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SUMMARY

This paper is a contribution towards better understanding of the continually occurring symmetriza-
tion processes in tropical cyclones. Before a tropical cyclone develops an eye, it can often possess an asym-
metric monopolar vorticity distribution. As an idealized initial condition in a nondivergent barotropic
model, we use a lopsided monopole with different degrees of asymmetry of the monotonic vorticity field.
We then study the axisymmetrization process which involves the ejection of a winding spiral band. For
extreme asymmetric initial conditions, the band can produce regions of barotropic instability, resulting
in nonlinear mixing of vorticity and the formation of polygonal structures. In a second series of experi-
ments, we study the case of a tropical cyclone with a developed eye, modeled as a hollow-tower vorticity
distribution, i.e., an annular region of elevated vorticity, with low vorticity in the eye. If the eye is offset
and the annular region of elevated vorticity is not of uniform width, complex symmetrization processes
can occur, sometimes leading to a tripole structure of the hurricane’s vorticity field. Long lived hurricane
eyes are found for initial conditions with a slight offset. For such initial conditions, passive tracers can
remain in the eye for as long as 72 hours, showing that in this model it is possible for air inside the
eye to remain there for long periods of time, while moving coherently with the storm. Predictions of the
axisymmetric final equilibrium states of the flow were obtained using the statistical mechanics theory of
maximum Boltzmann mixing entropy. These predictions were then compared with results from the direct
numerical integrations for both the lopsided monopole and the offset hurricane eye. The distribution of
air parcel tracers initially placed in selective regions of vorticity for the direct numerical integrations
were compared with results from the statistical theory.
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1. INTRODUCTION

When studying sequences of satellite images of tropical weather disturbances, one
is often impressed by how a fairly asymmetric pattern of convection can evolve, within a
day, into a highly axisymmetric form. A typical example of this is illustrated in Figs. 1a
and 1b, which show IR images of Hurricane Howard at 0400 UTC, 24 August 1998 and
0400 UTC, 25 August 1998, respectively.

One of the major deficiencies in our ability to analyze tropical cyclone dynamics lies
in the difficulty of constructing high resolution potential vorticity (PV) maps to accom-
pany satellite images such as those shown in Figs. 1a and 1b. Based on experience with
numerical models, we suspect that the PV distribution for Fig. 1a is quite asymmetric
and filamented, while that for Fig. 1b is more axisymmetric and smooth. We also suspect
that an important dynamical aspect of the evolution from Fig. 1a to Fig. 1b is nonlinear
and lies in the horizontal advection of PV. We explore these ideas in section 3, where a
nondivergent barotropic model (described in section 2) is used to study the evolution of
lopsided vorticity monopoles, i.e., monopolar vorticity distributions whose maxima are
not collocated with the vorticity centroid.

Two other interesting aspects of tropical cyclones are the variety of eye diameters
and the fact that the eye is often not centered within the region of intense convection.
For example, the small eye in Fig. 1b is offset to the northeast. Such offset eyes are
also common in radar reflectivity patterns such as the 3 August 1997 radar composite of
Hurricane Guillermo, which is shown in Fig. 1c. Kossin and Eastin (2001) have recently
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presented observational evidence that the eye is often a region of low PV surrounded
by an annular region of very high PV. In section 4 we shall model offset eyes using the
nondivergent barotropic model with initial conditions consisting of offset hollow annular
regions of elevated vorticity.
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Figure 1. (a) Infrared image of Hurricane Howard at 0400 UTC, 24 August 1998. (b) Same as (a)

but for 0400 UTC, 25 August 1998. (¢) WP-3D lower fuselage radar composite of Hurricane Guillermo

on 3 August 1997. Images (a) and (b) are from the IR image archive of the Cooperative Institute

for Research in the Atmosphere (Zehr et al. 1999); image (c) is courtesy of NOAA/AOML/Hurricane
Research Division.

Of course, to fully describe all the moist physical processes occurring in hurricanes,
one must consider models that are three-dimensional, nonhydrostatic, and include pre-
diction equations for the amounts of the various categories of condensed water substance.
Properly formulated and run at high spatial resolution, such models are capable of sim-
ulating both the nonhydrostatic dynamics of individual cumulonimbus clouds and the
larger-scale, quasi-static, quasi-balanced dynamics of the hurricane vortex. To under-
stand the evolution of the quasi-balanced vortex in such full-physics models, it is useful
to construct PV maps from the model output. The formula used for the PV should be
one that is consistent with the full-physics model, i.e., exactly derived from the govern-
ing equations of the model. In addition, under appropriate balance conditions, this PV
should be invertible, i.e., it should carry the essential dynamical information about the
quasi-balanced flow. Recently, Schubert et al. (2001) have derived such a PV principle
for the full-physics model developed by Ooyama (1990, 2001). This PV principle takes

the form '
DP i-(VxF) k-V8, V-(pU)
= —p 1
Dt ( i ¢ Tkve, " ) (1)
where 1

is the potential vorticity. In (1) D/Dt=0/0t+ u-V is the material derivative, u the
three dimensional vector velocity of the dry air and the airborne water, { =22+ V x u
the absolute vorticity vector, p the total density (consisting of the sum of the densi-
ties of dry air, water vapor, airborne condensate, and precipitation), p, the density of
precipitation, U the vector velocity of precipitation relative to u, 8, the virtual po-
tential temperature, 9,, the material rate of change of 6,, F the frictional force per
unit mass, j = V6,/|V6,| the unit vector perpendicular to the 6,-surface, and k = {/|(|
the unit vector pointing along the absolute vorticity vector. Based on (1) we can say
that there are four aspects to understanding the potential vorticity structure in hurri-
canes: (i) the advective aspects embodied in the D/Dt operator on the left hand side
of (1); (ii) the frictional source/sink P[j-(V x F)/(j- ¢)]; (iii) the diabatic source/sink
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P[(k-V8,)/(k - V6,)]; and (iv) the effect of precipitation P[V - (p,U)/p]. The precipita-
tion term (iv) tends to be of secondary importance, so the major nonconservative effects
are the frictional source/sink (ii) and the diabatic source/sink (iii). It is the diabatic
source/sink which is responsible for the extremely large PV (~ 100 PV units) found in
hurricanes. Briefly, this aspect of the dynamics can be described as follows. First note that
k - V is the derivative along the vorticity vector and that, in the intense convective region
of the eyewall, the absolute vorticity vector tends to point upward and radially outward.
Since 9,, tends to be a maximum at midtropospheric levels, air parcels flowing upward in
the eyewall experience a material increase in PV due to the P[(k - V4,)/(k - V6,)] term.
This material increase of PV can be especially rapid in lower tropospheric regions where
both P and (k-V8,)/(k-V8,) are large. In general the “efficiency” of a given diabatic
forcing (k - V,)/(k - V8,) is higher in the inner eyewall region because P is higher there.
Although the k - Vép term reverses sign at upper tropospheric levels, large PV is often
found there because the large lower tropospheric values of PV are carried upward into
the upper troposphere (Moller and Smith 1994).

In the present paper we shall be concerned only with the advective aspects of the
PV evolution, and in particular with the horizontal advective aspects. To isolate these
aspects of the flow evolution, we consider the nondivergent barotropic model. Although
this is obviously a drastic simplification, the nondivergent barotropic model is a useful
device that allows us to focus purely on the horizontal advective aspects of the problem.

2. NONDIVERGENT BAROTROPIC SPECTRAL MODEL

Since the nondivergent barotropic model does not make a distinction between po-
tential vorticity and absolute vorticity, the f-plane nondivergent barotropic analogue
of (1) is D¢/Dt =vV?(, where ( the relative vorticity, and where the material deriva-
tive simplifies to D/Dt = 0/0t + ud/dzx + v0/dy. Expressing the velocity components in
terms of the streamfunction by u = —0¢ /0y and v = 0y /0x, we can write the vorticity

equation as
¢ 8, Q)
ot = O(z,y)

=vV?, ®3)

where
Vi =¢ (4)

is the invertibility principle, 8( , )/0(x,y) is the Jacobian operator, and where we have
included a diffusion term with constant viscosity v to control the spectral blocking as-
sociated with the enstrophy cascade to higher wavenumbers. Note that we have avoided
the use of hyperviscosity (higher iterations of the Laplacian operator on the right hand
side of (3)) because of the unrealistic oscillations it can cause in the vorticity field (see,
for example, Jiménez 1994).

Two integral properties associated with (3) and (4) are the energy and enstrophy
relations

d&
E = —21/27 (5)
dz
E = —21/7), (6)

where £ = [[ 1V - Vo dady is the energy, Z = [[ 1(*> dzdy is the enstrophy, and P =
JI V¢ - V( dzdy is the palinstrophy. Equations (5) and (6) are obtained by multiplying
(3) by —¢ and ( respectively, and then integrating over the entire periodic domain.
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We shall now present numerical integrations of (3)—(4) that demonstrate the sym-
metrization processes for lopsided vorticity monopoles and offset hurricane eyes. The
solutions presented here were obtained with a double Fourier pseudospectral code hav-
ing 512 x 512 equally spaced collocation points on a doubly periodic domain of size 200
kmx200 km. The code was run with a dealiased calculation of the quadratic nonlinearity
in (3). This results in 170 x 170 Fourier modes. Although the collocation points are only
0.39 km apart, a more realistic estimate of resolution is the wavelength of the highest
Fourier mode, which is 1.176 km. Time differencing was accomplished with a standard
4*h order Runge-Kutta scheme using a 6.0 second time step. The chosen value of viscosity
in (3) was 6.5 m? s~!. This gives a 1/e damping time of 45 minutes for all modes having
total wavenumber 170, but for modes having total wavenumber 85, the damping time
lengthens to 3 hours.

3. AXISYMMETRIZATION OF LOPSIDED VORTICITY MONOPOLES

The initial conditions for the lopsided monopole experiments are illustrated in the
upper left panels of Figs. 2 and 6. These initial conditions consist of a circular region
(radius a, center = x., y = y.) of elevated vorticity surrounded by an environment with
a constant, slightly negative vorticity (.. The maximum vorticity, which is elevated above
the environmental value by the amount (, is not at the center of the circular region but
occurs at & = X, ¥ = Y- The specific mathematical form of the initial condition is

Ye)

[+
Ye)

S(r):exp{—gexp (7’11)} (8)

is a smooth interpolation function with the property that S(r) — 1 as r approaches unity
from below, and S(r) — 0 as r approaches zero from above, and where

C(z,y,0)=Co+ ¢ { 1-5 ({(x —zm)?+ (y —yc)z}%/d) , (—2)?+ (y

2Sa2
0, (@ =2zc) + (Y —yr)* > a’

where

_ sin(A+ B)
d=a sinA ©)
with
A = arctan (M) , B = arcsin (m sin A) . (10)
T — Ty, a

The adjustable parameter x controls the peakedness of the initial vorticity field. In the ex-
periments shown here we have chosen £ = % exp(2) In(2) & 2.5609, which yields S(1/2) =
1/2. In addition, we have chosen the model domain 0 <z <200 km and 0 <y <200
km, with the center of the circle (z — z.)? + (y — y.)? = a® given by y. = 100 km and z.

determined from
‘H o {C(xa Y, 0) - Ce} d:cdy
I ¢, y,0) — ¢} ddy

where the double integrals are over the entire doubly-periodic domain. In this way the
center of the circle (z —z.)? + (y — y.)? = a? is shifted from the center of the model
domain in such a way that the vorticity centroid lies exactly at the center of the model
domain. The value of the constant (. is chosen so that the domain averaged vorticity
is zero, as required by the doubly periodic Fourier representation. As summarized in

=100 km, (11)
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Table 1, we have chosen a =45 km, and have run three experiments for the offsets
Ze — T = 40, 30, 20 km, with { = 300 x 102 s~1. Note that the maximum wind speeds
in all three initial vortices are slightly below hurricane strength.

TABLE 1. PARAMETERS FOR THE SIZE, POSITION AND VORTICITY VALUES OF THREE DIF-
FERENT LOPSIDED VORTICITY MONOPOLES. THE RESULTING MAXIMUM WIND SPEED (|Vmax]|)
IS ALSO SHOWN.

Exp. a Tc Tm Te — Tm ¢ Ce |Vmax|
(km) (km) (km) (km) (x1075 s71)  (x107%s71) (ms7?)
A 45  116.1  76.1 40 300 —~13 31.1
B 45 1121 821 30 300 —~13 29.7
C 45  108.1  88.1 20 300 —-13 28.8

The time evolution of the vorticity field for Experiment A is presented in Fig. 2. The
area shown is 45 km < z, y < 155 km and the initial maximum wind speed is 31.1 m s~ !.
This is the most extreme case of the lopsided monopoles we have run. The vorticity
maximum at ¢t =0 (Fig. 2a) is close to the left edge of the elevated vorticity region, and
the vorticity is monotonic in all directions from this maximum point. The last vorticity
isoline shown is ¢ =0, and the region defined by 0 < (¢ <35 x 107% 5! is uniformily
covered with 366 tracers, shown as small circles. We can see in Fig. 2b (¢ =2 h) that
the vorticity maximum quickly moves towards the center of the domain, and there is
deformation of the outer regions of the vortex, with the production of a long spiral band
carrying most of the tracers with it. At later times the spiral band thins and makes
several turns around the center of the vortex. Most of the tracers remain within the
band, even though it is extremely narrow at its outer end (Fig. 2c). The spiral band
traps some negative vorticity fluid that initially surrounded the vortex, and at t =8 h,
has captured small regions of negative vorticity between each of its windings. This pattern
is dynamically unstable, and the unstable regions tend to roll up into small vortices that
mix the vorticity (Fig. 2d,e). Polygonal patterns can be observed during different stages
of this instability process. In the last stages of the simulation, the vortex axisymmetrizes
and by ¢t =36 h (Fig. 2f), the vorticity isolines are nearly concentric. Although most of
the tracers at t = 36 h occupy the region between the same pair of isolines where they
started, there has been some spread both inward and outward. Tracer parcels that spiral
inward become surrounded by high vorticity fluid and experience additional mixing due
to the barotropic instability process. Diffusion then raises their vorticity. By 36 hours
these mixed parcels are found just outside the highest vorticity region (black area).
Thus, most of the mixing that occurs during symmetrization is confined to the annular
region surrounding the high vorticity core. Experiment A was also run with a larger
square domain of 300 km by side, but with the same gridspacing. The results showed no
sensitivity with respect to the increase in domain size.

Figure 3 shows the kinetic energy £(t), the enstrophy Z(t), and the palinstrophy
P(t) during the evolution of Experiment A. The kinetic energy was nearly conserved
during the experiment, decaying by only 0.52% of the initial value. In contrast, the
enstrophy decayed 6.38%, while the palinstrophy had a strong increase of nearly 775%
at 11 hours and a steady decrease thereafter. These results are typical of high Reynolds
number two-dimensional turbulent flows, which show selective decay of enstrophy over
kinetic energy. When these plots are compared with Fig. 8 of Schubert et al. (1999), which
shows the £, Z, and P evolution for an initial hollow-tower vorticity field, we observe a
qualitatively similar behaviour, but with the observation that in the lopsided monopole
experiment the process in action is mainly axisymmetrization, while in the Schubert et
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Figure 2. Vorticity fields at a) 0 h, b) 2 h, ¢) 8 h, d) 14 h, e) 20 h, and f) 36 h, for Experiment A. The
label bar for the vorticity field is given in units of 1075 s~1, so that the black area has vorticity larger
than 245 x 10~% s~1. At the initial time, the maximum vorticity lies 40 km west of the center of the
large circular area (radius 45 km) of elevated vorticity, i.e., m = xc — 40 km. The center of the model
domain (z =100 km, y = 100 km) is also the vorticity centroid (see Eq. (11)). Initially, the region with
0 < ¢ <35 x 105 s~ is uniformly covered with 366 tracers (small circles). Note that the symmetrization
process involves the entrainment of low vorticity environmental air and the development of secondary
barotropic instability (e.g., at ¢ =14 h).

al. (1999) experiment the relevant process is shear instability through phase locking of
vortex Rossby waves.

Since actual hurricanes have Reynolds numbers much higher than those in our nu-
merical simulations, it is of interest to note how the curves in Fig. 3 change as the
nondivergent barotropic model is run at increasingly finer resolution with decreasing val-
ues of v. Because Z is bounded by its initial value, the right hand side of (5) approaches
zero as v — 0, so that d€/dt — 0 and the kinetic energy is exactly conserved in this
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Figure 3. Time dependence of a) kinetic energy (dashed line) and enstrophy (continuous line), and b)
palinstrophy, relative to their initial values for Experiment A.

limit. The behavior of the right hand side of (6) is quite different. As v is decreased,
vorticity structures appear at finer scales before diffusion is effective, with the result that
local vorticity gradients are larger and P is therefore larger. In this way dZ/dt may not
vanish as v — 0. This is an important part of the argument given by Batchelor (1969)
and recently tested by Chasnov (1997). Thus the £ and Z curves in Fig. 3a would not
be expected to significantly change as v is decreased, while the palinstrophy shown in
Fig. 3b pulses to higher values.

The flow field in Fig. 2f can be considered a state of near-equilibrium, that is, a state
where the vorticity field preserves the same structure, except for the slow decay due to
the diffusion term on the right hand side of (3). An alternative approach to determine this
equilibrium state follows the basic ideas of statistical mechanics and is known as maxi-
mum entropy theory. This theory has been developed recently by Miller (1990), Robert
and Sommeria (1991), Sommeria et al. (1991), and Chavanis and Sommeria (1996). The
basic method of maximum entropy theory consists of looking at the flow in a proba-
bilistic, or “macroscopic”, sense. In other words, we do not follow the precise changes of
the small-scale vorticity features, but rather look at the flow as an averaged behaviour
of a large collection of systems with different fine-grain structure, but with the same
macroscopic state specified by the total energy, circulation and vorticity centroid. Max-
imum entropy theory predicts the most probable macroscopic state of the flow, which
is consistent with the largest number of microscopic states, and that macroscopic state
corresponds to the equilibrium configuration of the flow.

This maximum entropy method, the mathematical details of which are discussed
in the Appendix, was used to compute the equilibrium state of Experiment A. The
initial condition was represented by a piecewise-constant vorticity field with a total of
ten vorticity levels that approximately fit the continuous vorticity profile of Fig. 2a. The
magcroscopic quantities that are preserved in the maximum entropy vortex are the total
kinetic energy, the area (circulation) of each of the ten vorticity levels, and the centroid
coordinates. Although the total angular momentum of inviscid flow is conserved in the
doubly-periodic (square) domain, we are not considering it as one of the macroscopic
invariants since it is related to a central point in circular geometry, and thus is not
appropriate for our domain. However, we note that the conservation of the vorticity
centroid in the doubly-period domain has the same form as the angular momentum
conservation in a (singly-periodic) spherical domain (see Prieto and Schubert, 2001).

The maximum entropy vortex was obtained using 96 x 96 gridpoints on a 200 km
x 200 km domain, retaining a total of 63 x 63 Fourier modes. Since the maximum en-
tropy final state solution is expected to be a smooth function, and there is no additional
information in computing it with higher resolution, the following maximum entropy re-
sults are not sensitive to an increase of the number of gridpoints and/or Fourier modes.
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Figure 4. Vorticity profiles for Experiment A. The direct numerical integration at ¢ = 36 h is shown by
the solid line and the maximum entropy prediction by the dashed line.
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Figure 5. Tracer positions as a function of radius at ¢ =36 h for Experiment A. The histogram refers

to the positions counted within annular rings of 5 km width and the area under the histogram has

been normalized to unity. The smooth curve is the probability density function predicted by maximum
entropy theory.

The vorticity profile comparison of the azimuthally averaged vortex (with respect to the
vorticity maximum) of Fig. 2f and the azimuthally averaged maximum entropy solution
is shown in Fig. 4. There is a good fit of the two curves in most of the domain, although
in the central core of the vortex (r < 10 km) and in the interval 30 km < r < 40 km the
maximum entropy prediction is slightly below the direct numerical integration.

A theoretical prediction of maximum entropy theory for the spread of the air parcels
shown as small circles in Fig. 2 is given by the density function p;(r) for the vorticity
level {; = 17.9 x 10~ s, which represents the region 0 < ¢ < 35 x 1075 s~1 of Fig. 2.
The density function p;(r) is plotted in Fig. 5 together with the histogram of tracer
positions from Fig. 2f. This histogram was constructed by counting the tracers that were
within annular rings of 5 km width. Both the density function curve and the histogram
were normalized in order to have an area equal to unity below the curves. It is clear
that the density function is a good approximation of the tracer position histogram,
capturing the amplitude of the maximum, the shape of the curve and the regions where
the expectation of finding tracers is minimal. This agreement, along with the agreement
found by Schubert et al. (1999), indicates that maximum entropy theory is capable of
providing useful predictions for tropical cyclone mixing problems, and that it would be
useful to extend the theory to a stratified fluid.

Two other lopsided monopole experiments were performed (Experiments B and C),
with the parameters listed in Table 1. Figure 6 shows the flow evolution for Experiment
C, for which z. — 2, =20 km (with a maximum wind speed of 28.8 m s~ !). Figure 6
presents vorticity fields for the same times and grey scales as Fig. 2, in order to allow
easy comparison between the two experiments. The most relevant difference in the initial
conditions is that in Experiment C (Fig. 6a) the region with the highest vorticity is closer
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Figure 6. Vorticity fields at a) 0 hr, b) 2 hr, ¢) 8 hr, d) 14 hr, e) 20 hr, and f) 36 hr, for Experiment C.
The shading interval is the same as in Fig. 2. Initially, the region with 0 < ¢ < 35 x 10~% s~ is uniformly
covered with 357 tracers (small circles).

to the center of the vortex and, as a result, the vorticity gradient on the left side is smaller
than in Experiment A (Fig. 2a). The flow evolution of Fig. 6 is similar to that of the first
experiment, with the formation and winding of a spiral band, the redistribution of the
vorticity field towards axisymmetry and the spreading of the tracers, most of them ending
within the last two vorticity contours. The main differences in the evolution are that the
winding of the spiral is slower in Experiment C, and that secondary instabilities due to
vorticity of alternating sign (as in Fig. 2d) were not detected. Further insight into the
differences between these two experiments can be obtained from Fig. 7, which shows cross
sections of the normalized vorticity field at y = 100 km for t =0, 8 and 36 h. The curve
for Experiment A (Fig. 7a) at ¢ =8 h, has strong vorticity oscillations which interact to
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Figure 7. Cross sections of the normalized vorticity field at y = 100 km for ¢ = 0 (dashed line), t=8 h
(solid line), and ¢t = 36 h (dotted line) for a) Experiment A, and b) Experiment C.

produce shear instability, while for Experiment C (Fig. 7b), the vorticity oscillations at
t =8 h are not as dramatic and are insufficient to produce evidence of shear instability.
Figure 7 also illustrates the differences between the two initial conditions and shows that
the vortices at ¢ = 36 h have reached axisymmetric states.

The flow evolution (not shown) for Experiment B had an intermediate behaviour
between Fig. 2 and Fig. 6, with the spiral winding slower than in Experiment A but
faster than in Experiment C, and with the presence of some secondary instabilities that
were weaker than in Fig. 2d. The state of the flow at ¢=36 h for Experiment B was also
an axisymmetric vortex.

4. SYMMETRIZATION OF OFFSET HURRICANE EYES

The initial conditions for the offset hurricane eye experiments are illustrated in the
four panels of Fig. 8. These will be referred to respectively as a large offset eye (Experi-
ment D), a medium size offset eye (Experiment E), a small slightly offset eye (Experiment
F), and a small extremely offset eye (Experiment G). These initial conditions are ide-
alizations of hurricanes with an offset eye having lower vorticity than the surrounding
convective area. The total domain in these simulations is 200 km x 200 km, but only
the central 140 km x 140 km is shown. The specific mathematical form of the initial
condition is

G 0<7<r

§15((f—r1)/d1)+C25((r1—f)/dl), r1 ST’ASTl +d1
C(wayao):Ce+ <27 ’I"1—|—d1 SfandTSTz

GS ((r—r2)/dz), Ty <1 <13 +do

0, otherwise

(12)
where 7 = [(z — 20)2 + y2]7,r = (z2 + y2) %, and 11, r2, @0, d1, da, (1, (o are independently
specified parameters. The constant (. is determined in such a way that the domain aver-
age of ((z,y,0) vanishes, which results in a (. which is weakly negative. Thus the fluid
surrounding the last vorticity contour in the figures shown below has negative vorticity.
Here S(s) =1 — 3s2 + 253 is the basic cubic Hermite shape function satisfying S(0) =1,
S(1) =0, S§'(0) =S5'(1) =0. The values of the parameters for the four experiments are
listed in Table 2.

Figure 9 shows the flow evolution for the case of the medium size offset eye (Exper-
iment E) where the vorticity region 0 < ¢ <35 x 107° s~ has been uniformily covered
with a total of 560 tracers shown as small circles. The initial asymmetry produces waves
on both sides of the high vorticity region, with the outer region quickly creating a long,
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Figure 8. Initial vorticity fields (in 10~5 s~1) for a) Experiment D, b) Experiment E, c) Experiment F,
and d) Experiment G. The region with 0 < ¢ <35 x 107% s~! is uniformly covered with tracers (small
circles).

TABLE 2. PARAMETERS FOR THE SIZE, POSITION, TRANSITION REGIONS AND VORTICITY VALUES FOR VOR-
TICES WITH OFFSET EYES. THE RESULTING MAXIMUM WIND SPEED (|Vmax|) IS ALSO SHOWN.

Exp. r1 ro zo dy da Ce C1 ¢2 |[Vmax|

(km) (km) (km) (km) (km) (x1075s7!) (x107%s71) (x107%s7!) (ms™!)
D 24 45 10 7 7 —26.4 60 300 37.9
D2 24 45 0 7 7 —26.4 60 300 33.3
D3 24 45 5 7 7 —26.4 60 300 35.6
E 18 45 10 9 10 —28.2 60 300 39.8
F 12 45 5 4 7 —36.9 60 300 47.9
G 12 45 22 4 7 —36.9 60 300 49.5

thin filament extending outward and encircling some of the negative vorticity air. At the
same time the air in the eye of the hurricane orbits coherently, but with deformation
of the initially circular shape. The region with the highest vorticity (black area) breaks
apart as lower vorticity air from outside of the eyewall carves inward towards the edge of
the eye (Fig. 9b). At ¢t = 8 h some of the negative vorticity fluid gets completely trapped
within a filament while strong mixing is occurring in the highest vorticity region. Most of
the tracers remain closely packed at later times (16 and 24 hours). The central core area
of the vortex resists the mixing process and the trapped negative vorticity region takes
an elliptical shape which remains coherent for the rest of the simulation. At t = 48 h the
vortex has a tripolar structure with the highest vorticity at the center, surrounded by
two satellites of lower vorticity. One of the satellite regions has formed from the remnants
of the eye and the other satellite region consists of fluid that was trapped from outside
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Figure 9. Vorticity field (in units of 10~% s~!) and tracer positions for selected snapshots of Experiment
E (medium size offset eye), with 560 tracers (small circles).

the initial vortex during the first 8 hours of the experiment. It should be noted that the
details of the formation of the tripolar vorticity structure in Fig. 9 are quite different than
that illustrated by Kossin et al. (2000). They considered an initial condition with a region
of strong central vorticity surrounded by a ring of elevated vorticity, with these two re-
gions separated by an annular moat of low vorticity. Such structures can be dynamically
unstable and, during the nonlinear evolution, the moat of low vorticity can split in two,
forming the two satellite regions of a tripole. Thus there are different ways that a tripole
can form. Since such tripolar structures possess an elliptically-shaped central region of
high vorticity, they remain a candidate for the explanation of elliptically-shaped regions
of radar reflectivity, as observed in Typhoon Herb (Kuo et al. 1999) and Hurricane Olivia
(Reasor et al. 2000).
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The case with the large offset eye (Experiment D, Fig. 8a) has an evolution similar
to the medium size offset eye (Fig. 8b and Fig. 9), but with stronger mixing. At ¢t =72
h, Experiment D has evolved to a tripole (Fig. 10a). The central region has a slightly
elliptical shape with a nearly complete absence of tracers. In the surrounding region,
the tracers are uniformily mixed, except in the satellite vortex that formed from the
surroundings of the initial vortex. The other satellite vortex contains more tracers, since
it is mostly composed of air that initially was in the eye of the storm.

I e S e e e e S T
160 [z a) Large offset eye

b) Medium size offset eye
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Figure 10. Vorticity fields (in 1075 s~!) and tracer positions at t =72 h for a) Experiment D, b)
Experiment E, ¢) Experiment F, and d) Experiment G.

We performed two other runs similar to Experiment D, but with different offsets .
The first (Experiment D») used 2o =0 km and evolved similarly to the experiment of
Schubert et al. (1999). The state of the flow at ¢ = 72 h was tripolar, but the two satel-
lite vortices were smaller than those of Experiment D (Fig. 10a). The next experiment
(Experiment D3) used zo = 5 km and also evolved to a tripole.

Figures 8b and 10b show the vorticity field at t=0 and ¢ = 72 h, respectively, for the
medium size offset eye shown in more detail in Fig. 9. Comparing Figs. 9f and 10b, it is
apparent that the tripole pattern persists during the last 24 hours of integration, with
additional smoothing of the small scale structures that surrounded the core of the vortex
in Fig. 9f.

In the case of the small, slightly offset eye (Experiment F, Figs. 8c, 10c) the flow
remains mostly unchanged during the first 24 h of integration, but with a translation
of the vortex similar to that observed by Nolan and Montgomery (2000) and Nolan et
al. (2001), who studied the possible algebraic instability of wavenumber one disturbances
and the implications for trochoidal oscillations in hurricane tracks. During the last 48 h
of integration in Experiment F, some low vorticity air is advected towards the center of
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the domain, creating a pool inside of the high vorticity region. It is remarkable that the
eye is preserved during the 72 h of simulation and that all of the tracers that started
inside the eye remain there for that period of time. However, the eye at t = 72 h is farther
from the vorticity centroid, making Experiment F at ¢ = 72 h look similar to Experiment
G at t=0 h and to Fig. 1c. The evolution of Experiment D is similar to the medium
size offset eye (Experiment E, Fig. 9), except that vorticity mixing happens faster and
the negative vorticity air trapped by the filamentation of the vortex forms four smaller
vortices instead of one (Fig. 9d,e,f). These small vortices rotate on the periphery of the
vortex for a good part of the simulation, but they slowly elongate and merge with the
fluid between the two weakest vorticity contours of the vortex. At ¢t =72 h (Fig. 10d) the
vorticity field has become symmetric and the tracers that were in the hurricane eye are
now in the periphery of the highest vorticity region, with a complete absence of tracers
in the center of the storm.

Similarly to section 3, we now consider the predictions of maximum entropy theory
applied to the initial conditions with offset eyes. These predictions were found to be
monopoles for all of the cases of the present section, demonstrating that the theory
does not predict tripolar structures as the equilibrium states for Experiments D and E.
Next we discuss the maximum entropy prediction for Experiment G. As in section 3,
a total of ten vorticity levels were defined for the maximum entropy initial condition,
one for the region of the eye, one for the area shown in black in Figs. 8d, 10d, one for
the negative region surrounding the vortex ((. in Table 2); the seven levels remaining
represent the smooth regions that connect the first three vorticity regions. The solution
was again obtained for a domain of 96 x 96 gridpoints representing a size 200 km x 200
km, retaining a total of 63 x 63 Fourier modes. The vorticity profiles of the azimuthally
averaged vortex (with respect to the vorticity maximum) of Fig. 10d and the azimuthally
averaged maximum entropy solution are compared in Fig. 11. Although the inner (r < 20
km) and outer (r > 60 km) vorticity regions coincide, the slope between those regions is
steeper for the maximum entropy prediction, and the secondary flat region between 45
km and 50 km from the center of the direct numerical integration is not predicted by
maximum entropy theory.

Figure 12 shows the histogram of the tracer positions for Experiment G at t =72 h
(Fig. 10d). The positions are counted within annular rings of 5 km width, and the area
below the histogram has been normalized to unity in order to compare it with the density
function p, that represents the vorticity level of the eye of the hurricane in maximum
entropy theory. The density function qualitatively captures the behaviour of the tracers,
predicting a zero probability within a 20 km radius, a maximum between 40 and 45 km,
and some tracers near 100 km radius. However, the density function underestimates the
value of the peak of the histogram and overestimates the region between 50 and 90 km
radius.

The predictions of maximum entropy theory are not as accurate for the offset eye
(Experiment G, Figs. 11 and 12) as for the lopsided monopole (Experiment A, Figs. 4
and 5). Here it should be recalled that maximum entropy theory involves a statistical
argument, and that it “forgets” the specific initial vorticity distribution, maintaining only
the macroscopic invariants. The precise evolution of the flow in maximum entropy theory
is ignored, and this could be the reason that Experiment A, which is closer, at t =0, to
its equilibrium state, is better predicted than Experiment G. However, an extension of
the present work would be to test the predictions of the maximum entropy production
principle, which actually computes the evolution of the flow based on maximizing the rate
of entropy production. This new theory has recently been used by Kazantsev et al. (1998)
as a subgrid-scale eddy parameterization in a barotropic ocean model. We should point
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Figure 11. Vorticity profiles for Experiment G (small, extremely offset eye). The direct numerical
integration at ¢ = 36 h is shown by the solid line and the maximum entropy prediction by the dashed
line.
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Figure 12. Tracer positions as a function of radius for t = 36 h of the direct numerical integration of

Experiment G (small, extremely offset eye). The histogram refers to the positions counted within annular

rings of 5 km width and the area under the histogram has been normalized to unity. The smooth curve
is the probability density function predicted by maximum entropy theory.

out that although the diffussion of the direct numerical integrations is small, its integrated
effect over time could have an effect on the precise equilibrium state of the flow. Since
maximum entropy is a non-diffusive theory, a proper comparison of the results is valid
at the limit ¥ — 0 and ¢ — oo, which means a run integrated for a long time, with higher
resolution and very short time step, making it computationally expensive.

In passing it is interesting to note the connection of our results to the experimental
plasma physics results of Peurrung et al. (1993), who indirectly studied the dynamics of an
asymmetric annulus of vorticity in an incompressible, inviscid two-dimensional fluid with
the aid of a pure electron plasma apparatus. The rapid evolution of the electron plasma
involves different physical principles, but mathematically the two-dimensional equations
for the evolution of the electron plasma are isomorphic with the two-dimensional Euler
equations for inviscid incompressible flow. In their experiments with an initial asymmetric
annular electron density field, Peurrung et al. noted that, after the narrow part of the
annulus further thins, it deforms considerably and collapses, while a vortex develops at
the center of the experimental device with a long spiral band which winds around the
main vortex until shear instability destroys the band. In general many of the features
seen in these extraordinary plasma physics experiments are fundamentally related to the
direct numerical simulations presented here.

5. CONCLUDING REMARKS

With the use of a nondivergent barotropic model we have studied the different ways
in which tropical cyclones tend towards an equilibrium state which is either axisymmetric
or tripolar. The processes that contribute to the axisymmetrization of the vorticity field
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involve the dynamics of vortex Rossby waves (Guinn and Schubert 1993, Montgomery and
Kallenbach 1997, Montgomery and Enagonio 1998, Moéller and Montgomery 1999), as well
as the emergence of barotropic instability. In the case of a lopsided vorticity monopole,
the time evolution involves wave dynamics at early times, with the production of a long
spiral band which winds around the vorticity maximum, until roll up and breaking of the
thin filaments redistribute the vorticity field towards an axisymmetric monopolar state.

One of the characteristic features of mature hurricanes is the presence of an eye,
a cloud-free region surrounded by an annulus of strong cumulus convection. We have
investigated the barotropic aspects of the dynamical behaviour of hurricane eyes for a
variety of eye sizes and different degrees of asymmetry of the annular convection zone.
Our simulations indicate that small, slightly offset eyes tend to survive for long periods
(greater than 72 hours) without dynamical mixing of air from inside and outside the
eyewall, while for cases of large and/or extremely offset eyes, the barotropic dynamics
produce a fast and strong mixing of the vorticity field towards a tripole or an axisymmet-
ric monopole. Of course, the physical processes occurring in hurricanes are much more
complex than our nondivergent barotropic model, but the numerical simulations indicate
that once a hurricane has formed a symmetric vorticity field with a relatively small eye
at its center (or close to it), the barotropic dynamics of the flow cannot destroy it in less
than a few days. This behaviour is quite often observed in nature and is consistent with
the hypothesis (see Malkus 1958, Newell et al. 1996, Emanuel 1997, Willoughby 1998)
that air aloft in the eye can remain inside the eye since it was enclosed when the eyewall
formed, in contrast with air inside the eye close to the surface which has a shorter resi-
dence time due to mixing processes. On the other hand, for cases where there is a strong
asymmetry in the convective field, as in a landfalling case for example, the vorticity field
can be completely redistributed within a period of 24 hours, producing major changes in
the hurricane structure.

Finally, maximum entropy theory was able to successfully predict the vorticity field
and the redistribution of the mass field (air parcels) for the case of the axisymmetrization
of lopsided monopoles. However, the prediction was less accurate in the case of the
axisymmetrization of a small, extremely offset eye. Maximum entropy theory, for all the
experiments of this paper, predicted a monopolar structure, suggesting either that the
tripoles found as relaxed states in two of our numerical simulations are only quasi-steady
structures, or that the mixing occurring during the time evolution does not maximize
the Boltzmann mixing entropy of the flow.
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APPENDIX

Maximum entropy theory
In this appendix we develop maximum entropy theory applied to doubly-periodic
two dimensional geometry in order to compare the equilibrium configurations found by
long-time direct numerical integrations and the maximum entropy theory.
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Consider an initial state consisting of L levels of vorticity & with areas Ay, £ =
1,---, L. The initial parameters (; and A, are not all independent, but must satisfy
Ele A¢ = A, where A is the total area, and Zle CeAe = 0 (since the vorticity integrated
over the doubly-periodic domain must vanish). Denoting the initial vorticity by (o(z, y)
and the initial streamfunction by (=, y), we note that V¢, = (o.

After the initial vorticity field has become intricately stretched and folded, suppose
we sample it at N points within a small neighborhood of z, y. Let n, denote the number
of sampled points at which the absolute vorticity value (p is found. Then py(z, y) = ng/N
denotes the probability, at point (z,y), of finding the vorticity fg, and the macroscopic
vorticity at point (z,y) is

L
)= Cepe(, y)- (A1)
=1

From the statistical mechanics view, the macroscopic equilibrium state is that which
has a maximum number of distributions of the sampled points with vorticity (s, in other
words, the most mixed state. Therefore we must count the total number W of correspond-
ing distributions. The number of possible arrangements having n; points with vorticity
Cl, Ny points with vorticity Cg, etc., is the multiplicity function W, which is given by

N!
N nl!ng! t nL'

(A.2)
The division by nilns!---ng! comes from the fact that two sampled points of vor-
ticity with the same vorticity value are indistinguishable if their positions are inter-
changed. The logarithm of the multiplicity function is In W =1n N! — Zle In n,!. Using
the Stirling approximation (e.g., In Nla~ NIn N — N for large N), we obtain In W =~
NInN - 25:1 nelnng,=— Zle ngIn(ny/N), where we have used Ze e =N. We
conclude that

N —o0

lim ( In W) Z pen py. (A.3)

We now define the Boltzmann mixing entropy S [p1(z,y), -, pr(z,y)] as

L
Storte ), put ) = [ <—Zm<x, ) In pu(e, y)) dedy,  (Ad)
=1

where the area integral extends over the doubly-periodic domain.

The functional S[p1(z,y),- -, pr(z,y)] measures the loss of information in going
from the fine grain (microscopic) view to the coarse grain (macroscopic) view. To find the
most probable macroscopic state, we must find the particular set of functions p(z, y), £ =
1,- -+, L, which maximize S[p1(z,y), - - -, pr(z, y)] subject to all the integral constraints
associated with the inviscid vorticity dynamics. The kinetic energy constraint requires
that the final and initial kinetic energies be equal, i.e., [[ £(u® +v?)dzdy = [[ £ (ud +
v3)dxdy, where the subscript zero denotes the initial state. With the aid of (u,v)=
(=0 /0y, Ov/0z) and (ug, vo) = (—0o /Oy, Oty /Ox), we can use integration by parts to
express the kinetic energy constraint as [ ¢(dzdy = [[ ¢oCodzdy. Another constraint
that states the conservation of the vorticity centroid in the z-direction can be expressed
as [[ z¢dzdy = [[ z{odzdy, while for the y-direction [[ y(dzdy = [[ y(odady. In other
words, the variational problem is to find the expectation functions py(z, y) by maximizing
(A.4) subject to the circulation constraints

// pl(xa y)dxdy:Ala 62172:"'aL7 (A5)
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the energy constraint

JE (g cm) dady = [[ boGadady,

and the vorticity centroid constraints

/ / T (Z &pg) dady = / / zCodzdy,
/ / y (g {m) dzdy = / / yCoddy.

(A7)

(A.8)

In the last three relations, (A.1) has been used. Making use of standard techniques of the
calculus of variations, we now take a linear combination of (A.4)—(A.8) in the following
manner. Multiply (A.4) by unity, (A.5) by ag, (A.6) by 18, (A.7) by 71, (A.8) by 7o,

then add, and take the variation of the resulting equation to obtain

L
0 = 5//2{—M In pe + ape + & (2BY + iz + 12y) pe} dzdy
=1

L
= // Z {(=1=1npg) 6pe + edpe} dady +
=1

L
// Z [@ {38 (Wbpe + pedth) + 113pe + 'yzyépg}] dzdy
=1

// i {_1 —1Inpe+ar+ & (BY +ma +72y)} dp¢ dzdy.
=1

(A.9)

The quantities ay, 8, 71 and -y, are Lagrange multipliers. For arbitrary variations

dp¢ we obtain from (A.9)

l+lnpr=ar+ G BY+mz+yy), £=1,2,--

Solving (A.10) for p¢(z,y) and requiring Ele pe =1, we obtain

pe(x,y) = % exp{ae + Ce(BY + 1z + 12y)},

where the partition function Z is given by

L

Z = Z exp{ay + &(ﬂd’ +mz+72y)}
=1

Using (A.11) in (A.1), we obtain

L

(= % > eexplag + &(BY + mz +12y)},

=1

L. (A.10)

(A.11)

(A.12)

(A.13)
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which can be used in the invertibility relation
V2 =¢ (A.14)

to obtain the streamfunction. Since the right hand side of (A.14) depends on % through
(A.13), we are faced with solving a nonlinear partial differential equation for ¢(zx, y) with
yet to be determined Lagrange multipliers ay, 8,71, v2. The equations for ay, 8, 71, 2
are obtained by enforcing the constraints (A.5)—(A.8). In summary, the solution of the
maximum entropy flow problem involves solving the nonlinear system (A.5), (A.6), (A.7),
(A.8), (A.13), (A.14) for ay, B, 71,72, ((x, y), ¥ (x, y), given the initial flow. Analytical
solutions of this system are not easily obtained, and numerical methods are required.
Turkington and Whitaker (1996) have proposed an iterative algorithm based on the
variational structure of the constrained optimization problem. The extension of this al-

gorithm to the present geometry generates the vt iterate of the quantities aﬁ"), 128

1, 1575 o @), (@, y), 9V (@,y) from (U7 (@,y), ¢ (z,y) by maximiz-
ing S [pg") (,y), -, pg') (z, y)], subject to the circulation, energy, and vorticity centroid
constraints. Given the initial condition, the iteration proceeds as follows: 1) Knowing
¢=D(z,y) and 9~V (z, y) from the previous iteration (or from an initial guess), solve
L + 3 algebraic equations for ag"), B, 4" A{). 9) Substitute the ag’), B, ) A)
into (A.13) to obtain (*)(z,y); 3) Knowing ((*)(z,y), solve the invertibility relation
(A.14) for ™) (z,y), and return to step 1. As in Whitaker and Turkington (1994),
the stopping criteria for the iteration is chosen to be |E() — E(®)| <0.005/E(®)|, where
EO = — [[ LygGodzdy, BV = — [f 1) ¢M dzdy; the number of iterations required
for convergence varies depending on the initialization, but typically around five itera-
tions are sufficient to satisfy this stopping criterion.
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