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Global trends in tropical cyclone risk
P. Peduzzi1,2*, B. Chatenoux1,3, H. Dao1,4, A. De Bono1,3, C. Herold1,3, J. Kossin5, F. Mouton6

and O. Nordbeck1

The impact of tropical cyclones on humans depends on the number of people exposed and their vulnerability, as well as the
frequency and intensity of storms. How will the cumulative effects of climate change, demography and vulnerability affect
risk? Conventionally, reports assessing tropical cyclone risk trends are based on reported losses, but these figures are biased
by improvements to information access. Here we present a new methodology based on thousands of physically observed events
and related contextual parameters. We show that mortality risk depends on tropical cyclone intensity, exposure, levels of
poverty and governance. Despite the projected reduction in the frequency of tropical cyclones, projected increases in both
demographic pressure and tropical cyclone intensity over the next 20 years can be expected to greatly increase the number of
people exposed per year and exacerbate disaster risk, despite potential progression in development and governance.

Tropical cyclones (TCs) are common in many regions of the
world and affect nearly all tropical areas (Fig. 1). They are
associated with extreme winds, torrential rains triggering

floods and/or landslides, high waves and damaging storm surges
leading to extensive coastal flooding.

Between 1970 and 2009, singular TC events inflicted the highest
death toll (Bhola, Bangladesh, 1970, 300,000 killed) and greatest
damages (Katrina, USA, 2005, US$125 billion of losses) on record.
They claimed a cumulated reported 789,000 lives during this
period1. Mortality and losses vary extensively from one event
to another. Understanding the probability of losses requires an
identification of all the components of risk2,3, which are the
hazard (frequency and intensity), the exposure (the number of
people; assets or crops) present in the hazard-prone area4 and
the vulnerability (the degree of loss to each element should a
hazard of a given severity occur5). Given that hazard, exposure and
vulnerability are changing, the risk is dynamic and needs to be
re-assessed periodically.

Regarding TC hazard, the influence of observed climate change
on past TC frequency and intensity is uncertain, and confidence
that there have been detectable long-term trends remains low6.
However, owing to consistency among the models and their
agreement with theory, there is greater confidence in twenty-
first-century projections of TC activity under warming scenarios.
Specifically, whereas it is likely that overall global TC frequency will
decrease (or remain roughly constant), it is also likely that mean
intensity will increase. Such an increase is expected to be manifest
notably in the most intense storms7 and increases in the frequency
of the strongest storms are possible6,8.

More than the trend in hazards, governments and the insurance
industry need information on the trend in mortality and economic
risk induced by these hazards. Most global reports looking at trend
in disaster risk are based on past reported losses from international
databases (mostly from EMDAT; ref. 1).

The number of TC disasters reported by EMDAT has nearly
tripled between the 1970s and 2000s (line E in Table 1). Although
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we cannot discard impacts from climate change on hazard, the
improved access to information may be responsible for spurious
increases and needs to be assessed.

Carrying out a trend analysis presupposes that such databases
are comprehensive or at least consistent through time. However,
by comparing observed TC events (as detected by satellite) and
reported disasters, there are some large differences in trend. The
average observed global TC frequency has remained steady in the
past 40 years (line A in Table 1). The number of TCs making
landfall, their intensity and the number of countries struck is
also stable (lines B, C and D; One TC event can affect several
countries. For example, Hurricane Mitch led to disasters in eight
different countries and is recorded as eight disasters in EMDAT.).
The world population increased by 86% between 1970 and 2010
(ref. 9; from 3.7 to 6.9 billion) and the exposure has therefore
increased. However, this has not translated into higher reported
mortality, which has fluctuated but is on a downward trend
(line F in Table 1).

Therefore, either the increase in exposure was compensated by
a significant decrease in vulnerability, and/or the observed increase
in reporting is mostly induced by improved access to information.
The latter is quite probable given the improvements in global TV
coverage, internet, mobile phone and satellite networks9.

Without undermining the value of international loss databases,
these simple statistics show that these are likely to be biased by
improvements to technology and information access; they are
not comprehensive and they do not indicate whether high losses
result from high exposure, high intensity or high vulnerability.
Hence, they are not suited for risk trend analysis. Despite these
significant limitations, most global reports are based on figures
from reported losses10–14. A new approach is needed. The method
introduced here provides a trend analysis on mortality risk
based on the observed TC database15 further modelled using
geographical information system (GIS) and statistical regression.
It is independent from international loss databases, which are only
used for initial calibrations.

NATURE CLIMATE CHANGE | VOL 2 | APRIL 2012 | www.nature.com/natureclimatechange 289

© 2012 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nclimate1410
mailto:Pascal.Peduzzi@unepgrid.ch
http://www.nature.com/natureclimatechange


ARTICLES NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE1410

Australia

Asia II
North

America 

Asia I

Africa

New Zealand

Central and South
America

On land:
Mortality risk 

On oceans:
Hazard frequency: average events per century

Not null Low Medium High Extreme3 8 18 30 45 60 75 90 100 113 143

5,0000 2,500
(km)

Europe

Figure 1 |Map showing distribution of hazard frequency and mortality risk from TCs for the year 2010. Estimates are applied to all pixels on a geographic
grid. Mortality risk is categorized from low to extreme.

Table 1 | Events as recorded by instruments (lines A–D) versus trend of reported TC disasters (lines E and F, average per year).

1970s 1980s 1990s 2000s

A Number of TC physical events (recorded)15 88.4 88.2 87.2 86.5
B Number of TC events making landfall (recorded) 34.4 34.4 35.6 35.2
C Weighted average intensity over landfall* 1.7 1.8 1.8 1.8
D Number of times that TCs hit countries (recorded) 142.1 144.0 155.0 146.3
E TC disasters in EM-DAT (reported) 21.7 37.5 50.6 63.0
F Killed (×1,000) by TCs in EM-DAT (reported) 35.7 4.7 21.1 17.4
G Percentage of reported disasters versus countries hit by TCs 15% 26% 33% 43%

The percentage of reported disasters increased threefold, whereas the number of TCs remained stable. *Weighted average is the sum of all maximum intensity, divided by the number of observed TCs.

Results
The new layers of information produced include TC-hazard
global distributions such as average TC frequency, and maximum
intensity recorded between 1970 and 2009 as well as total sum of
winds. We also provide the TC-exposure distribution (population
and gross domestic product (GDP) for each class of intensity)
and mortality-risk distribution by class (Fig. 1). These layers of
information are made available in different GIS formats. The
GIS raster values on exposure and risk were also aggregated
(summed) at country level in a tabular format (Supplementary
Table S12 in Section S6.3).

The multiple regression analysis showed that the intensity of the
hazard, the level of population exposure, the level of poverty and
the level of governance were the main factors accounting for risk.
It also showed that vulnerability parameters have more weight for
less intense TCs and, conversely, the role of population exposure
in mortality risk grows with the intensity of the TC. Exposure
accounted for 9.0%, 46.4%, 52.7% and 62.9% of mortality losses
for TC categories I, II, III and IV respectively (Supplementary
Section S6). For category V, human exposure to winds and number
of the coastal population living in low-lying areas accounted for
68.9% of the model’s losses. However, for this latter category
there were too few events for a sound statistical analysis. Poverty
levels (low GDP per capita) accounted for 91% of the mortality
loss for category I TCs and 37.1% for category IV (and 31.1%
for category V). This shows that poverty levels are less significant

when facing very intense TCs, whereas at lower intensities only the
poorest suffer heavy losses.

Coastal population living in low-lying areas (less than 10 km
from the coast) was found to explain a large share of losses
from high-category TCs, whereas remoteness was also identified as
triggering more vulnerability. According to this analysis, TCs seem
to bemore dangerous in rural/remote areas as compared with cities.
This may be due to several factors, such as improved early warning,
better infrastructure, and quicker access to external rescue and aid
from humanitarian services in urban areas. Remote locations are
more disconnected and less accessible.

The tropical-cyclonemortality-risk index
The mortality risk was aggregated at country level according
to two logarithmic scales: average number expected killed per
year (absolute risk) and number killed per million inhabitants
(relative risk). If absolute risk is employed large countries
will rank first, whereas if relative risk is used small islands
will appear foremost. To overcome this issue, the two scales
were combined to produce 10 categories of countries at risk.
This provides a TC mortality-risk index (TC-MRI; Fig. 2).
The detailed ranking and categories of countries are provided
in Supplementary Table S12 (Supplementary Section S6.3). The
TC-MRI provides a standardized tool for comparing countries. The
rank is produced by sorting countries by decreasing TC-MRI value,
decreasing relative risk and then decreasing absolute risk.
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Figure 2 | TC-MRI. The risk categories are based on both average number
of people killed per year as modelled (x axis) and average number killed per
million inhabitants (y axis).

As a limitation, the model cannot take mega-disasters (such as
Mitch 1998 or Nargis 2008) into account. These are too rare events
and thus were statistical outliers in the analysis. The TC-MRI is
probably too high for countries that are proactive in disaster risk
reduction (DRR) (for example Bangladesh, Japan and Cuba), the
reason being that data on DRR (number of shelters, early-warning
quality and so on) are not readily available. Comparing TCs
Sidr (Bangladesh, 2007) and Nargis (Myanmar, 2008) provides
an example of differences from DRR practices. By improving
the early-warning system, building shelters and reforesting coastal
areas, Bangladesh has succeeded in drastically reducing the number
of fatalities related to TCs (ref. 16). Despite the fact that Sidr
hit a larger population with stronger winds, it resulted in 30
times fewer victims in Bangladesh than did Nargis in Myanmar1.
Myanmar’s official warning to the population was provided on page
15 of the newspaper The New Light of Myanmar17, suggesting that
officials did not take the threat seriously. Bangladesh has drastically
reduced the mortality risk, but risk remains high owing to high
exposure and poverty levels.

Also, the historical global TC records suffer from well-
known heterogeneities due to improvements of methodologies and
instruments for measuring TCs. Estimates of TC maximum winds

are particularly sensitive to these improvements18. This sensitivity
can influence the size of the buffers considered in this study and
result in a spuriously inflated trend in exposure. To minimize
this effect, only the events from 1978 and onward were taken
for the event analysis. The results based on TC frequency are
less sensitive to data heterogeneity, given the smoothing function
applied. The full range of data since 1970 was used to cover as many
TC-prone areas as possible. A smaller sample of records would
have resulted in an underestimation of the TC-prone areas and
associated frequencies.

Mortality-risk trend analysis (1970–2010)
A given population living in a hazard-prone area is not impacted
every year by hazardous events. The average number of people
exposed annually to hazards is called ‘physical exposure’ and
mathematically can be obtained by multiplying the number of
people living in the hazard-prone area by the annual frequency of
occurrence of a selected hazard.

In 2010, an estimated 1.53 billion people were living in TC-prone
areas in 81 different countries and territories. The average yearly
number of people exposed to TCs is estimated at 133.7 million.
An average of US$1,901 billion is exposed annually to TCs, out of
the 16,281 billion located in TC-prone areas. Computing trends in
physical exposure requires information on both hazard frequencies
and demographic changes (Supplementary Section S6).

In the model, values of exposure and vulnerability were replaced
by values for the specific years (1970, 1980, 1990, 2000 and 2010)
and used to identify trends based on vulnerability and exposure
while holding hazard constant. This enables removal of the effect
of seasonal variations.

At constant hazard, risk is a product of exposure and
vulnerability. In Fig. 3, the y axis is the vulnerability (expressed as
number killed per million exposed). The x axis is the number of
people exposed (in millions). The multiplication of vulnerability
by exposure provides the risk. Each point in Fig. 3 is the top
right corner of a rectangle whose area is equal to the level of
risk. In this way it is possible to see if the risk is triggered more
by exposure or by vulnerability. The dashed lines represent the
equirisk levels, where, for example, the increase in exposure is
exactly compensated by corresponding decrease in vulnerability in
such a way that risk remains unchanged. This is the case for North
America, where despite a 58% increase in exposure between 1970
and 2010 the risk remained constant owing to a corresponding
decline in vulnerability. All regions have an increasing exposure
due to demographic pressure, but some regions manage to reduce
their risk despite an increase in exposure. For example, in Asia
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Figure 3 | Trends in TC exposure, vulnerability and risk by Intergovernmental Panel on Climate Change regions from 1970 to 2010. The y axis represents
the vulnerability (in number killed per million exposed); the x axis represents the number exposed (in million). The area of the virtual rectangles where the
bottom left corner is the origin (0, 0) and each coloured square is the top right corner is equal to the level of risk. The dashed lines represent equirisk levels.
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growth (−2.2 to 1.0%).

II (Asian countries on the Pacific Ocean, Fig. 1), the level of risk
was reduced by 300% owing to a drastic reduction in vulnerability
(that is more than 70% reduction since 1970). The trend in this
region is largely influenced by China. In Asia I (India, Bangladesh
and Myanmar), the vulnerability remains very high and fluctuates
around 400 killed per million exposed. Progress in DRR has
been made in Bangladesh (for example, number of shelters built).
However, such indicators were not available globally for inclusion
in the models. Both the exposure and risk have more than doubled
in this region since 1970.

Scenarios for 2030
The United Nation projection for world population in 2030 is
8.3 billion people19 (8.2–8.5; ref. 20). This change in demography
will influence the exposure to hazards. Since 2010, more than
50% of the population has been urban. Our study reveals that
urban population is usually less vulnerable to TC hazards. However,
about a third of the urban population live in slums, and such a
habitat often does not provide safe haven when compared with
areas with better construction. Instead of providing shelter, the
construction material can actually escalate the risk (for example
flying corrugated roofing material). The population in the slums
is also often from inland rural areas and may be less prepared for
and informed about TCs.

In Fig. 4, yearly exposure depends on several factors, the main
parameters being the number of intersections of TC events with
land, the population density at the affected locations and the
size of the TC footprint. The observed exposure reveals high
variability. However, the trend follows the theoretical average
exposure (assuming constant hazard), although the average trend
in observed exposure is steeper than the modelled trend (which
suggests either a change in hazard or influence in instrument and/or
method improvements). For the extrapolation to 2010–2030, only
the average exposure is provided (Fig. 4).

Assuming constant hazard, the population growth would
increase the average population exposed per year to 149.3 million
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Figure 5 | Scenarios until 2030. Influence of hazard on exposure for
increase in intensity (red) and change (decrease) in frequency (green) and
median scenario (dashed line in blue).

(+11.7%) by 2030. In relative terms, the main percentage increase
in physical exposure to TCs will be in Africa, with +54% (mostly
Madagascar and Mozambique). In absolute terms, about 90% of
exposure to TCs will occur in Asia. This region will face the highest
increase of annual exposure, with+10.7million for Pacific Asia and
+2.5million for IndianOceanAsia (see Supplementary Table S6).

According to ref. 6, owing to climate change, global TC
frequency is likely to decrease or remain essentially unchanged
(−6 to −34% by year 2100), whereas some increase in the mean
maximum wind speed of TCs is likely (+2 to +11% globally).
Although it is understood that climate and TC activity exhibit
substantial natural variability on a range of timescales, here we
assume constant linear trends for illustration purposes, and to
explore how exposure may change according to summaries of
current global TC projections from ref. 6. Under this assumption,
the projections of ref. 6 translate to a −1.3 to −7.6% change
in frequency and between +0.4 and +2.4% change in intensity
by 2030. Figure 5 shows the influence of these changes in hazard
frequency and intensity on human exposure.

The influence of frequency on exposure is linear. Following the
projections of ref. 6, the potential range of exposure from frequency
change would be between 135.5 and 144.6 million people per year
(median: 140.1 million) exposed by 2030. The effect of increasing
intensity is harder to estimate asmore intense TCs often have bigger
footprints, thus further compounding the increases in exposure.
Also to be taken into account is the possibility for a higher rate of
population increase in coastal areas.

Despite uncertainties about these values on the future evolution
of TC, we show that, independently from the scenarios, there will
be an increase in exposure to TCs triggered mainly by population
growth. This is a global trend, and the regional trends include
much higher variations (Supplementary Section S7), but also with
less confidence in the projections. Even under the most optimistic
scenario (7.6% decrease in TC frequency and no increase in TC
intensity) on climate change influences on TC, changes in human
exposure will increase exposure to TC.

Conclusions
This method proved to be successful in identifying underlying
factors of risk, where poverty, governance, intensity and exposure
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seem to be the main explanatory variables. The modelling of TC
footprints allows for a refined measure of exposure and modelled
of average exposure.

In future research, the model used here could be improved.
Parameterization of the TC wind field with the Holland21 model
can suffer from inaccuracies and tends to overestimate the area
of strong winds22–24, although there is no expectation that these
will project strongly on the trends shown here (see discussion in
Supplementary Section S1.3).

Another improvement could be made by using subnational
values for vulnerability indicators. The use of national values,
especially for large countries such as India and China, does not
reflect the significant variations within the countries.

The demographic pressure and the development of new
infrastructure will increase the exposure in the coming decades.
Regardless of uncertainties in TC projections, the likelihood
of increased risk and human exposure suggests that the
principle of caution should be observed and should galvanize
governments to action.

So far, the reduction in vulnerability has compensated the
increase in exposure. If projections of TC-intensity increases are
confirmed, the outcome could be different because exposure
trends tend to increase at higher intensities, as exposure plays a
heavier role with high-intensity TCs. Further investigations include
continuing research on the impacts of climate change on the
intensity of TCs as well as introducing these impacts into the
footprints and risk models.

Methods
Modelling TC wind fields and tracks using mathematical formulas associated with
GIS techniques is a well-recognized approach25,26. Characterization of the hazard
is generally based on linear interpolation through Monte Carlo simulation of best
tracks (or synthetic tracks) for computing probability of occurrence of wind-speed
hazards27–31. Surfaces covered by TCs are usually modelled either through kernel
smoothing of best tracks29 or the creation of circular buffers derived from the
maximum sustained wind speed32, but mathematical models based on central
pressure and maximum wind speed provide more realistic results. The Holland
model21, and its derivatives, is probably the most used and recognized hurricane
hazard model, despite a known tendency to overestimate the radius of maximum
wind22–24. It produces wind-speed profiles for a specific time26. We transformed
this model to produce TCwind-speed surfaces over time.

Most studies including hazards and change in exposure have mostly focused
on small areas25,27 or one country32. Risk analyses have mainly focused on economic
losses25,27,33. None of the aforementioned studies attempt to cover thewholeworld.

We provide here results from 3D modelling (wind-speed profile footprints
through time) of all individual TC events available (4,182) from 1970 to 2009 for
the entire globe. We intersected these modelled surfaces of wind intensities with
models of human and economic distribution (at a resolution of 30 arc second)
for the corresponding years to compute the exposures under each hazardous
event footprint. We then linked these footprints with reported losses (killed and
economic losses) using a previously developed methodology (ref. 34), as well as
contextual vulnerability parameters using indicators of economy, development
level, governance, political corruption, quality of environment and demography, as
well as remoteness, proximity from the coast and other parameters (Supplementary
Table S3). To this end, we compiled a vulnerability database with 124,000 records
on about 40 indicators for 40 years and 208 countries and territories. Some
indicators were not available and data gaps remain a limitation for selected
indicators. Exposure and vulnerability parameters were used to infer the loss
functions using statistical multiple regressions. This provides the TC hazard
distribution for the five different Saffir–Simpson intensity classes, the distribution
of human and economic exposure, an identification of the vulnerability parameters
which are associated with TC risk and a quantitative evaluation of the role of
exposure and vulnerability in configuring risk. The risk was mapped to show its
geographic distribution and values were aggregated at the national level to compare
countries. We also replaced original values of exposure and vulnerability for the
corresponding values of 1970, 1980, 1990, 2000 and 2010 to identify the trend in
risk. Finally, values of exposure were extrapolated for year 2030 to evaluate the
respective influences of both climate change and population growth on future
human exposure to TCs.

The method follows an eight-step process (see Supplementary Section S1
for details), starting from hazard modelling, evaluation of human and economic
exposure (using the LandScan population model35 and a GDP distribution model)
and identification of contextual vulnerability parameters from a list of about 40
parameters. It enables the creation of anMRI to compare countries.
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