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Abstract

To study the characteristics of spherical hydrometeors in6uenced by Ku-band precipitation radar, the exact
expressions of scattering cross-section, Q(s), back scattering cross-section, Q(b), absorption cross-section, Q(a),
and attenuation cross-section, Q(e), of small spherical precipitation particles are deducted according to the
assumption of dipole. Then the behaviors of these cross-sections under di:erent conditions, such as the ther-
modynamic phase and the geometric size, are well studied. Also they are compared with those under di:erent
theories, such as Rayleigh and Mie theory. The results show that: (1) comparing with Rayleigh approxima-
tion, in dipole theory, since there exists higher-order minute items, which include q, the scale factor (SF),
and m, the complex refractivity index, in those expressions, all of cross-sections of scattering ?eld change
in corporation with the properties of the variation of particle scale and phases. Only if the scale of particles
is very small, these changes are not signi?cant. That is to say, to very small particles, results under these
two theories have little di:erence. However, under the dipole theory, those so-called minute items play a
signi?cant role when the particle size increases and the phase changes. (2) It is diCcult to simply summarize
these changes. In some conditions they are good but in others they are bad. It is better to deal with every
possibility, respectively.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, the band range of conventional weather radar is from 3 to 10 cm. It has been proved
that, in a certain range of wave band, much of the interaction between precipitation particles and
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Fig. 1. Demonstration of the model.

radar wave can be described by Rayleigh theory as most particles are too small to be considered
the in6uence of shape. Mason [1], Martinez [2] and Willis [3] have already pointed out by ?eld
experiments data that the diameters of most of the raindrops range from 0.1 to 6 mm. According
to Rayleigh theory, the in6uence of the geometric shape of those hydrometeors is neglectable, i.e.,
they are taken as spots. In fact, the most widely used equation of precipitation retrieving by radar,
Z=aIb, which is well known as Z–I relationship, in which, Z represents the radar refractivity factor,
I represents the rainfall intensity, a and b are coeCcients, is also based on Rayleigh approximation
[4]. However, because Rayleigh assumption is too simple, it is not suitable to those particles owning
rather large sizes. The scattering theory of small elliptical precipitation particles advocated by Gans
solve the scattering problems of non-spherical particles to some extent, the assumption of this theory
is to consider precipitation particles as dipoles distributed along three rotary axes. This assumption,
in its nature, has a little advantage comparing with Rayleigh approximation because the particle size
is not neglectable in this condition. It can be proved (in the next part of this paper) that, when
a dipole degenerates into a small spherical particle, the result of this theory is similar as Rayleigh
approximation but has an extra minute item. That is to say, when the size of a spherical hydrometeor
is not very small comparing with radar wave, it is possible to use this assumption to study the
characteristics of scattering ?eld. Thus, in this study, we will study the characteristics of all those
cross-sections in that condition and compare them with Mie theory and Rayleigh approximation. To
radar with shorter wavelength (such as Ku band), this study is doubtlessly of some meaning. The
work band of precipitation radar (PR) loaded on tropical rainfall measurement mission (TRMM)
satellite, which was launched in 1997, is about 2:1 cm, which is in Ku band, and is rather shorter
than most conventional C band weather radar (such as WS88D). The virtue of this option is high
spatial resolution; the attenuation of radar signal is also much severe [5], however. Another tough
problem is that the relationship between Z and I is more unstable. In addition, all algorithms to revise
PR signal are based on the interaction between electromagnetic wave and precipitation particles [6].
So, in this study, we will discuss quantitative relationship of them in detail beginning with Mie
theory.

2. Methods of equations

In Fig. 1, to the di:raction of a single spherical conductor, consider incident wave 
(I) is a
normalized plane monochromatic wave, if the complex refractivity index (CRI) of the sphere to its
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surrounding media (atmosphere) is m, the attenuation cross-section Q(e) and scattering cross-section
Q(s) of Mie scattering are [7]

Q(e) =

(I)2

2�
Re

∞∑
l=1

(2l+ 1)[al + bl]; (1)

Q(s) =

(I)2

2�
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l=1

(2l+ 1)[|al|2 + |bl|2]: (2)

The backscattering cross-section Q(b) is

Q(b) =

(I)2

4�
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∞∑
l=1

(−1)l(2l+ 1)(al − bl)
∣∣∣∣∣
2

; (3)

where al and bl are coeCcients of scattering ?eld. Non-dimensional variable q, which is used to
describe the relative scale between the sphere and the incident wavelength, is

q=
2�

(I)

a: (4)

In the past several decades, observational data all over the world show that, diameter of rainfall
particle ranges from 0.1 to 6 mm while Ku-band ranges from 1.7 to 2:4 cm. As we can see, the
di:erence between them is evident. To most precipitable particles, q is much less than 1. Keeping
m2 as a ?nite value, if l is 1, it can be proved that [8]

a1 =
2
3
q3
m2 − 1
m2 + 2

b1 =
2
3
q5
m2 − 1
30

; (5)

thus, we convert (1)–(3) into

Q(s) =
3
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Q(b) =
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2
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Obviously, the absorption cross-section is

Q(a) = Q(e) − Q(s) =
3
2

2�
{Re{a1 + b1} − {|a1|2 + |b1|2}}: (9)
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Fig. 2. Four kinds of RSD ([10–12]).

Use the condition of Rayleigh approximation |mq|�1, if we ignore those minute terms, the formulas
of scattering ?eld are

Q(s) =
128�5

3
4
a6

∣∣∣∣m2 − 1
m2 + 2

∣∣∣∣ ; (10)
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Now, the problem is that, comparing with most weather radar, the wavelength of TRMM/PR is
2:1 cm, a bit short. In Fig. 2, the results of several widely used raindrop size distribution (RSD),
such as M–P distribution, gamma distribution, lognormal distribution, snow distribution, show that,
the average diameter and median diameter of precipitation particles increase with the increase of pre-
cipitation intensity, thus, the number of precipitation particles ?tting to the condition q�1 decreases.
If we still use Rayleigh approximation, what is the error when we convert (6)–(9) to (10)–(13)?
Based on the work of Battan [9], we know that, when q¡ 0:13, the result of Rayleigh theory is
almost same as that of Mie theory. To PR, which works in Ku band, it is easy to draw the con-
clusion that the diameter of precipitation particles is less than 0:84 mm. However, as the intensity
of precipitation increases, more and more percent of precipitation particles go beyond the limitation
(see Fig. 2).
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Obviously, because of the term q indicating the scale in (6)–(9), which we call dipole approxima-
tion in this study, are stricter than Rayleigh approximation. What is the feasible range of application
for these formulas? We will discuss it in detail in the following.

3. Discussions

We will compare the ratio Q(m)=Q(d) (show as solid line) of these cross-sections under dipole
approximation to cross-sections under Mie theory with the ratio Q(m)=Q(r) (shown as dot line) of
cross-sections under complete Rayleigh approximation to cross-sections under Mie theory. We use
algorithms advocated by Bohren and Hu:man [13] to calculate all the cross-sections under Mie
theory. We set wavelength 2:1 cm, and there are 3 kinds of precipitation particles: liquid water,
ice and soft hail (shown as red, green, blue line, separately, and the mixing ratio of ice to liquid
water in soft hail is 1:1). And the composition mode is advocated by Debye [14], the temperature
is 273 K. The abscissa is the non-dimensional variable q, and since the upper limit of the diameter
of precipitation particles is 6 mm, the maximum of q is about 0.9; the ordinate is the ratio which is
also non-dimensional variable of these cross-sections. In this study, if the ratio is between 0.9 and
1.1 (the region between the two black plus line in the following ?gures), it means that the error is
acceptable.

3.1. Scattering cross-section

Fig. 3 shows how the ratio of scattering cross-sections varies with q. The range of q in left ?gure
is from 0.015 to 0.9, while in right ?gure is from 0.015 to 0.4. From Fig. 3, we can see:

(1) The Q(s) of spherical ice particles is the most stable, and the results of the two calculation
methods are almost same. Although the ratio increases with the increase of scale of particles,
it lies between 1 and 1.1. This is easy to explain. Since mi, the CRI of spherical ice particle,
is much less than mw, that of liquid water particles, the last term in (6) is very small, thus,
the result of dipole assumption is almost same as the result of Rayleigh assumption in a large
range.

(2) Compared with spherical ice particles, Q(s) of liquid water particles is unstable. The two methods
show the same trend: when q is very small, the ratio is close to 1; while q increases, the ratio
increases ?rst and decreases then, which indicates that the Q(s) of the two methods is less
than that of Mie theory ?rstly and larger than that of it then. The di:erence is that, the Q(s)

of dipole assumption is larger than that of Rayleigh assumption, which makes the upper limit
which satis?es the condition of error, of diameter of liquid water particles less than that of
Rayleigh theory. The reason is that, although the term containing q in (6) is very small, it is
positive, and this term increases very quickly while it is neglected as a minute term in (10).
The results above show that dipole assumption is much stricter than Rayleigh theory.

(3) To soft hail, if q is less than 0.7, the curves lie between the lines of pure spherical ice particles
and liquid particles. The di:erence between the two approximation methods is less than that
of pure water, and is greater than that of pure ice; if q is larger than 0.7, the curves exhale.



634 X. Jin et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 83 (2004) 629–639

Fig. 3. Relationships between the ratios of scattering cross-sections under dipole and Rayleigh assumptions to Mie theory
separately and q (the former three lines in the legend represent the former assumption and the rest represent the later; w,
i and m represent liquid, solid and soft hail, separately; the right one is same as the left but the limitation of q is up to
0.4)

From that trend, we can see that if the ratio of ice increases, the behavior tends to be pure ice
particles and if the ratio of water increases, it performs similar with pure water particles.

3.2. Backscattering cross-section

Fig. 4 describes how backscattering cross-sections Q(b) (radar cross-sections) change while q
increases. From this ?gure, we can see:

(a) In spite of the thermodynamic phase of precipitation particles, the di:erence of Q(b) calculated
though the two formulas is sensitive to q, the scale factor, which makes that although q is
very small, the di:erence is striking. In addition, in the range of this ?gure, no matter how q
and phase change, the Q(b) under dipole approximation is always less than that under Rayleigh
approximation.

(b) Relatively, Q(b) of spherical ice particles are the most stable, especially, under dipole approxima-
tion, when q is between 0.015 and 0.6, the result of this method is almost same as that of Mie



X. Jin et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 83 (2004) 629–639 635

Fig. 4. Same as Fig. 3 but for backscattering cross-sections.

Theory. When q is larger than 0.6, the ratio decreases a little, but always lies between 0.9 and
1. However, we note that, if q is equal to 0.5, the ratio of the result of Rayleigh approximation
to that of Mie theory is already below 0.9.

(c) Q(b) of liquid particles change greatly while q changes. When q is between 0.3 and 0.9, the
ratio is above 1, increasing ?rstly and decreasing then, and goes to the peak when q is about
0.6. This indicates that, in this range, the Q(b) calculated by these two methods are less than
that by Mie theory, and the minimum appears when q is about 0.6. Additionally, from the right
?gure, we can see that, if q is below 0.08, the results by the two methods are almost same as
that by Mie theory; if q is between 0.08 and 0.3, Q(b) of dipole approximation is less than that
of Mie theory, while Q(b) of Rayleigh approximation is greater than that of Mie theory.

(d) Results of particles composed by soft hail are between that of pure liquid particles and ice
particles. If q is below 0.1, the results are almost same as that of Mie theory; as q increases,
Q(b) of Rayleigh theory exceeds that of Mie theory, and the ratio goes beyond 0.9 when q is
about 0.6. As for the Q(b) by dipole approximation, from the condition that is q equal to 0.1,
the ratio increases ?rstly and decreases then as q increases. When q is equal to 0.75, the ratio
begins to small than 1, which indicates that Q(b) of dipole approximation begins to be greater
than that of Mie theory.

As we know, the Q(b) is of great physical importance since it is the theoretical basis of radar
sounding. From what have been discussed above, the Q(b) is strongly in6uenced by scale and phase,
especially by CRI of liquid particles. So, the theoretical radar refractivity index that can be applied
has a limited range. However, as for ice particles and particles mixed with a large proportion of ice,
the Q(b) of dipole approximation has a greater application range than that of Rayleigh approximation.
Thus, to TRMM/PR, at least in theory, the dipole approximation formula is possibly more suitable
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Fig. 5. Same as Fig. 3 but for absorption cross-sections.

to precipitation echo in ice layer and the layer mixed by ice and water (mixed in the way advocated
by Debye) above 0◦C layer.

3.3. Absorption cross-section

Fig. 5 describes how the ratio of Q(a) change while scale factor q changes. Note that, (9) is
deducted though the law of energetic conservation indirectly. With the change of scale and phase,
the two ?nite terms containing q and m will in6uence the results unpredictably. From the ?gure
above, we can see:

(1) For ice particles, because of the in6uence of the two ?nite terms, the ratio of dipole approxima-
tion jumps when q is between 0.2 and 0.21, from a positive value which increases quickly to
a negative one, and keeps as a negative value later. Obviously, this results are not reasonable.
When q is below 0.09, the ratio of Q(a) of Mie theory to that of dipole approximation is above
1.0 and below 1.1, which indicates that although the result of dipole approximation is less than
that of Mie theory in this range, it is very close to the latter. So, the application range of dipole
approximation is very limited.

(2) As to the other two cases, distribution of the curve under dipole approximation resembles that
of ice particles. In correspondence, the application range of this approximation is that q is below
0.68 for pure liquid particles, and below 0.17 for particles composed of liquid and ice water.
The trend is that the application range increases while the proportion of liquid water increases.

(3) The application range of Rayleigh approximation is little broader than that of dipole approxima-
tion, so is the stability—there is no jump in the region of Fig. 5. Of course, we cannot prove
that Rayleigh approximation is more acceptable according to the formula, because the condition
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Fig. 6. Same as Fig. 3 but for attenuation cross-sections.

of Rayleigh approximation is not so strict, and ignores the e:ects of ?nite terms which have
close relationship with scale factor, thus, the Q(a) under this assumption is not sensitive to scale
factor. In fact, from this ?gure we can see that, in spite of the change of phase of particles, in
application range of dipole approximation, the Q(a) of dipole approximation is much closer to
that of Mie theory than that of Rayleigh approximation.

3.4. Attenuation cross-section

Fig. 6 describes how cross-sections of liquid water Q(e) changes while q changes. Fig. 7 is about
liquid water (13) shows that, under the condition of Rayleigh approximation, comparing with Q(e),
Q(s) is very small, that’s why Q(a) of Rayleigh approximation in Fig. 6 resemble those in Fig. 5,
while that of dipole approximation has evident di:erence. From the two ?gures above, we can see:

(1) Under the condition of dipole approximation, no matter how q changes, in such region (Fig. 6),
attenuation of Mie theory and the ratio of attenuation of ice particles to particles mixed by ice
and water increases consistently, which indicates that, as scale factor increases, the approximate
Q(e) is smaller and smaller than true Q(e), and the trend of ice particles is the most evident.
While that of pure liquid particles is not sensitive to scale factor. When q is smaller than 0.16,
the ratio is consistently below 1.1, and it increases a little then, but when q is above 0.4, it
begins to decrease. When q is above 0.8, it begins to be smaller than 0.9.

(2) Comparing with dipole approximation, Q(e) of pure liquid particles under Rayleigh approximation
is much less than that of the former, which is shown in Fig. 7. That is to say, the ratio is
always larger than that of dipole approximation. This indicates that, to pure liquid particles,
dipole approximation is closer to Mie theory, so it has a larger application range.
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Fig. 7. Same as Fig. 3 but is only for attenuation.

(3) In the two cases containing ice, Q(e) under dipole approximation is always more unstable than
that under Rayleigh theory, which indicates that CRI of ice has a rather important e:ect on the
Q(e) of the dipole approximation.

4. Conclusions

From what have been discussed above, we can draw these conclusions:

(1) Since a high order minute term under dipole approximation containing scale factor and com-
plex refractivity index, comparing with Rayleigh approximation, the characteristics of all the
cross-sections of scattering ?eld change to a certain content while particles size and phase
change; only when the scale of particles is quite small, these di:erence are not evident, that’s
to say, to very small particles, the two approximate methods have little di:erence.

(2) The behavior of all cross-sections caused by scale and phase is not same, and it is hard to
summarize by a simple rule. So we should use di:erent methods to deal with di:erent circum-
stances.
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