
Linux System Management

with Puppet, Gitlab, and R10k

Scott Nolin, SSEC Technical Computing

22 June 2017

Introduction

I am here to talk about how we do Linux configuration management at the Space Science

and Engineering Center.

I am doing this to encourage others doing similar work so we can ideally share ideas and

learn from each other.

Why We need Linux configuration management

SSEC’s mission and structure requires many hundreds of systems, and many groups with

different needs running systems. Linux systems are the core of our research systems.

• Ensure consistency and repeatability

• Faster time from install to production

• Adapt to change quickly

• Lower labor costs

• Computer Security

• Applying computer policy consistently

• Auditing

Why Version Control

• Version control of configurations reduces fear and increases accountability.

• See Dave Plonka’s ‘Sysadmin File Revision Control with RCS’ from 1998

• Modern system administration favors more frequent small changes, and version control makes this
easy.

• We had done this for many years with CVS, SVN, and now git for some of our configurations.

• DNS zone files

• Monitoring server configuration (check_mk/omd)

• Version control was the end of the process – after changing a configuration it got stored in version
control.

• With Puppet, you manage ‘everything’, so configuration management is even more important.

• We moved version control to the forefront. We now start with version control and end with changes
in puppet.

• Version control is how we trigger a configuration change, not how we store a change we made.

SSEC System Components

• Puppet – configuration management server

• Gitlab– git server, with integrated Continuous Integration features (CI).

• Includes gitlab-ci

• CI Scripts you write do the work: bash, perl, python, whatever you want

• Foreman – Puppet GUI and node classifier

• optional, but nice

• R10K

• Code management tool that maps Git branches to Puppet environments.

• Make a branch called ‘testing’ in git, and an puppet environment called ‘testing’ is created.
Assign test machines to testing branch and test.

Puppet History at SSEC

2011, Initial: Puppet server for testing and light use

• Used to distribute science software rpms/lmod modules, yum repositories, and monitoring client checks

• Edit modules directly on server

• Assign modules to hosts in puppet server configuration files

• No integrated version control (ad-hoc for some modules)

February 2015, Configuration as Code: Puppet, Gitlab, gitlab hooks, and puppet-sync

• Version Controlled

• pdxcat/puppet-sync

• Pre-receive hooks for tests, Post-receive hooks for puppet-sync

• branches are environments

• Git workflow accelerated development of modules

• Used for ‘everything’, new stuff and converting existing.

• Problem with git client and gitlab gui and hooks - tests were in pre-receive, never get triggered in GUI

• Monolithic gitlab repository bad for sharing with other groups

July 2016, Gitlab-CI method: Puppet, Gitlab, Gitlab-CI, and R10k

• The gitlab GUI is a first class citizen

• CI/CD methods are generally well understood and accepted

• Gitlab-CI provides a GUI, making it easier to visualize and maintain your production pipeline.

June 2017, Upgrade to Puppet 4

Foreman

• Foreman provides a GUI for Puppet, system provisioning and more.

• Foreman also provides the Puppet Server install

• To make new classes or environments available in Foreman, we import them via the

GUI manually after our Gitlab/r10k/puppet workflow completes.

You will see “Foreman Import” in the CI steps, but this is just a placeholder in case we

decide to automate further.

SSEC Workflow: Routine Administration

• Node Classification – we use Foreman as External Node Classifier

• Assign nodes to environments, such as a test environment

• Assign modules (puppet classes) to groups of nodes or individual nodes

• Routine changes can be done in master branch of control repository. We can use the

Gitlab GUI or git cli.

• User operations: add local users, override attributes (example: modify UID if needed), Allow

access to a machine for a domain user.

• Manage public keys

• Sudoers

• Add Applications

SSEC Workflow: Bigger Changes

1. Create short lived branches, for example “scott_test”

2. Assign test nodes to scott_test environment

3. Test changes

4. Merge test branches to master

5. Move test nodes back to master

Configuration Freeze

We typically use the system to enact change. We can also use the system to avoid

changes. We did this for a group of critical systems for a week during GOES-16

deployment.

• Made a branch called ‘goes_freeze’, put hosts in that environment

• Pinned every puppet module to a specific commit

• Disabled automatic yum updates in our yum module

• When the freeze period was over, moved the hosts to the normal environment. They

then got all the changes that happened in that time period.

In the past this may have caused us to simply pause some of our work, now it does not.

Long Lived Branch Workflow

Our short lived branch workflow is only one way to do this. Another idea is to have a long

lived test branch.

• Force all changes to go to the test branch and merge to master (or ‘production’) after

passing

• Have some hosts permanently assigned to the test environment

• This can be a highly structured workflow with checks and balances. Only some admins

could be allowed rights to merge for example.

• These methods can be combined. Permanent testing VM’s for a long lived branch, but

still doing the short-lived branch test methods is a direction we may go at SSEC. I

especially like the idea of some nightly complete system rebuild testing.

Where did I get the idea for puppet/r10k/gitlab?

This is based on first looking at Phil Zimmerman’s

‘An Automated R10K Workflow That Works’ and attempting to replicate it.
http://philzim.com/2014/05/02/an-automated-r10k-workflow-that-works/

This uses
• R10k

• Github Enterprise

• Sinatra

• Capistrano

• Jenkins

• Ruby

• https://github.com/pzim/reaktor

As I was wrestling with various components gitlab-ci developed rapidly and showed great promise.
It worked.

http://philzim.com/2014/05/02/an-automated-r10k-workflow-that-works/
https://github.com/pzim/reaktor

R10K: Control Repository and Puppetfile

The control (git) repository controls the puppet environments, it is a critical component. The control
repository contains the Puppetfile and more.

The puppetfile is a file listing all other repositories with modules you use. These can be any
combination of your own git or puppet forge, your own private, or someone else’s. For security we use a
dedicated gitlab server, and download, curate and re-host any repositories we use from outside.

Consider that you likely would not share your control repository with others, but may share other
modules, which are building blocks.

#Puppetfile example
#Here are some Puppet Modules. These reference our git server, but
#could be any git or puppet forge
mod 'ipmi',
:git => 'git@sgit.ssec.wisc.edu:tc-puppet/ipmi.git',
:ref => 'master'

mod 'winbind',
:git => 'git@sgit.ssec.wisc.edu:tc-puppet/winbind.git',
:ref => 'master'

mod 'augeasproviders_core',
:git => 'git@sgit.ssec.wisc.edu:tc-puppet/augeasproviders_core.git',
:ref => 'master'

mod 'zpool_scrub',
:git => 'git@sgit.ssec.wisc.edu:tc-puppet/zpool_scrub.git',
:ref => 'master'

R10K: Control Repository Contents

Anything that is routinely changed is more convenient in control than an external
repository. You could have a mostly empty puppetfile and put most puppet modules in
control, mimicking our monolithic puppet-sync method.

• hieradata – this can be it’s own module, but for SSEC, is changed frequently. For
example, it’s how we allow users login to linux systems. I believe hieradata in control is
fairly common.

• site/<modulename> – we put the ‘site’ directory is in the modulepath, so this adds
modules in the control repo directly

• You can put any modules you want in site/

• We use - site/profiles, site/role, and site/hostgroups. Notice these are generally ‘site
specific’ things for SSEC, likely would not be shared. They’re how we compose things,
using other basic building block modules from outside control repo, as defined in the
Puppetfile.

Gitlab CI

Gitlab CI is an integrated CI/CD system that comes with gitlab for testing, building, and

deploying code

• Continuous Integration (CI) is a development practice where you integrate code for a

project frequently. Check-ins are tested via an automatic build process.

• Continuous Deployment (CD) is similar, focused on delivery of software to the end user.

In our use case, we test our puppet modules, and deploy them to the puppet server. We

use Gitlab-CI and R10K instead of our previous git server-side hooks and pdxcat/puppet-

sync.

Push to Gitlab

Is this control
repository?

No (Is Module)Yes (Control Repo)

End

Is code valid
(passes tests)?

Is code valid
(passes tests)?

Has Puppetfile
Changed?

No

Yes

R10K deploy
environment and all

modules

R10K deploy
environment only

Yes

No

Yes

Get control
repo and

Puppetfile

Does control
have a matching

branch?

Yes

Is module in
Puppetfile?

Yes

R10K deploy module

Yes
Report Error

No

Report Error

Process Flow

Gitlab Server

Gitlab CI

Gitlab Runner Server

Gitlab CI
Puppet
Control

Git Repo

Puppet
Module
Git Repo

Puppet Server

R10K Puppet config
 files

Test Deploy

Code

Configuration

Data Flow

Authentication Between Components

• Gitlab deploy keys – allow read-only access to a gitlab repository

• R10K user @ puppet server’s ssh public key is used as gitlab deploy key on control and

module repos. This is how r10k@puppet_server grabs the repositories from gitlab.

• Gitlab-runner user @ runner server’s ssh public key is used as gitlab deploy key on the control

repository only. The runner uses this to get the puppetfile for tests.

• Normal system SSH keys

• Gitlab-runner@runner_server ssh public key is added to r10k@puppet_server authorized

keys. This is how the gitlab runner can ssh to the puppet server to run r10k commands.

• We manage public keys with puppet, adding them to authorized_keys. Of course there’s the

bootstrap issue for these in particular.

Gitlab Server

Gitlab CI

Gitlab Runner Server

Gitlab CI
Puppet
Control

Git Repo

Puppet
Module
Git Repo

Puppet Server

R10K Puppet config
 files

Test Deploy

Control and all module repos
Gitlab deploy key =
R10k@puppetserver pubkey

gitlab-runner@runner server pubkey
in r10k authorized keys

Control repo Gitlab deploy key =
gitlab-runner@runner server pubkey

Gitlab-ci process handles auth

Code

Configuration

Authentication

Gitlab CI: Control Repository

Adding .gitlab-ci.yml file to the repo defines the process

stages:
- test
- r10k

puppet_test:
stage: test
script: puppet_test
allow_failure: false

hiera_test:
stage: test
script: hiera_test
allow_failure: false

r10kdeploy:
stage: r10k
script: r10k_control_deploy
allow_failure: false

Scripts are run on the gitlab-runner linux host.

There are docker and shell runner methods, we

use shell, but either will work.

The gitlab-runner user simply executes whatever

script you give it in it’s shell.

This naturally has security concerns, the gitlab-

runner needs to be treated as securely as all

other system components. If compromised, all

your hosts are compromised easily.

Clicking the CI Step shows the output.

In this case I modified r10k_control_deploy itself.
I found a bug while making these slides.

What happened? Gitlab-ci ssh’ed to the puppet server and

ran r10k deploy.
print "DEPLOY ENVIRONMENT ONLY:\n";

system ("ssh r10k\@${PUPPETSERVER} r10k deploy environment $r10k_env --verbose");

Clicking the commit shows the diff

Gitlab CI: All Other Modules

The .gitlab-ci.yml file for modules is slightly different

stages:
- test
- r10kdeploy

puppet_test:
stage: test
script: puppet_test
allow_failure: false

r10K_modtest:
stage: test
script: r10k_modtest
allow_failure: false

r10k_moddeploy:
stage: r10kdeploy
script: r10k_moddeploy
allow_failure: false

Our general puppet tests are the same, and

notice we don’t test hieradata – that lives in

control only.

We do module specific tests and deployment.

Gitlab CI Script Details

Gitlab-CI scripts are the glue that make the process work.

I designed the test scripts to also work as pre-commit scripts

• This avoids running pipelines that will fail tests and speeds up workflow

• Pre-commit scripts only work at the git cli

Example Scripts are here: https://gitlab.ssec.wisc.edu/scottn/pgr10k

• We are still changing these periodically, and Gitlab is in active development, so will not

include the in these slides.

https://gitlab.ssec.wisc.edu/scottn/pgr10k

Discussion

