storms; each IR
scene is represented by a particular linear combination
of the EOFs, and the associated PCs contain concise
information about eye size and the radial extent of the
cirrus canopy and spiral bands. The relationship be-
tween convection and the local wind field is established
(e.g., Samsury and Zipser 1995) and the EOFs are then
expected to contain information about wind structure.

Our objective is to form estimates of critical wind
radii with information from our datasets. Our a priori
expectation, based on previous work (e.g., Shea and
Gray 1973; Merrill 1984; Weatherford and Gray
1988a,b; Carr and Elsberry 1997; Cocks and Gray 2002;
Croxford and Barnes 2002; Bell and Ray 2004; Kimball
and Mulekar 2004), is that the critical wind radii will
depend on V.., latitude ¢ (due to variations of the
local Coriolis force), and storm age Ar measured as
hours since reaching tropical storm intensity (due to the
natural broadening of the wind field with time). For
each critical wind radius, we first formed a multiple
regression with the predictors V.., ¢, and Af, and to
identify relationships between the critical wind radii
and the IR imagery, we then added the IR-based PCs to
the regression. Colinearity between the predictors of
our regressions is not an issue: the PCs are orthogonal
by construction and the largest correlation among the
PCs and remaining predictors is 0.3.

Each regression was formed using a backward step-
wise method. Backward stepwise regression begins with
all the potential predictors in the model and removes
the least significant predictors until all the remaining
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predictors are statistically significant. In our regres-
sions, we require significance at the 99.9% or higher
confidence level.

Table 1 shows the correlations with and without the
inclusion of the IR-based PCs. The regressions are
based on normalized predictors and predictands so that
the relative contributions of each predictor can be dem-
onstrated. Most of the variance of R34 is explained by
Vimax>» While ¢ and At explain lesser and roughly equal
amounts. The relationship with Af is a result of the
“broadening” of the outer-core wind field with time,
which often continues to occur well after maximum in-
tensity (e.g., Cocks and Gray 2002). The regression
without the PCs explains 44% of the variance of R34
and the MAE is 50.3 km. The mean relative error is
21% of the estimated R34. The MAE was calculated
using a cumulative storm-by-storm jackknife procedure
to better reflect the independently derived error: each
storm was individually removed from the full sample
and PCA was performed on the subsample of remain-
ing storms. The regression was then trained on the sub-
sample and tested on the storm that was left out. This
was done for all storms in the sample and the cumula-
tive errors were tallied. Since there is essentially no
serial correlation between individual storms, this is a
true independent test.

When the PCs are added, the regression explains
23% more total variance of R34 and the MAE de-
creases by 11%. The first two leading PCs contribute,
but PC2 explains more variance. The third PC is not
significant (none of the PCs of higher order than three
were significant in any of the regressions in this sec-
tion).

For the case of R50, At contributes roughly as much
as Vi ,.x without the inclusion of the IR information.
When the IR information is included, it is found that
PC1 is not significant, but PC2 and PC3 contribute sig-
nificantly, and PC2 explains more variance than any
other predictor. With the inclusion of the IR, 32% more
total variance is explained and MAE is reduced by
12%. In the case of R64, Ar plays a large role in the
regression, as does PC2 when the IR information is
included. The inclusion of the IR information reduces
MAE by 9% and the variance explained increases from
32% to 43%.

The RMW does not depend on At and the sign of the
correlation with V. switches from positive to nega-
tive, in agreement with previous studies that generally
show a contraction of the maximum wind concurrent
with intensification. When the IR information is in-
cluded, V.. and PC2 contribute the greatest share, the
total variance explained increases from 20% to 34%
(70% change), and MAE is reduced by 8% to 20.1 km.
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TABLE 1. Description of critical wind radii regressions. Column one identifies the wind radius and the number of points in the sample
(N). Columns 2-7 show normalized regression coefficients. Columns 2-4 show the contributions from V., latitude (¢ ), and storm age
(Ar), and columns 5-7 show contributions from the IR imagery. Regressions without and with the IR-based predictors, respectively, are
shown in the first and second rows for each wind radius. Columns 8-9 show the R? statistic and MAE. The MAE was calculated
independently in a storm-by-storm jackknife procedure. The percentage change due to the addition of the IR-based predictors are
shown in parentheses. All predictors are significant at the 99.9% confidence level or greater (“n/s” indicates that a predictor was not

significant).

Vias ® At PC1 PC2 PC3 R MAE (km)
R34 +0.45 +0.22 +0.26 0.44 50.3
N = 1192 +0.41 +0.23 +0.23 -0.16 +0.27 n/s 0.54 (23%) 44.8 (11%)
R50 +0.33 +0.20 +0.34 037 41.4
N = 891 +0.30 +0.20 +0.25 n/s +0.34 —0.14 0.49 (32%) 36.6 (12%)
R64 +0.22 +0.20 +0.39 032 29.7
N =671 +0.12 +0.16 +0.30 n/s +0.34 ~0.16 0.43 (34%) 26.9 (9%)
RMW ~0.38 +0.20 n/s 0.20 23.0
N = 1251 —0.41 +0.13 n/s n/s +0.33 ~0.19 034 (70%) 21.1 (8%)

This can be compared to the MAE of 10.2 km calcu-
lated for the clear-eye cases in section 2a.

The distribution of error for the estimation of each
wind radius when all significant predictors are included
is shown in Fig. 3. The errors are based on our cumu-
lative storm-by-storm jackknife procedure. It should be
noted that there are no physical constraints on these
estimates and thus it is mathematically possible that
independent combinations of the estimated wind radii
may be unphysical in practice. For example, there could
be cases where R34 < R50, or less obviously, there may
be cases where a combination of estimated radii would
yield a wind profile that is locally inertially unstable
(caused by an overly rapid decay with increasing ra-
dius). Quality checking is recommended and could be
quickly performed operationally. Of course, R50 and
R64 should not be estimated for cases when V,, < 50
or 64 kt, respectively.

Table 2 gives the dimensional regression coefficients
that can be used in real time or postanalysis to estimate
R34, R50, R64, and RMW (all in units of kilometers),
where V., has units of knots, ¢ has units of degrees,
and At is the number of hours since reaching tropical
storm intensity. The PCs are calculated by projecting
the standardized BT profiles onto the EOFs. All the
data necessary to perform this calculation can be easily
contained in a small data file.

c. Estimation of inner-core two-dimensional surface
wind fields

Here, we construct an algorithm that estimates tan-
gential wind profiles in the disk 2 = r = 182 km and
then adds a motion-based asymmetry to create a com-
plete two-dimensional wind field. The datasets used are
described in detail in Mueller et al. (2006) and consist of

12-h mean IR imagery and flight-level wind profiles
combined with working best-track information regard-
ing intensity V.., and latitude ¢. The data spans 456
cases from 94 storms during the period 1995-2004.
Similar to the previous section, the 12-h mean IR im-
agery was azimuthally averaged about the translating
storm center and then decomposed into EOFs. The
12-h azimuthal mean flight-level wind profiles span the
disk 2 = r = 182 in 4-km increments. The span of the
profiles was constrained to lie within 182 km by the
standard flight patterns of the aircraft. For each radius,
we regressed the flight-level tangential wind at that ra-
dius onto V.., ¢, and the first five leading PCs from
the IR profiles. The regression of the wind profiles onto
the PCs is referred to as single-field principle compo-
nent analysis (SFPCA; Bretherton et al. 1992) and is
well suited for reconstructing the variance of the pre-
dictand field. The leading five PCs were chosen based
on a minimization of the cumulative error in a storm-
by-storm jackknife procedure using all 94 storms in the
dataset. Our method for constructing estimated wind
profiles produces relatively unconstrained profile
shapes and, thus, represents a significantly different ap-
proach compared to previous studies that require fitting
the profiles to various parametric models (Holland
1980; Willoughby and Rahn 2004; Mueller et al. 2006).

To identify the relative contributions of the predic-
tors in the regression, we normalized the coefficients of
the regression at each radius (Fig. 4). The predictor
Vimax dominates the regression at all radii and is fairly
constant beyond r ~ 20 km. Latitude is the next most
important contributor at all radii beyond 50 km and
increases in importance with increasing distance from
the storm center. The PCs combine to contribute sig-
nificantly at all radii, but PC2 and PC3 tend to explain
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F1G. 3. Error distributions, based on cumulative storm-by-storm jackknife testing, for the
estimates of R34, R50, R64, and RMW.

the most variance. At the outer radii, PC2 is the dom-
inant IR-based predictor.

We performed two independent tests on the algo-
rithm. For the first test, we trained the regressions using
455 cases from 87 storms during 1995-2003 and then
tested the method on 51 cases from 7 storms in 2004.
The overall results are shown in Fig. 5 and demonstrate

that the method does a reasonable job of capturing the
basic shape of the wind profiles. Figure 6 shows the
MAE at each radius along the estimated profile. Simi-
lar to the previous section, we performed our analyses
with and without the inclusion of the PCs in order to
measure how much additional skill the IR imagery in-
troduces to the estimates. As expected, the largest er-
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TABLE 2. Dimensional coefficients for the critical wind radii regressions. See Table 1 for symbol definitions.

y intercept V max b At PC1 PC2 PC3
R34 +19.6305 +1.1830 +2.9320 +0.2380 —1.3930 +4.6974 n/s
R50 +5.1766 +0.7409 +1.9060 +0.2073 n/s +4.7188 —3.0062
R64 +20.0819 +0.2345 +1.0907 +0.1865 n/s +3.3293 —2.3511
RMW +75.5154 —0.4813 +0.6992 n/s n/s +2.4101 —2.4358

rors are found at radii where the strongest maximum
winds and strongest gradients tend to occur but this is
also the region where the IR information helps the
most. At these radii, the relationship between the wind,
V max> and latitude, which reflects a kind of climatology,
is most strongly nudged by the information in the PCs.
This is particularly true in cases when an eye is evident
in the IR imagery, which would be reflected in the val-
ues of PC2 and higher. At larger radii, the error profile
is flatter and the IR reduces error fairly uniformly out
to the end of the data (r = 182 km). The local minimum
near r = 40 km is apparently not meaningful and does
not remain evident in the jackknife test described be-
low. The mean MAE for the profile is 9.6 kt (4.9 ms™ ")
without the PCs and 8.4 kt (4.3 ms™ ') when the IR
information is included (a 13% overall error reduc-
tion). For comparison with the results of Mueller et al.
(2006), the error in the estimated RMW versus the air-
craft-measured RMW was 21.9 km without the IR and
18.8 km with the IR included.

As a more thorough test of the algorithm, we per-
formed a cumulative storm-by-storm jackknife proce-
dure. The error, shown in Fig. 7, is lower at all radii
when compared to Fig. 6, but the reduction of error by
the inclusion of the IR information is less overall, and
ranges from 10% near r = 20 km to 3% at r = 182 km.
The mean MAE for the profile is 7.6 kt and the mean
error reduction for the profile by the inclusion of the IR

L -©- PC1 |]
12 —— PC2
—— PC3
1+ —#— PC4 |
—~<— PC5
-5 LAT
—A— Vmax |]

normalized coefficients

20 40 60 80 100 120 140 160 180 200
radius from storm center (km)

F1G. 4. Normalized coefficients for the SFPCA-regression
algorithm at each radius.

information is 3.8%. If we repeat these analyses for
weaker hurricanes (Saffir-Simpson categories 1 and 2),
the profile-mean MAE is 7.6 kt and the mean error
reduction is 2.4%. For major hurricanes (Saffir-
Simpson category 3 or stronger), the profile-mean
MAE is 10.0 kt and the mean error reduction by the
inclusion of the PCs increases significantly to 17.5%.
Thus, the inclusion of the IR information has a much
greater positive effect in stronger storms.

The next steps in constructing an algorithm to esti-
mate the full two-dimensional surface wind field are the
reduction of the estimated flight-level wind profiles to
profiles of 10-m sustained winds and the addition of a
storm-motion-based wavenumber-one asymmetry. The
reduction to the surface was performed using a constant
reduction factor of 0.9 and the motion vector was cal-
culated from the working best-track position fixes. The
constant reduction factor was used due to the absence
of vertical wind information in our datasets (cf. Frank-
lin et al. 2003).

An example of the final product applied to Hurricane
Jeanne (2004) is shown in Fig. 8. At this time (0600
UTC 25 September), Jeanne was moving westward at
12 kt toward the Florida coast as a category 2 storm
with V., increasing from 85 to 90 kt during the previ-
ous 6-h period. The critical wind radii R34, R50, and
R64 in the figure are identified by the dashed contours.
Because the analyses are constrained to a disk of radius
182 km, there will often be times when critical wind
radii lie outside the analyses. For example, in Fig. 8
most of R34 and a significant portion of R50 are be-
yond the analysis region. To improve the utility of the
algorithm, and as a first informal step toward a com-
plete error analysis of the two-dimensional fields, our
next step was to introduce our inner-core winds into the
existing NOAA/HRD H*Wind system (Powell and
Houston 1996; Powell et al. 1996; Powell et al. 1998;
Dunion et al. 2003), which traditionally relies on the
availability of flight-level aircraft data in the inner core.
This allowed us to blend our winds with additional data
from the outer core [SSM/I, Quick Scatterometer
(QuikScat), Geostationary Operational Environmental
Satellite (GOES) cloud-feature track, and buoy re-
ports] to create a much broader and complete analysis
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F1G. 5. (left) Aircraft-measured tangential wind profiles vs (right) estimated wind profiles.
The profiles represent 12-h mean azimuthal averages. The estimated wind profiles are based
on independent testing on 51 cases from seven storms during the 2004 hurricane season.

and make comparisons between wind fields derived
from aircraft flight-level data and wind fields estimated
by our algorithm.

An example is shown in Fig. 9 for the case in Hurri-
cane Jeanne (2004) discussed above and shown in Fig.
8. The panels on the left show the wind fields deduced
with the IR-based wind estimates in the inner-core in
place of the aircraft data. The right panels are based on

I} = = VVmax+LAT
3 =— \/max+LAT+IR

Mean Absolute Error (kt)

7 1 L
0 20 40

60 80 100 120 140 160 180
radius from storm center (km)
FIG. 6. Profiles of MAE (kt) for the estimated wind profiles in

the 2004 independent test. The solid (dashed) curve shows error
with (without) the inclusion of the IR information.

the use of flight-level data in the inner core. When the
aircraft data are replaced with our estimated IR-based
winds, the overall wind field is comparable, in magni-
tude and shape, to the analysis with the aircraft data.
The largest errors are found to the south of the storm
center and the smallest errors are found to the west.
The position of the maximum wind is very well esti-
mated [indicated by the plus (+) sign 32 km northwest
of center], but the magnitude is too weak (80 versus 87
kt with the aircraft data). The IR-based winds tend to

12

= = Vmax+LAT
m—\/max+LAT+IR ||

—_
=
*

—_
© o
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F1G. 7. Same as in Fig. 6 but for the jackknife test.
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F1G6. 8. Two-dimensional tangential wind field estimate in Hurricane Jeanne at 0600
UTC 25 Sep 2004. The critical wind radii R34, R50, and R64 are shown by the dashed

contours.

be too weak almost everywhere, which causes the criti-
cal wind radii to be generally too small. More thorough
testing is warranted, and this algorithm will be more
quantitatively tested during the 2006 season.

The two-dimensional wind estimates described
here will also be utilized in a recently developed
NOAA demonstration project to provide multiplat-
form satellite-based wind estimates globally in and
around TCs. The wind analyses are created by a fully
automated variational system that makes use of SSM/I,
QuikScat, cloud-feature tracked (Velden et al. 2005),
AMSU-based (Bessho et al. 2006), and IR-based
(Mueller et al. 2006) wind estimates (Knaff and De-
Maria 2000).

3. Summary

We have introduced three new algorithms that uti-
lize IR satellite information to estimate various metrics
of tropical cyclone surface wind fields with an empha-
sis on the inner core—an area that traditionally relies
on aircraft reconnaissance for wind measurements.

For cases when a clear symmetric eye is present
in the IR imagery, we quantified a simple relation-
ship between IR-measured eye size and RMW, and
found that our estimates of RMW helped reduce inten-

sity estimate error in an existing AMSU-based algo-
rithm.

For the general case with no IR scene constraints, we
formed regressions that provide estimates of critical
wind radii R34, R50, R64, and RMW. We demon-
strated that IR imagery does contain significant infor-
mation about the underlying wind fields, in spite of
the opacity (at IR wavelengths) of the cirrus canopy
that typically resides over storms. The IR informa-
tion was extracted by reducing two-dimensional bright-
ness temperature fields to azimuthally averaged pro-
files and then further reducing the profiles through
principle component analysis. This allowed us to use
the principle components as predictors in the regres-
sions.

To estimate complete two-dimensional surface wind
fields, we applied single-field principle component
analysis to contemporaneous profiles of IR brightness
temperature and flight-level wind profiles. This pro-
duced wind profile estimates to which we added a
simple motion-based wind asymmetry. These wind
fields can serve to fill the data-void inner-core region
when aircraft reconnaissance is not available, and can
be added to existing wind algorithms that blend inner-
core and outer-core data into fully encompassing wind
fields.
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FiG. 9. NOAA/HRD H*Wind maximum 1-min sustained surface wind analyses (kt) for the case of Hurricane Jeanne shown in Fig.
8. (left) The analyses using the IR-based wind field in place of the aircraft flight-level data in the inner core. (right) The analyses with
the flight-level data in the inner core. (top) The 4° analyses and (bottom) the 8° analyses, showing the spatial extent of the analyses.
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